Autocompletion as a Basic Interaction Concept for
User-Centered Al

Florian Lehmann
florian. Jehmann@uni-bayreuth.de
Research Group HCI + Al
Department of Computer Science,
University of Bayreuth
Bayreuth, Germany

ABSTRACT

With this position paper we propose that autocompletion can be in-
terpreted as a basic interaction concept in the interaction between
humans and systems using artificial intelligence (AI). Autocom-
pletion is well known from text input where the system predicts
intended user input, e.g. in search engines. In our research on
human-AI collaboration we observe parallels to such textual au-
tocompletion but in different application contexts, such as text
generation, mock-up generation, and layout solvers. We compare
exemplary related work to highlight autocompletion as a reoccur-
ring and reusable interaction concept. We discuss that identifying
underlying interaction primitives in user-centered Al can help to in-
form concrete design solutions for interactions and user interfaces,
and could be a starting point for future research in this area.

CCS CONCEPTS

+ Human-centered computing — HCI theory, concepts and
models; Interaction design theory, concepts and paradigms.

KEYWORDS

autocompletion, interaction patterns, human-AlI interaction, user-
centered Al

1 INTRODUCTION AND BACKGROUND

Autocompletion is well established nowadays, and is most likely
used on a daily basis by everyone using modern online services, for
instance in search engines. Autocompletion describes the approach
to predict the intended user input from textual input (as seen in
Figure 1, example 1). Search engines utilise this to optimise search
queries. This can improve efficiency and supports users to formulate
exact search queries. As the underlying key concept, the system
extends partial user input (see Figure 1 blue areas) to make it more
complete. The completed input is then presented to the user who
can choose from multiple variants (see Figure 1 orange areas).
With this position paper we explicitly focus on autocompletion
as a reoccurring interaction concept for interactions with an Al
system. Here, we regard “intelligence” as the ability of such systems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MuC’20 Workshops, Magdeburg, Deutschland

© Proceedings of the Mensch und Computer 2020 Workshop on «Workshop on User-
Centered Artificial Intelligence (UCAI 2020)». Copyright held by the owner/author(s).
https://doi.org/10.18420/muc2020-ws111-328

Daniel Buschek
daniel buschek@uni-bayreuth.de
Research Group HCI + Al
Department of Computer Science,
University of Bayreuth
Bayreuth, Germany

to reason on user input to rank and provide suggestions. We do
not differentiate the technology used to implement such abilities,
which could be, for example, neural net-based autocompletion or
rule-based completions, such as n-grams.

We reviewed work on autocompletion as part of our research on
topics at the intersection of HCI and Al: Already in 1986, Jakobsson
[6] reported increased input efficiency compared to coded search
queries in the example of searching a library system. More recent
work on search queries [9] observed a relation between the likeli-
hood of autocompletion use and the position of the next character
on the keyboard. Other work modeled click behaviour to further im-
prove interaction performance [7], and analyzed visual search with
an eye-gaze study [4]. Further studies in context of autocompletion
include creating XML documents [1, 8] and gestural interaction [2].

We are particularly interested in interactive systems that are
“intelligently” informed to generate data. For instance, such systems
might generate text [13], GUI prototypes [10], and layouts [3].

In summary, autocompletion is well established, provides inter-
activity, and intelligently predicts new text. Comparing this to other
generative contexts we observe a similarity: Many prior systems
share the underlying implied role of AI to make something more
complete, which the user had already partially specified, as part of
an ongoing interaction. Moreover, we found shared related interac-
tion patterns. Thus, we propose to examine autocompletion as a
basic interaction concept in human-Al interaction.

2 AUTOCOMPLETION IN PRACTICE

In this section, we describe the interactivity of generative approaches
from related work in detail and the parallels to textual autocomple-
tion. This serves as an analysis of underlying interaction concepts
inherent to practical applications of human-Al interaction. We high-
light specific interaction and UI patterns across the examples in
this section:

e User interface: The interface holds a field for input. Gener-
ated objects are placed near the input.

o Workflow: One or more recommendations are generated
interactively and are part of the workflow.

o User decision: The user can decide to accept a recommenda-
tion or not.

e Editing: The user can further edit the recommended object.

o Information: Partial user input serves as input for the system.
The AT’s prediction is conditioned on the input to extend it.

