
Multimodel Application Specification, Integration, and
Evolution – Experiences from the Reinsurance Industry

Hans Wegener

Group Information & Process Architecture
Swiss Re

Mythenquai 50/60
CH-8022 Zürich

Hans_Wegener@swissre.com

Abstract: Swiss Re has established an architectural framework, tools, and
concepts that enable business people to specify their view of the business in a
consistent and formal manner. Based on repository technology, this business model
is refined for each application. The architectural framework ensures that a specific
list of integration and evolution problems are either solved or their complexity
reduced. Our experience show that this generally yields very satisfactory results,
but that the problems intrinsic to a large, globalized company (existence of legacy
systems, different jurisdictions) are still felt strongly.

1 Introduction

A reinsurance company, or reinsurer, insures insurance companies, also called (primary)
insurers. Much like insurers assume risk for a fixed price from their clients, either
persons or organizations, reinsurers assume risk from primary insurers. Depending on
their needs, primary insurers mainly buy reinsurance to either assume a larger portfolio
of similar small risks, and/or to pass on parts of a specific very large risk. For further
information on the subject of reinsurance, we refer the reader to [Car00].
While both insurers and reinsurers assume risk, they are different in that a primary
insurer is a retailer with a relatively large customer base and relatively few highly
standardized products, while a reinsurer is a wholesaler with a relatively small customer
base and relatively large number of products specifically designed for one client. As a
result, the volume of data and transactions is not nearly as much of a challenge for a
reinsurer as it is for a primary insurer, or a retail bank, for that matter. On the other hand,
given product diversity, the size (and therefore clout) of many clients, and the global
reach of the business, standardization is much more difficult on the data side as well.
At Swiss Re, complexity is felt very strongly at the corporate center, especially in
financial accounting and management reporting. The recent emphasis on corporate
governance and regulatory compliance demands a consistent perspective on the business
be implemented by applications. The nature of reinsurance business, the existence of
long-standing legacy systems, and the absence of simplification alternatives made it
practically impossible to establish a joint, unifying architecture upon which both existing
and future applications may be built. Hence, lacking a viable architecture upon which to

61

construct them, an architecture with which to integrate systems had to be sought instead.
Therefore, our goal was threefold:

1. Establish and manage a consistent model of the business and its financial status
to be specified by and communicated to reinsurance and finance professionals.

2. Implement applications based on a stepwise refinement of the above business
model and support their integration by mapping the (implementation) models
onto each other.

3. Decouple applications in a way that their interfaces prove stable under
evolution of the above business model.

We have written earlier about our architectural framework [Mar03] and detailed our use
of business terminology for modeling applications [WA03]. In this article we report
about our latest experiences with application specification, integration, and evolution at
different levels of abstraction.
The remainder of this document is structured as follows: Section 2 refines and extends
our architectural framework with respect to the mentioned goals and elaborates our
practical approach; Section 3 discusses some experiences made over the last year; and 4
summarizes the findings.

2 Specification, Integration, and Evolution Framework

2.1 Architectural Perspectives and their Governance

In this article we use the terminology of the Model Driven Architecture (MDA), as
defined by the Object Management Group (OMG), to describe and delineate
architectural concepts [MM03]. Generally, we distinguish between three models:

a computation-independent model (CIM),

a platform-independent model (PIM), and

a platform-specific model (PSM).

The CIM is used to represent concepts important to business. These include, for
example, the general ledger, risk model figure aggregation rules, carrier structure, or
customer segmentation. The PIM is used to represent a refined application perspective
on the business. This comprises, for example, business processes, change management,
or access control. The PSM is used to represent the technology substrate applications are
directly implemented upon. This includes, for example, user interfaces, relational
databases, or messaging middleware.
For each of the above (CIM, PIM, and PSM), our company provides standardized
artifacts to be used in design and development. Three different corporate teams are
responsible for governing architectural practice regarding each model (information and

62

process architecture, application architecture, and technology architecture). Mandatory
project milestones are defined to check project artifacts produced for architectural
compliance.

