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Abstract: The presence of different neighbor dependent substitution processes gener-
ates specific patterns of dinucleotide frequencies in all organisms. Based on a general
framework of how to include such processes into more realistic models of nucleotide
substitutions we develop a method that is able to identify such processes, measure their
strength, and judge their importance to be included into the modeling. Starting from a
model for neighbor independent nucleotide substitution we successively add neighbor
dependent substitution processes in the order of their ability to increase the likelihood
of the model describing the data. The analysis of neighbor dependent nucleotide sub-
stitutions in human, zebrafish and fruit fly is presented.

1 Introduction

The identity of the neighboring nucleotide can have a drastic influence on the mutation
rates of a nucleotide. A well-known and studied example of this fact is the increased
mutation of cytosine to thymine inCpGdinucleotides in vertebrates [Co78, RR80]. This
process is triggered by the methylation of cytosine inCpG followed by deamination, and
mutation fromCpGto TpG or CpA (on the reverse strand). Due to this process the num-
ber ofCpGis decreased while the number ofTpG andCpA is larger than expected from
independently evolving nucleotides. Most of the deviant dinucleotide odds ratios (dinu-
cleotide frequencies normalized for the base composition) in the human genome can be
explained by the presence of theCpGmethylation deamination process [ABH02]. Bio-
chemical studies in the 1970s already compared these odds ratios for different genomes
and different fractions of genomic DNA [Ru76, RS77] and concluded that these ratios
are a remarkably stable property of genomes. In the following Karlin and coworkers
[CB95, KM97, KMC97] elaborated and expanded these observations, showing that the
pattern of dinucleotide abundance constitutes a genomic signature in the sense that it sta-
ble across different parts of a genome and generally similar between related organisms.
This suggests that the causes of these genomic signatures are inheritable. Since this sig-
nature is also present in non-coding and intergenic DNA it is very promising to study
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neighbor dependent mutation and fixation processes (we refer to the effective process as
the substitution process) to understand the driving force behind these remarkably property
of genomes.

Recently framework to include such neighbor dependent processes has been introduced
and successfully applied to model theCpGmethylation deamination process [ABH02,
APH03]. Here we will extend this model and discuss the inclusion of other neighbor
dependent substitutions and how one can infer their relevance without prior knowledge
on the underlying biochemical processes. In vertebrates theCpGmethylation deamination
process is the predominant nucleotide substitution process. Its rate is about 40 times higher
than this of a transversion and its history can actually reconstructed for the last 250 Myr
[APH03]. One reason for this substitution frequency being so high is that methylation
in vertebrates is also used in gene regulation - as a byproduct methylatedCpG’s often
mutate. We know already that also other vertebrates use methylation in the same way but
do not know about the quantitative extent their genomes are methylated. The situation
is still unclear in other kingdoms of life. Although we clearly see a signature of neighbor
dependent substitution processes, we do not know the responsible processes and their rates.

To present our method we study neighbor dependent substitutions in zebrafish (Danio
rerio) and fruit fly (Drosophila melanogaster). In all these studies we first try to model
the observed nucleotide substitutions with a model which does not include any neighbor
dependent nucleotide substitutions (12 free rate parameters) and then ask the question
which neighbor dependent substitution process one would have to include to describe the
observed data best. The idea is to capture the most of the observed substitutions by single
nucleotide substitutions independent of the neighboring bases and then to include neighbor
dependent substitutions one by one to generate a better model with the least number of
parameters. Processes are added in the order of their ability to describe the observed data
better. Naturally, the addition of any further process (together with another rate parameter)
into a model will increase the likelihood of this model (defined below) to describe the
observed data. In order not to over-fit the data we use a likelihood ratio test to judge
whether the addition of further process is justified. In this respect our approach is rich in
contrast to recently presented work in the same direction by Lunter and Hein [LH04] where
49 parameters are used and neighbor independent substitution processes are not considered
separately. The strength of our approach is to come up with models with fewer parameters
that still capture the essential neighbor dependent nucleotide substitution processes.

