Dynamic Aspect Weaver Family for Family-based
Adaptable Systems

Wasif Gilani and Olaf Spinczyk

Friedrich-Alexander University Erlangen-Nuremberg Germany
{wasif, spinczyk} @informatik.uni-erlangen.de

Abstract: Complex software systems, like operating systems and middleware,
have to cope with a broad range of requirements as well as strict resource
constraints. Family-based software development is a promising approach to
develop application-specific systems from reusable components. However, once
statically configured, these systems still need to adapt at runtime according to the
dynamics of the environment. The majority of the concerns in the complex
systems, that need to be adaptable, are crosscutting. With the application of
Aspect-oriented Programming (AOP), these concerns can be cleanly encapsulated,
and then dynamic AOP can be applied for the adaptations to be contained, and
applied at runtime. An efficient dynamic aspect weaver is needed for the dynamic
weaving and unweaving of these crosscutting concerns into the system. None of
the currently available dynamic weaver can be optimized according to specific
application requirements. In this paper we present the family-based dynamic
weaver framework that supports the static as well as dynamic weaving and
unweaving of the aspects to the components. By applying the program family
concept, the system itself as well as the dynamic weaver, built on top of it, is
tailored down to provide only the features or services required by any particular
application.

1 Introduction

The complex software systems, like operating systems and middleware, are notorious for
their problematic structure due to the high degree of crosscutting concerns. These
systems are, traditionally, designed and built to provide a wide feature set to suit the
needs of multiple problem domains. The extra features not used by an application
contribute to unnecessary code size and configuration complexity.

These conventional software systems are not suited for use in some particular
environments, for example, distributed embedded environments, as they need to scale
with specific requirements, pertaining both to the hardware as well as the software level.
Thus, it is quite a nightmare to build a system that could fulfil all the requirements of
different applications, and still will be economical in terms of resource consumption.
The solution is to be able to tailor down the system so that it provides only the services
needed by any particular application. This leads to a product-line or family-based [Pa79]
approach, where the variablility and commonality among system family members is

Operating System Feature Modell Implementation
Components

Operating System

a - ... <implements> =
energy scheduling .- s ——— I~
management «implements»

«implements»

cooperate
FIFO

priority based
full preemptive Class

Fig 1: Available features and their implementation artifacts

s
dynamic CPU
freq. scaling

expressed by feature models [CEOO]. A crucial point is the mapping of all selectable and
configurable features to their corresponding, well encapsulated, implementation
components. Many of the features that need to be adaptable or reconfigurable in these
complex systems are crosscutting in nature. This means that their encapsulation is
limited, as their implementations crosscut, and thus hinder adaptability and granularity in
the family-based development. This makes it almost impossible to implement them as
independent encapsulated entities and thereby restricts modularity, variability and
granularity. Some examples of such crosscutting concerns are security, distribution,
scheduling, transaction, fault tolerance, quality of service (QoS) and logging.

Aspect-Oriented Programming (AOP) [Ki97] is applied for the localization and
encapsulation of such crosscutting concerns into modules called aspects. The aspect code
guides a tool, the aspect weaver, inserting code fragments specified by the aspect code
into locations where they are required. These insertion points are called join points.
AOP complements object-oriented programming by allowing to modify the object-
oriented model, statically (static weaving) as well as dynamically (dynamic weaving), to
create a system that can grow to meet the new requirements. A well directed application
of AOP principles in the development of family-based systems lead to a high variability,
modularity and granularity of the selectable system features, as their implementations
can not only be encapsulated by classes, but also by aspects. This potentially results in
very flexible systems that offer configurability of even fundamental architectural
properties [LS03]. As an example, figure 1 shows a part of an operating system product
line feature model, where features are mapped to those classes and aspects that provide
their implementation.

For adding and removing the features realized as dynamic aspects in the adaptable
family-based systems, there is a need of an optimized dynamic weaver. Dynamic weaver
enables the dynamic aspects to be woven and unwoven from the system on the fly,
which makes it useful for rapid prototyping, and enables the systems to adapt their
services in response to changes in the requirements. Most of the existing weavers are not
suitable for all domains because of either their excessive use of resources or application-
specific solutions. Here again, we apply the family-based approach and come up with a
family-based dynamic weaver. An application-specific tailored weaver is constructed
from the weaver family by leaving out as much as possible, and selecting only those
features, which are required to fulfil the applications demands. Besides a fine-grained
selection of the available AOP features (required AOP features), it is especially possible

95

to exploit a-priori-knowledge about the system and its execution environment. This
results in a much optimized, low-cost application-specific dynamic weaver.