2.2 "To Be" and "As Is" Models

In theory one could discard the CIM and just live with PIM and PSM. However, the
distinction between CIM and PIM is important to us. To business, the concept of change
is a remote one. Anecdotal evidence suggested to us early on that one has to separate
between the way business people see current goings-on and their perspective on history.
Especially in non-life reinsurance and financial accounting, where complexity is high
and – literally – decades of business matter, this distinction is of crucial importance.
Furthermore, as any bigger company in the financial services industry, we are plagued
by legacy applications, which is a substantial investment not easily done away with.
To achieve a clean separation of concerns, the CIM deals as a carrier of the "to be"
world, while the PIM is the place where "as is" abstractions and, most importantly,
change are dealt with. The CIM is mapped to the PIM by a transformation mechanism to
be detailed in Section 2.3. But there is not one single PIM, there are – literally – dozens.
In addition to history and legacy systems, the global nature of our business adds
jurisdiction to the equation. From the perspective of the corporate headquarters, this is
not a relevant abstraction, either. Therefore, PIMs abound in that there is plenty of
business abstractions in individual PIMs that in theory belong to CIM. Notably, this is
less an effect of bad architectural management than of the intrinsic complexity of the
business. As a result,

the CIM abstractions are moderately complex and not numerous, but

the number of PIMs is substantial and thus considerably increases complexity.

Figure 1: The integration architecture distinguishes five different types of applications/data stores.

63

Transactional, integration, and analytical data stores use reference data stores to pick their
appropriate PIM. Based on information about application change adoption characteristics, the
mapping data stores provide PIM-to-PIM mappings. Both reference and mapping data stores span
the entire architecture. Dotted lines indicate optional data flow, the smileys indicate user
interaction (i.e., input).

For example, the general ledger used for producing our annual report consists of about
900 entities (i.e., accounts) each split by about one or two handful from around 90
attributes (i.e., dimensions). However, these numbers are drastically inflated by the fact
that variants of this report are used in about 20 other contexts, which are mostly
produced quarterly, each with a different structure and constraints defined thereupon.
Considering that this is only the financial accounting world, overall complexity becomes
more apparent.
Architectural artifacts are thus specified at different levels of abstraction, with different
models in mind. In order to manage them concurrently, our integration architecture had
to handle three separate goals:

1. Define, structure, and declare constraints between business abstractions in a
model. We designed a tool enabling business users to model them on the basis
of business terminology. Thus they establish a CIM dubbed the reference
model. The tool repository is fully historized, providing version-based as well
as temporal access to its content.

2. Allow for variations of the business model in the way it is implemented. For
different applications, the structure can be manipulated, detail taken away and
adorned with technical representations of business abstractions. The resulting
PIM is a context-specific model of the reference model. This is, again, provided
by the mentioned modeling tool.

3. Provide mappings between different models based on their history or other
metadata to enable application integration and model evolution. PIMs can be
mapped to other PIMs only with reference to the CIM. We designed a second
tool for mapping between different PIMs that makes use of the CIM for
purposes of disambiguiation, which frequently occurs. Provision of mappings
can still be manual at times, as some business decisions cause ambiguities that
would not have been caused based on a purely formal approach.

The division of labor between historization, mapping, and integration is chosen for
different reasons. Legacy applications have little choice but to operate on the premises
they were designed upon. Therefore, the choice of change adoption has to reside with the
application integrating others. Separating between historization and mapping enables us
to avoid CIM bloat, which would be a usability hazard to business people.

