
i
i

“proceedings” — 2017/8/24 — 12:20 — page 1517 — #1517 i
i

i
i

i
i

Maximilian Eibl, Martin Gaedke (Hrsg.): INFORMATIK 2017,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 15

YellowCar: Automotive Multi-ECU Demonstrator Platform

Norbert Englisch1, Owes Khan1, Roland Mittag1, Felix Hänchen1, Ariane Heller1 and

Wolfram Hardt1

Abstract: Modern automotive industry develops software functionalities such as Advanced Driver

Assistance Systems (ADAS) as software components, spread over several ECUs. Typical

interconnection structure is a network, e.g. a CAN bus system. Up to date specifications and

standards define operating system functions. During the development process, several questions

such as functional test, performance evaluation, and optimization of software architecture for

hardware independent implementation to enable reuse and standardization must be considered. For

this reason, YellowCar has been developed as AUTSOAR based demonstration platform for

evaluation of design methods and education of students in design methodology. Several applications

demonstrate successfully YellowCar platform suitability.

Keywords: Automotive demonstrator platform, AUTOSAR, advanced driver assistance system

development, evaluation of design methods, functional test

1 Introduction

YellowCar automotive Multi-ECU demonstrator platform has been developed as platform

for functional tests, performance evaluation, and optimization of software architecture for

hardware independent implementation. The platform is based on a miniature model of a

car, well known from the market for kid´s toys. Battery based power infrastructure is

provided as well as a network of actual three electronic control units (ECUs). These are

connected via a CAN communication bus system. Several sensors have been added to the

platform. Actors are a powertrain unit, which consists an electric motor which can move

the car and a steering unit. Additionally, the platform has several lights that can be

switched and a horn for acoustic signals.

All sensors have been connected to one single ECU, enabling it to act as a sensor ECU-

node. Other ECUs have access to sensor data by reading the signals of sensor ECU from

the communication bus. This specialized architecture enables the support of sensor data

fusion. Other ECUs, connected to this communication bus implement functionalities to

control the actors, e.g. MoveForward, Stop, SteerLeft, etc. By this open concept, new

functionalities as well as additional ECUs can be added easily.

Considering that all sensor values and actor instructions are send via the communication

bus debugging can be done easily by a bus interface like TinyCan. Thus, our demonstrator

1 TU Chemnitz, Fakultät für Informatik, Straße der Nationen 62, 09111 Chemnitz, {enn | owes | mitro | haenf |

aris | hardt}@cs.tu-chemnitz.de

cbe doi:10.18420/in2017_151

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1517

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_151

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1518 — #1518 i
i

i
i

i
i

16 Norbert Englisch et al.

builds a real world demonstrator for evaluation of academic approaches.

2 Requirements

For the YellowCar as an automotive Multi-ECU demonstrator platform we defined

requirements similar to a modern car. Thus, YellowCar becomes a viable solution for

evaluation of functionalities and design methods. The requirements cover the basic

hardware and software architecture. Aspects of automotive sector`s digitalization have

been considered. Every requirement will be referred by an YCR-”x”, where x being the

requirement number.

Hardware Architecture Requirements

The hardware requirements should support sensing of the environment as needed for

ADAS-functionalities, network of several ECUs (Multi-ECU) and the ECUs themselves.

These sensor related aspects can be fulfilled using ultrasonic sensors (YCR-1), camera

(YCR-2) and a light sensor (YCR-3), hence including a variety of sensing options. CAN

bus (YCR-4) has been added as requirement since it is used widely in the automotive

domain for ECU networks [Na00]. Such a bus system is very easy to implement and it is

supported by most automotive ECUs. For the ECUs implementation we select PowerPC

(YCR-5) as processor architecture.

All applications implemented on YellowCar automotive Multi-ECU demonstrator

platform can rely on this hardware architecture features due to the specified requirements.

