
Approach to Learning Production Rules for

Grammar-Based Functional Design

Julian R. Eichhoff, Dieter Roller

Institute of Computer-aided Product Development Systems

University of Stuttgart

Universitätsstr. 38

70569 Stuttgart, Germany

julian.eichhoff@informatik.uni-stuttgart.de

dieter.roller@informatik.uni-stuttgart.de

Abstract: This paper outlines the problem of efficiently formalizing functional

design rationale in form of graph-rewriting production rules. It is argued that

genetic programming provides a feasible machine learning approach to this.

1 Introduction

According to the VDI 2221 design guideline functional design is a crucial step in

conceptual product design [VDI93]. Its goal is to define the purpose of the product in

terms of input-output-relations on forms of energy, materials and signals. These so called

functions are composed in a graph-based model termed function structure. Graph

grammars and graph-rewriting systems in general have been used to automatically derive

fully evolved function structures from simplified black-box models, e.g. [SC04]. These

systems rely on a set of production rules for modifying function structures. Iterative

application of rules results in step-wise model changes, where some sequences may lead

to the desired results. However, since rules are formal representations of human design

rationale their elicitation can become costly. E.g. [SC04] put a great effort in analyzing

commonalities among function structures to acquire their rule set. In order to address this

drawback we propose a machine learning (ML) approach to the acquisition of rules that

grounds on the following hypothesis: Production rules can be efficiently learned from

sample function structures using genetic programming (GP).

2 Counter Argument

One may argue that production rules cannot be acquired by ML since they resemble

human design rationale that can be only accessed asking knowledgeable experts.

Nonetheless, suppose sample data is accessible, i.e. there are pairs of black boxes and

resulting function structures. Then hypotheses – here in the form of rule sets – can be

formulated on how black boxes were transformed into function structures given that the

1977

space of possible hypotheses is known. ML methods can be used to automatically search

this space for hypotheses that best describe the sample data [Sa11].

3 Support for Learning Rules with Genetic Programming

Quite similar to our goal [Ma06] used GP to discover relationships among the set of

design parameters and objectives. [YSA10] employed a genetic algorithm to find rules

and rule sequences for growing shapes, whereas [OCB08] took a partial component

analysis approach to discover shape grammar rules. Further support is also given by

preliminary successes in the implementation of a prototype system. In this system a rule

is represented by a tree consisting of elementary graph operations (find/add/link

functions, etc.). The GP framework maintains a set of alternatives for the next best rule.

This so called population is iteratively refined using the evolutionary principles of

selection, mutation and recombination [Ko92]. To assess the fitness of rule candidates

we consider the validity and applicability of rules as well as the validity of function

structures produced by the current rule set and their similarity with sample function

structures. First experiments show that simple rules can be learned with this prototype.

4 Conclusion

Using GP to learn production rules from sample function structures is feasible since: The

suggested method has been used before in order to explicate design rationale from

sample designs; other works specifically addressed the task of learning production rules;

and proof of concept is given by a prototype implementation. In our future work we will

extend the prototype to learn complex rules and complete rule sets.

References

[VDI93] Verein Deutscher Ingenieure: Methodik zum Entwickeln und Konstruieren technischer

Systeme und Produkte (VDI 2221). Beuth, Berlin, 1993.

[SC04] Sridharan, P.; Campbell, M. I.: A Grammar for Function Structures. In Proc. of the

ASME 2004 IDETC/CIE Conferences, Salt Lake City, 2004; pp. 41-55.

[Sa11] Sammut, C.: Learning as Search. In (Sammut, C.; Webb, G.I. Eds.): Encyclopedia of

Machine Learning. Springer, New York, 2011; pp. 572-576.

[Ma06] Matthews, P.C.; Standingford, D.W.F.; Holden, C.M.E.; Wallace, K.M.: Learning

inexpensive parametric design models using an augmented genetic programming

technique, AIEDAM 20(1), 2006; pp. 1-18.

[YSA10] Yogev, O.; Shapiro, A.; Antonsson, E. K.: Computational Evolutionary Embryogeny,

IEEE T. Evolut. Comput. 14(2), 2010; pp. 301-325.

[OCB08] Orsborn, S.; Cagan, J.; Boatwright, P.: A methodology for creating a statistically derived

shape grammar composed of non-obvious shape chunks, Res. Eng. Des. 18(4), 2008; pp.

181-196.

[Ko92] Koza, J. R.: Genetic Programming: On the Programming of Computers by Means of

Natural Selection, MIT Press, Cambridge, 1992.

1978