The rest of the paper organizes as follows. In the next section we will describe the de-
tails of our method. There is no need to implement the described procedure for readers
who want to analyze their own sequences, since we are running a public web server at
http://evogen.molgen.mpg.de/server/substitution-analysis . One is able to upload pairs of
ancestral and daughter sequences and perform the presented analysis. First applications of
such an analysis will be presented in the results section.
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2 Method

2.1 The substitution model

In total there are 12 distinct neighbor independent substitution processes of single nu-
cleotides by another. Four of them are so-called transitions that interchange a purine with
a purine or a pyrimidine with a pyrimidine. The remaining eight processes are the so-
called transversions that interchange a purine with a pyrimidine or vice versa. The rates of
these processes will be denotedrα→β , whereα, β ∈ {A, C, G, T} denote a nucleotide. On
top of these 12 processes we want to consider also neighbor dependent processes of the
kind κλ → κσ andκλ → σλ where the right or left base of a di-nucleotide changes, re-
spectively. There might be several of those processes present in our model, their rates will
be denoted byrκλ→κσ or rκλ→σλ . We do not consider processes where both nucleotides
of a dinucleotide change at the same time. In vertebrates the most important neighbor
dependent process to consider is the substitution of cytosine inCpGresulting inTpG or
CpA. Its rate is about 40 times higher than this of a transversion [APH03]. This process
is triggered by the methylation and subsequent deamination of cytosine inCpGpairs. It
is commonly (and erroneously) assumed that this process only affectsCpGdinucleotides.
However this is not the case as it has been shown [ABH02].

The model itself is parameterized by the substitution rates and the length of the time
span,dt, the respective substitution processes acted upon the sequence, which would in
our case be the time between the observation of an ancestral sequence and its daughter
sequence,T . We have the freedom to rescale time and measure it in units ofT . In this
case, the time span isdt = 1 and with this choice the substitution rates are equal to the
substitution frequencies giving the number of nucleotide substitutions per bp. In the sim-
plest case our model includes neighbor independent processes only and is parameterized
by 12 substitution frequencies. For each additional neighbor dependent process we gain
an additional parameter. The set of all these substitution frequencies will be denoted by
{r}. The number of parameters can actually be reduced by a factor of two when one
considers substitutions along neutrally evolving DNA. In this case we cannot distinguish
the two strands of the DNA and therefore the substitution rates are reverse complement
symmetric, e.g. the rate for a substitutionC→A is equal to the rate for a substitutionT→G
(in the following we will denote this rate byrC:G→A:T).

In order to facilitate the subsequent maximum likelihood analysis we need to compute the
probability,P{r}(·β · |α1α2α3), that the baseα2 flanked byα1 to the left and byα3 to the
right, changes into the baseβ for given substitution frequencies{r}. This probability can
easily calculated by numerically solving the time evolution of the probability to find three
basesp(αβγ; t) at timet, which is given by the Master equation and can be written into
the following set of differential equations:

∂

∂t
p(αβγ; t) =

∑
ε∈{A,C,G,T}

[rε→α p(εβγ; t) + rε→β p(αεγ; t) + rε→γ p(αβε; t)]
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+
∑

{κλ→κσ}

rκλ→κσ [δκσ,αβ p(κλγ; t)− δκλ,αβ p(αβγ; t)]

+
∑

{κλ→σλ}

rκλ→σλ [δσλ,βγ p(ακλ; t)− δκλ,βγ p(αβγ; t)] (1)

where the numbersrα→α are defined byrα→α = −
∑
β 6=α rα→β andδαβ,γδ is the Kro-

necker delta

δαβ,γδ =
{

1 if α = γ andβ = δ
0 otherwise.

(2)

The first three terms describe single nucleotide substitutions on the three sites whereas the
last 4 terms represent the neighbor dependent processes on the bases (1,2) or (2,3). At
t = 0 we start with the three basesα1α2α3, which is expressed by the initial condition:

p(αβγ; t = 0) =
{

1 if (αβγ) = (α1α2α3)
0 otherwise.

(3)

After numerically iterating the above differential equations using the Runge-Kutta algo-
rithm [Pr92] we get the above transition probability by

P{r}(·β · |α1α2α3) =
∑
β1β3

p(β1ββ3; t = 1) . (4)

The above iteration has to be carried out for all possible 64 combinations of bases to get
all 256 possible probabilitiesP{r}(·β · |α1α2α3).