This paper is organized as follows. Section 2 describes the family-based concept in
combination with AOP. In section 3 we will be discussing some of the available
dynamic weavers. Section 4 presents our family-based dynamic aspect weaver approach
along with the feature model developed. In section 5, the main architecture and
implementation details of our dynamic weaver are presented. Section 6 shows some
results from the different variants of the weaver and their memory consumption. Section
7 concludes the paper along with some further research areas.

2 Family-based Software Development with AOP

We are shifting the focus from the development of single software systems to a family of
systems (product-line). The same holds true for the dynamic weavers as well, which are
built on top of such systems, to support reconfiguration of features realized as dynamic
aspects. Family-based development allows supporting applications with their desired
specialized family member, which provides all the necessary functionalities but omits
any functionality or service not required by the application. This makes it possible to
achieve the desired application-orientation, and to reduce the memory and run time
consumption.

A set of programs is considered to be a program family if they have so much in common
that it pays to study their common aspects before looking at the aspects that differentiate
them [Pa79]. Domain engineering helps us to accomplish the family-based software
development [CEOO]. Feature-oriented domain analysis is performed to capture the
commonalities and variabilities of the systems in a domain. A feature model represents a
hierarchal decomposition of features including the indication of whether or not a feature
is mandatory (each system in a domain must have certain features), alternative (a system
can possess only one feature at a time) or optional (a system may or may not have
certain features). These different feature types are explained in figure 2. There are two
stages where AOP is applied to family-based systems for adaptation.

2.1 Static Weaving for Static Adaptation

The user selects from the features presented in the feature model, and set defaults
according to the needs of the application. A variant management system is used to
specify default dependencies in the feature model to prevent the combinatorial explosion
of the variants [PuO3]. It provides a graphical user interface, which displays a
hierarchical representation of the feature model of the product family. The user selects
feature nodes, which are mapped onto implementation components. This process of
selecting features and setting defaults to generate a member of the family of products is
known as application engineering [CEOO]. This information is fed to generators, which
output and build the final product. The static aspects are superimposed onto the primary
functionality in an additive manner without altering the existing architecture. These
aspects, which are woven, cannot be removed or reconfigured later during the runtime.

96

The result of static adaptation is an application-specific product, which contains only
those features, which are needed by the application. The whole process is completely
automated and does not require any hand coding.

2.2 Dynamic Weaving for Dynamic Adaptation

Once the system starts running, it may be subject to the changing requirements during
runtime. This is especially true in complex distributed systems, which exhibit strong
dynamics. Several approaches have been adopted to achieve dynamic adaptation and
reconfiguration of the software systems during runtime. Some try to provide adaptability
by using patterns in several features [SC99]. However the customization resulting from
this approach is still unsatisfactory as it leaves hooks in the core code, and null strategies
substitute for the excluded features. This adds to the complexity of code as well as to the
memory footprint. Other approaches suggest the use of reflection and component
frameworks [Le99], [Ko0O], [BI02]. In some of these approaches, the system
implementation adapts itself according to the changed environment by means of
selecting different implementation strategies. These approaches mainly address the
customizability and adaptability aspect of the systems. The drawback of these techniques
is that these have rather large memory requirements and also incur performance
overhead.

Dynamic weaving is a natural choice for implementing an adaptable system due to the
reason that it can apply code retrospectively to a running application [GB03]. Dynamic
weaving helps avoid the recompilation, redeployment and restart of the application. The
dynamic adaptation of complex software systems is generally dependent on policies,
which all tend to be crosscutting concerns, and, hence are realized as dynamic aspects.
Dynamic weaving is basically an autonomous policy coordination facility that allows
system to continuously adapt itself to a changing environment by deter-mining which
policy needs to be changed and how policies are recombined so that the system can keep
performing well. Thus, for performing the job of weaving and un-weaving of features,
realized as dynamic aspects, the dynamic weaver is an integral feature in the feature
model of our family-based adaptable software systems.

3 Related Work

Different approaches have been proposed by the AOSD community for dynamic
weaving. Most of the existing approaches target the Java domain. These are generally
based on Java-specific APIs, JVM Debugging Interface, static instrumentation, run-time
byte code manipulation or virtual machine extensions [Bo04], [Po03], [Pa0O1], [AUO3],
[Sa03], [BHO4], [Va05]. Most of these Java-based approaches offer different
performance penalties like execution speed (execution in debugging mode), memory
consumption and joinpoint support etc.