2.3 CIM and PIM Abstractions

Our language for creating business models is the Swiss Re Data Language (SDL). As the
name suggests, it is primarily designed to support modeling of content rather than
behaviour. The SDL Tool is our repository and modeling environment that supports

64

users in designing and understanding the structure of the business based on the SDL,
which has a history of four years. The most recent major release went productive in June
2003.
In the SDL, reinsurance and/or finance concepts such as type of claim, currency,
account, industry segment, or investment category, are described by business terms.
Each business term exhibits a descriptive name (evoking its meaning), and a formal
definition (denoting its meaning). Name and definition are used to specify and/or
understand the business semantics behind concepts. Depending on their context of use,
business terms describe attribute types, attribute values, or entity types. They belong to
the CIM.
Business terms form the terminal symbols in SDL. They are then structured, in our case
hierarchically to form reference trees. A reference tree captures the segmentation of the
business (into specific and generic concepts) as it should be from the corporate center
perspective. Reference trees are represented by an attribute type and group together
attribute values. They belong to the CIM.
Business terms can also be used to represent entity types. Because it emanated from the
financial accounting world of our company, at this moment SDL only supports
hierarchical relationships between entities (as in the general ledger). It is considered to
extend this model to more flexible use of relationships as in entity-relationship
modeling. The resulting structure, represented by an attribute type, is referred to as a
custom tree. (The term custom tree stems from the SDL project and is actually based on
a historic misunderstanding. It is a misnomer that happened to survive and become
commonly used.) The values of the attribute type representing the custom tree act as
entity types, which in turn compose a number of attribute types together. The resulting
model element forms, again, part of the CIM.
Our carrier for forward-engineering PIMs out of CIMs is the context. A context can be
anything from an application (which it normally is) to an industry standard to a mere
illustration. It serves two separate purposes. First, it is used to associate business terms
with a context-specific representation, the codes. Second, it is the platform for modeling
context-specific variants of a reference tree, the filtered tree. As such, context are the
place where metadata about structural mappings between CIM and PIMs resides. As the
name suggests, a filtered tree contains a subset of the values of the reference tree it is
based upon. Furthermore, the taxonomic relationships between the values are congruent
with that of the reference tree in that a parent of a value in the reference tree must also be
its parent in the filtered tree, as long as it also occurs there.
PIMs are administratively separate from the CIM, but their is a wide number of
interdependencies. In order to minimize the potential harm that can be caused the SDL
Tool checks overall repository consistency (CIM and PIMs). Hard constraints guard
against violations of repository integrity, while soft constraints merely provide hints at
potential inconsistencies outside the realm of the SDL Tool proper. For a more detailed
discussion of the various constraints that apply in SDL we refer the reader to [WA03].

65

3 Experiences

SDL is a global Swiss Re standard that contributes to the production of some of the most
important information artifacts of our company, notably the annual report. We were most
successful in the financial accounting and non-life reinsurance areas, less so in life-and-
health reinsurance, asset management, or financial investment. However, this may be
more an effect of our own organizational focus on the former two groups than that of
lack of usefulness.

3.1 Business Domain Modeling

We established a methodological framework which ensures that during analysis the
artifcats relating to the CIM and PIMs are captured. Application interfaces are specified
in terms of the SDL-IDs of the business terms used. Along with the chosen change
model (temporal or version-based) it becomes drastically less complex to provide
mappings from source or to target PIMs.

Figure 2: The line of business (extract) as seen from the corporate center perspective ("to be") and
from the financial accounting point of view ("as is"). The numbers are the codes as they are used
in the latter's context.

The SDL Tool currently has about a handful of content administrators that use it on a
day-to-day basis, and a couple of hundred occasional (business) users that search and
navigate the repository content. The tool's system interfaces are used by applications in
various corners of the corporation to integrate with other applications. The CIM

66

comprises of an estimated 4'500 business terms, around 100 reference trees, and one
custom tree. Here are a few modeling experiences:

Model Normalization From the perspective of the CIM, normalization is just as much
a problem as it is in technical domains. The line of business currently consists of 741
business terms. Much of this detail (the reference tree spans 9 levels) can be attributed to
specifics of facultative reinsurance, where proper premium pricing requires as much
detail as possible. But still, in order to reduce complexity, a workgroup has proposed
simplifications, which would create three more reference trees, but reduce the size of the
mentioned one by about 30%. Not surprisingly, this being one of the main reference
trees in the reinsurance part of the CIM, implementation cost is close to prohibitive. This
demonstrates the value of the PIMs. As long as complete normalization has not been
achieved, variability has to be supported. On the other hand, commonality in the upper
levels of the line of business is still pretty good: the first 4 levels of the financial
accounting and non-life reinsurance PIMs share 94% of the business terms; at level 5 the
value already drops to 45%.
As another example, proportional reinsurance business typically exhibits an obligatory
(treaty) type of agreement, while non-proportional business usually implies a facultative
(individual) type of agreement. As an effect, people often do not distinguish the two,
leading to business terms like "proportional treaty" or "non-proportional facultative".
These simplifications occur frequently and are often caused by task-specific
requirements due to the division of labor (in our and other companies) along products.
Underwriters dealing with proportional/obligatory business typically do not have
anything to do with non-proportional/facultative business and vice versa. Explicitly
separating between type of business and type of agreement would force business users to
make an artificial step caused by the underlying business model.
Jurisdiction is a tricky subject. In a globalized company, jurisdiction should not really
play a role. However, it turns out that legislative standardization is still very patchy in
financial services – even in the European Union. For example, many lines of insurance
in Germany (e.g., fire) have to be reported by content of portfolio (e.g., business or
private clients). We are unsure as to whether to reify jurisdiction as an abstraction at PIM
or CIM level to reduce the number of PIMs around. This topic is under discussion.
However, for the time being the line of business contains numerous business terms that
could be simplified by extracting the jurisdictional aspects into an attribute of its own.
While in terms of access control, CIM and PIM administration is entirely separate,
practice shows that the two get easily mangled by the administrators. Thinking is very
application-oriented, model reuse (via the CIM) a thought still a little alien to business.
However, there is slow movement in the (in our opinion) right direction. For about two
years, IT has operated a team of experts to centralize administration in the hands of a
few. This is slowly bearing fruit, much because the change process behind it is driven by
that team as well, which is highly appreciated by business.
Model Simplicity vs. Model Expressiveness Our use of soft constraints was caused by
the need to accomodate conflicting needs in the design of the CIM (and, as an effect, the
PIMs). Many of the constraints are not generic to the entire domain. We had three
choices:

67

1. express this in the form of additional CIM elements, thus adding to model
complexity,

2. express this in only a few PIM elements, thus abandoning parts of our CIM-
centric model,

3. not express this in any model, thus allowing for inconsistencies in some PIMs
or the CIM.

We opted for choice three, because the other options were expressly rejected by business
users as "too complex." Thus we ended up with a CIM and PIMs that were not
expressive enough to model all the concepts existing in the real world. SDL Tool
administrators are merely warned of (not prohibited from causing) inconsistencies.
However, we did not yet run into any serious problems. Little (if any at all) confusion
was caused by the missing model elements. It turned out that in the specific context of
use there was so much redundant (i.e., tacit) knowledge available that the lack of
expressed constraints did not really make much of a difference for model consistency.
Expressing specific needs in the CIM can have a detrimental effect on other parties,
while not adding critical capabilities for the other. This makes the CIM much less usable
for many while not even really helping the remaining few. One can exploit
organizational correlations between IT and business by leaving out model elements (i.e.,
non-generic business concepts), thus increasing the suitability for the task of model(s)
for business users. For example, the homonym rate in model repository was thought to
be a strong indicator of glossary intelligibility. However, in financial accounting we
found that our request to eliminate homonyms was rejected because it was not percieved
as useful.
A consequence of this kind of modeling are consistency issues. If the modeling
environment is no longer capable of checking consistency, the model is incomplete with
regards to the problem at hand. We have used different techniques to deal with the
resulting design space (cf. [Weg01]), for example by having interfaces deal with
additional repository object states in change management (see below).