2.2 Estimation of substitution frequencies

One can estimate all the above mentioned substitution frequencies by comparing a pair
of ancestral~α = α1α2 . . . αL and daughter sequence~β = β1β2 . . . βL, in which the
daughter sequence represents the state of the ancestral sequence after the substitution pro-
cesses acted upon it for some time. Such pairs of ancestral and daughter sequences can
be obtained in various ways. One very fruitful approach is to take alignments of repetitive
sequences, which can be found in various genomes, and to align them with their respec-
tive master sequences as the ancestral sequence [APH03]. Such alignments can be easily
retrieved from the RepeatMasker (http://www.repeatmasker.org/). The log likelihood that
a sequence~β evolved from a master sequence~α under a given substitution model param-
eterized by the substitution frequencies{r} then given by

logL{r} =
L−1∑
i=2

logP{r}(·βi · |αi−1αiαi+1) . (5)

To get estimates for the substitution frequencies for given~α and~β we then have to max-
imize the above likelihood by adjusting the substitution frequencies. This can easily be

230



done using Powell’s method [Pr92] while taking care of boundary conditions [Bo66], i.e.
the positivity of the substitution frequencies. Due to the stochasticisity of the mutation
process the estimates of substitution frequencies will inaccurate within some limits. Sup-
plying more sequence data to the algorithm minimizes the error in the frequency estimates.

With the inclusion of additional neighbor dependent processes the likelihood of a model
{r′}will be greater than the one of the original model{r}. This is true because the models
are nested and one has one free parameter more to fit. To test whether the inclusion of a
new parameter is justified we employ the likelihood ratio test for nested models. Letλ =
L{r}/L{r′} be the likelihood ratio, then−2 log λ has an asymptotic chi-square distribution
with degrees of freedom equal to the difference in the numbers of free parameters in the
two models, which in our case would be one [EG01]. Since we choose the best of the
neighbor dependent processes out of the4 × 4 × 3 × 2 = 96 possible such processes we
require that−2 log λ > 30 to have significance on the 5% level and respecting the required
Bonferroni correction for multiple testing. We confirmed this conservative threshold by
simulations using sequences that have been synthetically mutated according to a known
model.

3 Results

As a first test we applied the described method to human genomic data. Here we took
the copies of the AluSx SINEs that have been found in a genome-wide search of the hu-
man genome (release v20.34c.1 at ensembl.org from April 1st, 2004). These elements are
assumed to have evolved neutrally and that therefore the substitution process is reverse
complement symmetric. Results are presented in Table 1. In the first column of data we

6 parameter 7 parameter 8 parameter 9 parameter
model model model model

A:T→C:G 0.012 0.012 0.011 0.007
A:T→T:A 0.010 0.011 0.011 0.011
C:G→G:C 0.016 0.016 0.012 0.012
C:G→A:T 0.015 0.014 0.014 0.014
A:T→G:C 0.036 0.036 0.036 0.036
C:G→T:A 0.158 0.059 0.060 0.060

CpG→CpA/TpG 0.618 0.627 0.624
CpG→CpC/GpG 0.029 0.029

TpT/ApA→TpG/CpA 0.013
−2 log λ 7.7·106 1.3·105 9.6·104

Table 1: Estimates for substitution frequencies for nested models of nucleotide substitution in human
AluSx repeats. Given are the substitution frequencies per bp in the time span after the insertion of
the AluSx repeats into the human genome. In the last row we note the−2 log λ whereλ is the
likelihood ratio of the model and the one with one less parameter in the column to the left.
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give estimations for the 6 neighbor independent single nucleotide substitutions. We test
all 96 possible extension of this simple substitution model by one additional neighbor de-
pendent substitution process and its reverse complement symmetric process. As expected
(and shown in the second column in Table 1) theCpGmethylation deamination process
(CpG→CpA/TpG) turns out give the best improvement with−2 log λ = 7.7 · 106, which
is clearly above the threshold of30. The substitution frequency of this process is about
45 times higher than that of a transversion. The second process that needs to be included
to improve the model most is the substitution ofCpG→CpC/GpG(−2 log λ = 1.3 · 105).
This is anotherCpGbased process and probably also triggered by the methylation of cy-
tosine. However, the substitution frequency is about 30 times smaller than this of the
CpG→CpA/TpGprocess. The third process is then the substitutionTpT/ApA→TpG/CpA
(−2 log λ = 9.6 · 104). The instability of theTpT dinucleotide does not come as a sur-
prise here, since two consecutive thymine nucleotides tend to form a thymine photodimer
T<> T. This process is one of the major lesions formed in DNA during exposure to UV
light [DZC97].