Code — We consider code to be a very structured and formal type
of text. Code completion is a core feature of modern development


https://doi.org/10.18420/muc2020-ws111-328

MuC’20 Workshops, Magdeburg, Deutschland

Lehmann and Buschek

artificial intelligence
artifact
artifactory

o

Figure 1: Visualisation of 1) search query autocompletion and three examples that share the same underlying interaction
concepts, namely 2) code completion, 3) mock-up generation from sketches, and 4) layout solving. Coloured areas highlight
similarities in the user interface. Blue areas with white symbols indicate fields for user input, orange areas with dark grey
symbols indicate fields for completed input by the AL Example 3 is inspired by [10], Example 4 is inspired by [3].

environments and close to the well-known textual autocomple-
tion. However, research introduced Al-assisted code completions
to predict intended input based on neural nets [11]. This is used
by services like TabNine! and Kite?. These services do not only
complete lines of text, they are able to complete whole functions
by only inputting signatures:

Users enter code in a textarea in a code editor or IDE. While
editing, a list widget appears near the cursor, e.g. below of it. The
widget contains a list of recommendations. Depending on the cho-
sen technique, list items are sorted, e.g. by prediction probabilities.
The user can decide to accept a recommendation via keyboard
shortcut or click. This then completes/inserts e.g. a variable name,
method signature, or a whole function. See Figure 1, example 2.

Graphical User Interfaces (GUIs) — In contrast to code com-
pletion, image generation systems have not been widely imple-
mented in current image editing or GUI design tools yet. However,
research shows promising progress in this area: For example, par-
tially drawn sketches can be recognised and completed [12]. Based
on sketches, high fidelity examples can be retrieved [5]. More-
over, related tools are able to transform a low fidelity sketch into
a medium fidelity mock-up [10], which could be used to design a
GUI starting with sketches:

GUI sketches and text are added to a canvas with a pen or brush
tool. While sketching, an icon appears next to the canvas. By click-
ing the icon, the sketch is used to derive a medium fidelity mock-up.
This is presented on another canvas, next to the sketch. The mock-
up consists of editable vector graphics. Here only one version is
recommended, however, it would be possible to generate multiple
variants of the mock-up, e.g. by intelligently combining elements.
The user can decide to accept a recommendation by clicking on an
accept icon, or by simply working in the mock-up’s canvas field.
See Figure 1, example 3.

Layout — Layout solving can be considered a special problem
within designing a GUIL Elements in an Ul can be arranged in
various ways. Some variants work better than others. In particular
it is a time consuming manual task and a tool called GRIDS was
introduced to solve layouts interactively [3].

In such a tool, interactive layouting might be realised by selecting
and placing loose Ul elements on a workspace. Next to it is a canvas

!TabNine: https://www.tabnine.com, last accessed 10th June 2020.
ZKite: https://www.kite.com, last accessed 10th June 2020.

which is initially empty. By clicking on a button, the tool suggests
possible layout solutions in a sidebar list which spans the complete
height of the application. The user can scroll through the suggested
layouts and can save or further edit them in the canvas. See Figure 1,
example 4.

3 DISCUSSION AND CONCLUSION

Focusing on Al in generative roles, we found that key aspects of
the well established autocompletion idea for text input can also be
found across a wide range of application contexts and Al modelling
goals in interactive systems. Based on this observation, we consider
autocompletion as an example for an atomic interaction pattern.

Beyond the specific case of autocompletion examined here, we
assume that identifying and making explicit other underlying in-
teraction concepts can help to envision new applications and make
research on interactions and Uls for human-AI systems more con-
crete and systematic. In this way we can substantiate research and
might be able to adapt already existing methods for analysis. Such
methods might be used as starting points to create models for evalu-
ation, and to derive best practices for practitioners. For example, we
could use basic concepts as a baseline for novel tools to prototype
human-Al interactions to complement other approaches, such as
planning for adaptive interfaces based on probability thresholds
provided by intelligent systems [14]. This could help to standardise
the design and interaction of human-Al interaction.

We conclude that common human-Al applications share similari-
ties and that identifying these in existing applications provides one
way to systematically approach the design of future interactions
and Uls. Such reusable interaction patterns ideally might be trans-
ferred across domains. Ultimately, we could derive reusable design
components for practitioners, and path the way for novel tools that
combine the capabilities of humans and AL Further empirical and
experimental research is needed to find out how interaction pat-
terns can best be identified, conceptually analysed, and potentially
shared across application domains in human-AlI interaction.