3.2 Change Management

The CIM is defined as the model relevant to reflecting changes in the understanding of
the business. Therefore, all CIM elements are versioned to the end of managing their
lifecycle. Different changes can occur to the structure of a reference tree. Attribute
values can be added, removed, moved, promoted, demoted, shifted, merged, or split.
Business terms themselves can be changed as well, notably their definition or name.
Business term versions are valid starting at some point in time, possibly becoming
invalid at another. At any given time, at most one version (and with it the associated
structures like reference or custom trees) is valid. Names are not identifying properties of
business terms (homonyms do occur), hence we use a unique identification number – the
SDL-ID – to unambiguously identify them.
The SDL Tool does not support branching. Instead, temporal selection is the mechanism
for choosing repository object versions belonging to a specific configuration. As there is

68

at most one such valid version, this is a straightforward task. The worst that can happen
is that no valid version exists. This raises the issue of handling CIM elements that are no
longer considered valid. To deal with this, we make a distinction between the lifecycle of
business terms and the structures they are part of. Any change to the structure of a
reference tree leads to a new version; the reference tree itself may only be valid or
invalid. If it is invalid, it is no longer considered part of the CIM. On the other hand, a
value may posess a third state. If it is invalid, but part of a valid reference tree, it is
considered deprecated (see Tab. 1).

Value Reference Tree Status

Valid Valid Valid

Invalid Valid Deprecated

Valid Invalid Invalid

Invalid Invalid Invalid

Table 1: The state of a business term is determined by its own validity, the validity of the tree it is
or has been part of, and whether it still is currently part of it. If it is not part of the currently valid
reference tree, the value is generally invalid (with respect to that tree).

The distinction between business term version history and the term's current status gives
way to an (in our opinion) elegant architectural decision we took with respect to how
applications integrate and react to evolution of the CIM. Generally, there are three main
players in our integration architecture:

1. a number of applications (OLTP, ODS, DWH, or OLAP), designed for their
own PIM,

2. one model repository, containing the CIM and all PIMs, and

3. one mapping repository, with PIM-to-PIM mappings across a PIM's history and
between different PIMs.

Applications use the model repository to store the PIM underlying its own design. The
model repository is used to design the CIM, version n, and forward-engineer the
PIMs, version n for context version m, from it. If a CIM version $n+1$ occurs, the
PIMs version $n+1$ for context version m can be generated based on available
metadata. If a local change occurs, a single PIM version n for context version $m+1$
can be created, leaving all other PIMs unaffected. This way it is possible to keep
applications in sync with the CIM.
Due to the structural integrity constraints, a PIM-to-CIM mapping is much more simple
than mapping between different (often consecutive) versions of a PIM, or even worse,
between different PIMs that are structurally only loosely correlated. As for the mapping
of different versions of a PIM, ambiguities can occur, for example values can exhibit
more than one parent value in the filtered trees they belong to. (It can also happen in
reference trees.) Here, manual intervention is required. The metadata provided for

69

mapping a PIM between different versions is stored in the mapping repository and used
by applications. The model repository is uninterested in it. The same holds for mapping
between PIMs, where ambiguities can occur as well, for example values existing in one
PIM's filtered tree but not the other's. (Note that both PIMs are understood to refer to the
same CIM version, for which reason no history-related ambiguities occur there.)
As far as the lifecycle of attribute values is concerned, mappings are provided for values
that are truly invalid and have a known successor. Applications are required to map
them, especially at inbound interfaces. If no mapping is available, the value must be
rejected. As for deprecated values, the question when to make a deprecated value truly
invalid is a business decision. Hence, mappings may be provided or not, and applications
may use them or not. More specifically, some applications (notably OLTP systems with
strong auditability requirements) may decide to never change the original values
associated with some stored fact (see Fig. 1). However, the assumption is that for most
systems, the deprecation period is not indefinite, especially in management reporting.

Figure 3: Variant (PIM) integration via the reference (CIM) and across time as seen at Swiss Re.
The filtered trees can be easily mapped to the reference tree and back using context-specific
metadata. Temporal mappings are based on successor information. If two applications X and Y
want to integrate, they first map from the source application's PIM to the CIM, then across time
and back to the target application's PIM.