Software Architecture Requirements

For the software architecture we decided to choose the AUTOSAR standard (YCR-6)

[AUT01], thereby setting it as a necessary requirement. In recent development strategies

in the automotive industry as well as to latest research activities in test automation and

evaluation where AUTOSAR is a widely used standard [KF09, En16]. MISRA C (YCR-

7) [Ha04] as another requirement is met by compliance to the AUTOSAR software

architecture. Well-developed tools like Matlab-Simulink [So16], dSPACE SystemDesk

[DS01] can be used for implementation of applications on the YellowCar automotive

Multi-ECU demonstrator platform. In this way, validation and testing of applications are

easily achieved. It is also possible to test by modifying/designing architectural and

behavioral aspects before implementing and realizing the actual application on YellowCar

[So16]. Similar to a modern car essential applications are distributed to various ECUs of

the demonstration platform.

3 Architecture

According to the specified requirements, we designed the YellowCar automotive Multi-

1518 Norbert Englisch et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1519 — #1519 i
i

i
i

i
i

YellowCar: Automotive Multi-ECU Demonstrator Platform 17

ECU demonstrator platform. The hardware architecture was defined and ECUs and

sensors were mounted to the YellowCar chassis. The software architecture was defined

also with respect to the requirements. Up to now, several applications have been

implemented successfully.

3.1 Hardware Architecture

The YellowCar is controlled by three ECUs, as depicted in Fig. 1. Six ultrasonic sensors

(YCR-1), a camera (YCR-2) and a light sensor (YCR-3) are connected to the I/Os of the

ProcessingECU, reading the sensors data. The ProcessingECU converts all sensor data

values to CAN messages and sends them to the standard CAN bus. The AssitantECU and

the FeatureECU are connected to the same bus and implement the actor activation

functionalities, e.g. MoveForward, Stop, SteerLeft, etc. The distance sensors, six

ultrasonic sound sensors, three in the front and three in the back are activated one by one

in a cyclic chain. This avoids activity of several sensors at the same time, so that they don’t

influence each other

For processing the hardware platform SPC560P50 from STMicroelectronics [So16] is

used. It is based on a microcontroller with PowerPC-Architecture (requirement YCR-5).

The electrical power supply is a 6V network separated from the power system of the

powertrain. It is important to avoid interferences between both power systems.

For remote control of YellowCar, a server-client interface connecting the CAN bus with

a network has been added. Therefore, a server was implemented on a netbook and

connected to the CAN bus using the TinyCAN-Interface.

Fig. 1: Front and top view of YellowCar with ECUs and server

3.2 Software Architecture

All three integrated ECUs are realized by the system architecture AUTOSAR in version

3.1. Each ECU is separated into the horizontal layers basic software (operating system and

YellowCar: Automotive Multi-ECU Demonstrator Platform 1519

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1520 — #1520 i
i

i
i

i
i

18 Norbert Englisch et al.

services), Runtime Environment (RTE) and Application Layer. The Elektrobit AutoCore

and the tresos Studio are used for the configuration of the basic software and the generation

of the RTE. The applications of the ECUs have been developed by the dSPACE

SystemDesk and a C editor. Moreover, we have integrated Matlab/Simulink into the

AUTOSAR tool chain. Main goal was to follow the recommended software structure of

AUTOSAR beside the development of the applications in a reusable manner.

Especially the application of the FeatureECU contains the functionality of the light

control. Our AUTOSAR compliant light control consists of more than fifteen LEDs,

distributed to the car. The LEDs can be controlled by the light sensor and different action

events, which are sent by the user interfaces through the server (see section 3.3). Beside

the indicators and beam light, daytime light, underground, ambient interior light and

puddle lights have been added. The light control was developed AUTOSAR compliant in

SystemDesk (see Fig. 2) and tested in the Virtual Validation Platform (see [DHM12])

VEOS from dSPACE.

Fig. 2: Application layer diagram of light control application in AUTOSAR implemented for

YellowCar

1520 Norbert Englisch et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1521 — #1521 i
i

i
i

i
i

YellowCar: Automotive Multi-ECU Demonstrator Platform 19

3.3 Web Interface

To enable the remote control, a server implemented in programming language C++

connects via the communication bus YellowCar with a network, like shown in Fig. 3. This

server provides a webpage which represents a visualization of all sensor / control data

values from the CAN bus. Moreover, by this webpage, users can remote control the

YellowCar. Additionally, the same server sends data to a C# program to a configurable

client, running a 3D simulation of YellowCar. This simulation represents a 3D model of

the YellowCar, doing the same actions like the real car, based on the transmitted CAN

messages to the server.