REFERENCES

[1] Serge Abiteboul, Yael Amsterdamer, Tova Milo, and Pierre Senellart. 2012. Auto-
completion learning for XML. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD °12). ACM Press, New York,
NY, USA, 669-672. https://doi.org/10.1145/2213836.2213928

[2] Mike Bennett, Kevin McCarthy, Sile O’Modhrain, and Barry Smyth. 2011. Sim-
pleFlow: Enhancing Gestural Interaction with Gesture Prediction, Abbreviation


https://www.tabnine.com
https://www.kite.com
https://doi.org/10.1145/2213836.2213928

Autocompletion as a Basic Interaction Concept for User-Centered Al

=

and Autocompletion. In Human-Computer Interaction — INTERACT 2011 (Lecture
Notes in Computer Science), Pedro Campos, Nicholas Graham, Joaquim Jorge,
Nuno Nunes, Philippe Palanque, and Marco Winckler (Eds.). Springer, Berlin,
Heidelberg, 591-608. https://doi.org/10.1007/978-3-642-23774-4_47

Niraj Ramesh Dayama, Kashyap Todi, Taru Saarelainen, and Antti Oulasvirta.
2020. GRIDS: Interactive Layout Design with Integer Programming. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (CHI °20).
ACM Press, New York, NY, USA, 1-13. https://doi.org/10.1145/3313831.3376553
Kajta Hofmann, Bhaskar Mitra, Filip Radlinski, and Milad Shokouhi. 2014. An
Eye-tracking Study of User Interactions with Query Auto Completion. In Proceed-
ings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management (CIKM ’14). ACM Press, New York, NY, USA, 549-558.
https://doi.org/10.1145/2661829.2661922

Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based
User Interface Retrieval. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). ACM Press, New York, NY, USA, 1-10.
https://doi.org/10.1145/3290605.3300334

M. Jakobsson. 1986. Autocompletion in full text transaction entry: a method
for humanized input. ACM SIGCHI Bulletin 17, 4 (April 1986), 327-332. https:
//doi.org/10.1145/22339.22391

Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, Yi Chang, and ChengXi-
ang Zhai. 2014. A two-dimensional click model for query auto-completion. In
Proceedings of the 37th international ACM SIGIR conference on Research & de-
velopment in information retrieval (SIGIR '14). ACM Press, New York, NY, USA,
455-464. https://doi.org/10.1145/2600428.2609571

Chunbin Lin, Jiaheng Lu, Tok Wang Ling, and Bogdan Cautis. 2012. LotusX: A
Position-Aware XML Graphical Search System with Auto-Completion. In 2012

[10

[11

[12

[13

[14

MuC’20 Workshops, Magdeburg, Deutschland

IEEE 28th International Conference on Data Engineering. IEEE, Washington, DC,
USA, 1265-1268. https://doi.org/10.1109/ICDE.2012.123 ISSN: 2375-026X.
Bhaskar Mitra, Milad Shokouhi, Filip Radlinski, and Katja Hofmann. 2014. On user
interactions with query auto-completion. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in information retrieval (SIGIR
’14). ACM Press, New York, NY, USA, 1055-1058. https://doi.org/10.1145/2600428.
2609508

Vinoth Pandian and Sarah Suleri. 2020. BlackBox Toolkit: Intelligent Assistance
to UI Design. In CHI'20, Workshop on Artificial Intelligence for HCI: A Modern
Approach.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia:
Al-assisted Code Completion System. In KDD °19: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
’19). ACM Press, New York, NY, USA, 2727-2735. https://doi.org/10.1145/3292500.
3330699

Caglar Tirkaz, Berrin Yanikoglu, and T. Metin Sezgin. 2012. Sketched symbol
recognition with auto-completion. Pattern Recognition 45, 11 (Nov. 2012), 3926~
3937. https://doi.org/10.1016/j.patcog.2012.04.026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems (NIPS’17). Curran Associates Inc., Long Beach, California,
USA, 6000-6010.

Qian Yang, John Zimmerman, Aaron Steinfeld, and Anthony Tomasic. 2016.
Planning Adaptive Mobile Experiences When Wireframing. In Proceedings of the
2016 ACM Conference on Designing Interactive Systems - DIS "16. ACM Press, New
York, NY, USA, 565-576. https://doi.org/10.1145/2901790.2901858


https://doi.org/10.1007/978-3-642-23774-4_47
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/2661829.2661922
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/22339.22391
https://doi.org/10.1145/22339.22391
https://doi.org/10.1145/2600428.2609571
https://doi.org/10.1109/ICDE.2012.123
https://doi.org/10.1145/2600428.2609508
https://doi.org/10.1145/2600428.2609508
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1016/j.patcog.2012.04.026
https://doi.org/10.1145/2901790.2901858

	Abstract
	1 Introduction and Background
	2 Autocompletion in Practice
	3 Discussion and Conclusion
	References