The welcome side-effect of such an architecture is that it allows for the automatic
handling of PIM-to-CIM mappings (and back to a PIM again). Given that we are driving
towards this goal, this is important to us. At the same time, there is a wide range of tools
at the discretion of applications to integrate with other applications one the one side, and
to extend or shorten their own adoption of the latest CIM version on the other side. If,
however, they decide to always stick with the current CIM version, the complexity they
are exposed to is tangibly reduced.
Along with the different version selection mechanisms of the SDL Tool (temporal or
version-based), we have begun to make application interfaces a first-class abstractions in
the PIMs and use mechanisms similar to profiles in the Unified Modeling Language to
further automate mapping generation. Applications will specify their change adoption

70

model (e.g., real-time, delayed, none), involved PIMs, and the mapping engine will be
capable of (semi-automatically) providing PIM-to-PIM mappings, even across different
referred-to CIM versions.
For example, the Non-Life Reinsurance Data Warehouse validates incoming data based
on the SDL. It uses the currently valid CIM, i.e. its PIM is derived using temporal
selection. Downstream applications use the same PIM (which sort of establishes a non-
life-specific CIM of itself). The PIMs of upstream applications are partially based on
specific PIM versions. However, mappings over time can, as long as both PIMs are
based on the CIM, be derived from successor information.
The lack of branching in the versioning mechanism of the SDL Tool has turned out not
to be a problem. Time is a much more important concept to business people, which is
why we found the temporal perspective on versions to be the dominant mechanism used.
Late-breaking changes or corrections are an exception, leading to the effect that
consecutive repository object versions are usually also ordered in terms of their validity.
Amendments are thus usually made to the most recent version, virtually eliminating
cases of changes to other, much earlier versions.

4 Summary

We have presented our approach to the specification, integration, and evolution of
application (interfaces) with respect to more than just one model. Our mechanism foots
on the idea of one "to be" model, the CIM being used as the forward-engineering basis
for many "as is" models, the PIMs. Both of these are based on business terminology,
making proper specification more straightforward. Integration and evolution is
simplified by means of a threefold division of responsibilities between applications,
model repository, and mapping repository. The lifecycle status of business terms is used
as a basis to decide on whether and how application interfaces must react to changes in
CIM or PIMs.
Our experiences have generally been positive, though it has become obvious to us that
legacy applications play a major role in a corporation as large as ours. This again was
used as an argument for the existence of many PIMs concurrent to the CIM.
Nevertheless, governing CIM design does take place, which means that a substantial
degree of standardization is feasible.
Returning to the three goals defined at the outset of this article (establish and manage a
consistent model of the business, stepwise refinement of the model, support for mapping
between models, decoupling of applications such that interfaces prove stable under
business model evolution), we can say that we have made a big step. The complexity
intrinsic to mappings has not yet been fully mastered, but we are on a good way to
achieving that goal as well in the long run.

71

Acknowledgements

The two introductory paragraphs on reinsurance business are an (almost) verbatim copy
from [Mar03]; used with permission.

References

[Car00] R.L. Carter. Reinsurance: the Definitive Industry Textbook. Euromoney Institutional
Investor PLC, 2000.

[Mar03] Robert Marti. Information Integration in a Global Enterprise – Some Experiences from a
Financial Services Company. In Gerhard Weikum, Harald Schöning, and Erhard Rahm,
editors, BTW 2003, Datenbanksysteme für Business, Technologie und Web, volume 26 of
Lecture Notes in Informatics (LNI), pages 558–567. Springer, February 2003.

[MM03] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management Group, June 2003.
[WA03] Hans Wegener and Gunnar Auth. Spezifikation von Fachkomponenten mit der Swiss Re

Data Language. In Klaus Turowski, editor, 4. Workshop Modellierung und Spezifikation
von Fachkomponenten, Bamberg, October 2003.

[Weg01] Hans Wegener. Generative Programming and Incompleteness. In Krzysztof Czarnecki,
editor, OOPSLA Workshop on Generative Programming, October 2001.

72

