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Abstract: This paper outlines the problem of efficiently formalizing functional 

design rationale in form of graph-rewriting production rules. It is argued that 

genetic programming provides a feasible machine learning approach to this. 

1 Introduction 

According to the VDI 2221 design guideline functional design is a crucial step in 

conceptual product design [VDI93]. Its goal is to define the purpose of the product in 

terms of input-output-relations on forms of energy, materials and signals. These so called 

functions are composed in a graph-based model termed function structure. Graph 

grammars and graph-rewriting systems in general have been used to automatically derive 

fully evolved function structures from simplified black-box models, e.g. [SC04]. These 

systems rely on a set of production rules for modifying function structures. Iterative 

application of rules results in step-wise model changes, where some sequences may lead 

to the desired results. However, since rules are formal representations of human design 

rationale their elicitation can become costly. E.g. [SC04] put a great effort in analyzing 

commonalities among function structures to acquire their rule set. In order to address this 

drawback we propose a machine learning (ML) approach to the acquisition of rules that 

grounds on the following hypothesis: Production rules can be efficiently learned from 

sample function structures using genetic programming (GP). 

2 Counter Argument 

One may argue that production rules cannot be acquired by ML since they resemble 

human design rationale that can be only accessed asking knowledgeable experts. 

Nonetheless, suppose sample data is accessible, i.e. there are pairs of black boxes and 

resulting function structures. Then hypotheses – here in the form of rule sets – can be 

formulated on how black boxes were transformed into function structures given that the 
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space of possible hypotheses is known. ML methods can be used to automatically search 

this space for hypotheses that best describe the sample data [Sa11]. 

3 Support for Learning Rules with Genetic Programming 

Quite similar to our goal [Ma06] used GP to discover relationships among the set of 

design parameters and objectives. [YSA10] employed a genetic algorithm to find rules 

and rule sequences for growing shapes, whereas [OCB08] took a partial component 

analysis approach to discover shape grammar rules. Further support is also given by 

preliminary successes in the implementation of a prototype system. In this system a rule 

is represented by a tree consisting of elementary graph operations (find/add/link 

functions, etc.). The GP framework maintains a set of alternatives for the next best rule. 

This so called population is iteratively refined using the evolutionary principles of 

selection, mutation and recombination [Ko92]. To assess the fitness of rule candidates 

we consider the validity and applicability of rules as well as the validity of function 

structures produced by the current rule set and their similarity with sample function 

structures. First experiments show that simple rules can be learned with this prototype.  

4 Conclusion 

Using GP to learn production rules from sample function structures is feasible since: The 

suggested method has been used before in order to explicate design rationale from 

sample designs; other works specifically addressed the task of learning production rules; 

and proof of concept is given by a prototype implementation. In our future work we will 

extend the prototype to learn complex rules and complete rule sets. 
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