Fig. 3: Web based control, Apps and 3D Simulation of YellowCar

4 Results

As followed, we name three application examples that have been implemented on our

YellowCar automotive Multi-ECU demonstrator platform. The implementations meet

various pre-defined requirements. Light Control (LC-App): Based on light sensor data

and manual inputs through web interface/switches, the LC-App controls the lights of the

YellowCar. LC-App meets the requirements YCR-3, YCR-4, YCR-5, YCR-6 and YCR-

7. The Feature-ECU implements this application. The Processing-ECU, to which all the

sensors are connected, informs the Feature-ECU via CAN bus. Traffic Sign Detection

(TSD-App): The YellowCar, while driving, automatically detects various road signs. The

camera sensor provides raw data, preprocessing implements traffic sign detection and

traffic sign recognition. CAN messages give this information to the Assistant-ECU. E.g.

when a stop sign is detected and recognized, the engine-stop-message is sent. The

requirements YCR-2, YCR-4 and YCR-7 have been met here. Obstacle detection (OTD-

App): The Processing ECU detects any obstacle on the driving way of YellowCar. The

ultrasonic sensors detect obstacles. OTP-App meets requirements YCR-1, YCR-4, YCR-

5, YCR-6 and YCR-7. With respect to the detection, Assistant-ECU implements typical

parking-assistance behavior.

Based on the presented application from the automotive domain, research approaches have

been evaluated and improved. For example, the semi-automated and application specific

test case generation and test execution for AUTOSAR basic software and RTE [En15] and

YellowCar: Automotive Multi-ECU Demonstrator Platform 1521

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1522 — #1522 i
i

i
i

i
i

20 Norbert Englisch et al.

an approach for static analysis [SL10, En16] of AUTOSAR configurations and source

code are successfully evaluated.

5 Conclusion

The automotive demonstrator YellowCar is a research platform with similar behavioral

and architectural properties as compared to a modern real world car in E/E context at the

Technische Universität Chemnitz. The platform supports easy extension of integration and

implementation of new upcoming applications realized on automotive standards like

MISRA C and AUTOSAR. Moreover, the YellowCar builds a perfect base for checking

automotive academic approaches for real world applications, especially in the area of

automated test case generation, for the demonstration of which several applications have

been implemented.

References

[AUT01] AUTOSAR, Layered Software Architecture; Date: 26.06.2017:

http://www.autosar.org/fileadmin/files/standards/classic/4-2/software-

architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf.

 [SL10] A. Spillner, T. Linz and H. Schaefer: Software Testing Foundations: A Study Guide for the

Certified Tester Exam, Rocky Nook, 2014, ISBN 978-1937538422.

 [KF09] O. Kindel und M. Friedrich: Softwareentwicklung mit AUTOSAR: Grundlagen,

Engineering, Management in der Praxis, dpunkt Verlag, 2009, ISBN 978-3898645638.

[En15] N. Englisch et al.: Application-Driven Evaluation of AUTOSAR Basic Software on Modern

ECUs; Proceedings of the 13th IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing, 2015. ISBN: 978-1-4673-8299-1.

[En16] N. Englisch et al.: Efficiently Testing AUTOSAR Software Based on an Automatically

Generated Knowledge Base; 7th Conference on Simulation and Testing for Vehicle

Technology; Springer International Publishing, 2016; ISBN: 978-3-319-32344-2.

[Na00] M. Di Natale: Scheduling the CAN bus with earliest deadline techniques, 21st IEEE

Proceedings of Real-Time Systems Symposium, 2000.

[So16] Soltani, Saeed: Dynamic Architectural Simulation Model of YellowCar in

MATLAB/Simulink Using AUTOSAR System, 2016.

[DS01] dSPACE SystemDesk Product page; Date: 26.06.2017:

https://www.dspace.com/de/gmb/home/products/sw/system_architecture_software/systemde

sk.cfm.

[Ha04] L. Hatton: Safer language subsets: an overview and a case history, MISRA C, Information

and Software Technology (2004).

[DHM12] M. Deicke, W. Hardt and M. Martinus: Virtual Validation of ECU Software with Hardware

Dependent Components Using an Abstraction Layer; Simulation und Test für die

Automobilelektronik, 2012. ISBN: 978-3-8169-3121-8.

1522 Norbert Englisch et al.