Next we turn to the analysis of the DANA repeats in zebrafish (Danio rerio). Results
are presented in Table 2. Again we start with a model just comprising single nucleotide
transversions and transitions. As observed in human the transitions occur more often than
transversions and there is a strongA:T bias in the single nucleotide substitutions. Zebrafish
being a vertebrate also utilizes methylation as an additional process to regulate gene ex-
pression. As a consequence we observe a higher mutability of theCpGdinucleotide due
to the deamination process also in zebrafish. However the substitution frequency for the
CpG→CpA/TpGprocess is in zebrafish only about 8 times higher than this of a transver-
sion suggesting that the degree of methylation is generally lower than in human.

6 parameter 7 parameter 8 parameter 9 parameter
model model model model

A:T→C:G 0.024 0.025 0.026 0.026
A:T→T:A 0.041 0.041 0.041 0.041
C:G→G:C 0.037 0.036 0.036 0.023
C:G→A:T 0.029 0.029 0.028 0.028
A:T→G:C 0.073 0.074 0.046 0.046
C:G→T:A 0.151 0.111 0.105 0.107

CpG→CpA/TpG 0.274 0.331 0.328
CpA/TpG→CpG 0.100 0.097
CpG→CpC/GpG 0.096

−2 log λ 2.9·105 1.6·105 1.1·105

Table 2: Estimates for substitution frequencies for nested models of nucleotide substitution in DANA
repeats fromDanio rerio.

We also investigated non-vertebrate sequence data. As an example we present here the
analysis of the DNAREP1DM repeat inDrosophila melanogaster(Table 3). The case
to include neighbor dependent process is in this clearly not as strong as for vertebrate
genomes. The values of−2 log λ are 3 orders of magnitude smaller but still above thresh-
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old for the first 3 processes which are chosen by our procedure to be included into a model
for nucleotide substitutions in fly. The first such process is the substitutionTpA→TpT/ApA.
Although the corresponding substitution frequency is lower than all the single nucleotide
transitions and transversions, the dinucleotide frequencies in the stationary state deviate
up to 10% from their neutral expectation under a neighbor independent substitution model
[ABH02]. Therefore even processes with a small contribution to the overall substitutions
have a large influence on the observed patterns of dinucleotide frequencies or genomic
signatures and therefore may very well be solely responsible for the generation of such
pattern in different species.

6 parameter 7 parameter 8 parameter 9 parameter
model model model model

A:T→C:G 0.038 0.038 0.038 0.038
A:T→T:A 0.052 0.045 0.045 0.045
C:G→G:C 0.034 0.034 0.034 0.034
C:G→A:T 0.074 0.074 0.074 0.074
A:T→G:C 0.052 0.052 0.052 0.047
C:G→T:A 0.108 0.108 0.098 0.098

TpA→TpT/ApA 0.029 0.028 0.028
TpC/GpA→TpT/ApA 0.036 0.035

GpT/ApC→GpC 0.021
−2 log λ 853 592 40

Table 3: Estimates for substitution frequencies for nested models of nucleotide substitution in
DNAREP1DM transposable element fromDrosophila melanogaster.

4 Summary and Outlook

We presented a novel procedure to identify the existence and measure the intensity of
neighbor dependent substitution processes. We discussed the extension of a model of nu-
cleotide substitutions in human and included more neighbor dependent processes besides
the well-knownCpGmethylation deamination process [ABH02]. We could also show that
the CpGmethylation deamination is the predominant substitution process in zebrafish,
while it does not play a prominent role in fruit fly. We exemplified our method here using
sequence data from one particular subfamily of repeats from the three organisms. In the
case of the human genome a much more thorough analysis on various families of repeats
have been presented in [APH03]. For zebrafish and fruit fly we presented for the first time
a possible extensions to a nucleotide substitution model including neighbor dependencies.
In the future we will also analyze bacterial substitution processes and their neighbor de-
pendencies. A comparative study of the predominant substitution processes will further
broaden our knowledge about the molecular processes that are responsible for mutation
and fixation. This will enable us further to explore the evolution of these processes and
possible advantages to various organisms.
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