We are working in the C/C++ domain, and are more interested in the work being carried
out in the C/C++ domain. There are several approaches in the C domain [Do05], [EF05],
[Z]03]. In these approaches, hooks are inserted into the base program at weave time at

97

all affected joinpoint positions. Arachne [Do05], TOSKANA [EFO05] and TinyC2 [ZJ03]
are all based on binary code manipulation. These approaches use debugging information
or symbol tables, produced by the compiler, to rewrite the binary code dynamically to
inject the aspects. New version of Arachne is able to do the instrumentation of the binary
code at weave time. TinyC” makes use of Dyninst instrumentation system for supporting
runtime weaving. TOSKANA is designed specifically for in-kernel functions and is
being employed for supporting autonomic computing functionality via dynamic aspects
for operating system kernel.

We know only one approach which is specifically targeting C++ domain [AE04]. In this
approach, aspects are woven by registering them against a runtime registration system.
The original C++ code is instrumented, either by hand or with the help of tools, to call
the runtime system at each potential joinpoint. The runtime system then calls all aspects
registered for this joinpoint. There are also some proposals in the C++ domain for
making use of low level virtual machine running on top of a microkernel system in
cooperation with an aspect deployment service [En05].

Even the approaches proposed for the C/C++ domain have some limitations. This is
especially true for the DAO C++ approach [AE04], where the runtime system has to be
called at each potential joinpoint and, thus, result in large performance overhead. Also,
DAO C++ supports only a limited joinpoint model, namely the execution of before and
after advices. This system could be improved by making use of some joinpoint filtration
mechanism to instrument only the joinpoints of interest. The binary code manipulation
approaches have better performance since the overhead due to the static insertion of
hooks is minimized. But these approaches have other shortcomings like they are
machine and compiler-specific solutions, and therefore, not applicable for the broad
spectrum of hardware platforms in the domain of, for example, embedded systems.
These approaches are further restricted to the amount of available symbolic information
in the executable code. Moreover, all of these approaches provide a fixed runtime
support system. This means that they cannot be scaled according to the requirements of
any particular application.

4 Family-based Dynamic Weaver

Different applications can have different requirements from the dynamic weavers. In
consideration of the specific demands of certain applications, it becomes extremely
difficult, if not impossible, to successfully adapt any of the existing weavers. Thus, the
dynamic weavers are required to be designed to specifically support the execution of
applications under any sort of environmental constraints.

A family-based dynamic weaver is able to target a wide range of applications including
embedded systems with very small memories. Applying program family concept, a
domain analysis is performed for dynamic weaver’s domain. A feature diagram is drawn
to capture the commonalities and variabilities of the weavers as shown in figure 2. By
applying the program family concept, not only the system itself, but the dynamic weaver
as well, is tailored down to provide only the services or features required by a particular

98

Optional features
£1 and £2 may be
included if their
parent feature C is
selected

a-priori

Supported
Knowledge Component Code

Mandatory features

parent
selected

JoinPoints | | JoinPoints Language | | Extensible
Koom || Fitered Sydem

BinaryCode || Interpreter || Source Code
Manipulation || Extension [Instrumentation

One or more features
from features f1, 2

or 3 may be selected

if the groups parent
feature C is selected

CH || Java

Multiple Aspects Code
Per Join-Point Join-Points

Introductions| Manually

(Proxies, ..)

Exactly one feature
from features f1. 12
or 3 has to be
selected if the groups
parent feature C is

ul

Get/Set
field

Execution

Alternative Features

Fig 2: Feature diagram of Dynamic Weaver

application, resulting in a very economical and application-specific solution. “Less
demanding’ applications are no more forced to pay for the resources consumed by
unneeded features.

The family-based weavers are based on the technique of runtime aspect registration, but
can be tailored down according to the specific application requirements. The dynamic
weavers are constructed from the feature model by selecting only the required features.
Each selected feature has certain cost associated with it in terms of the runtime and
memory, and hence selection of features is totally dependent upon the specific
application requirements and the memory available.

Our approach makes it possible to build low-cost dynamic weavers by exploiting the
before hand knowledge “a-priori-knowledge” about the system (domain analysis), and
its execution environment. This helps tailor down the dynamic weaver infrastructure
according to specific application requirements. In certain applications such as embedded
systems, there is not much variation in terms of the information regarding classes, since
the set of classes, and thereby the set of available joinpoints, is usually known in
advance. Thus, when constructing a dynamic weaver for such systems, the feature
“JoinPoints Known” is selected. This enables to do compile time matching of the
aspects to their respective join points for which they will later be registering themselves.
In some systems, there might be requirements to apply aspects in specific modules, such
as the potential points of interest for system strategies and other crosscutting concerns.

99

The vast majority of joinpoints in a system is never used by any aspect, as many
joinpoints hardly contribute to the application semantics. The execution or control flows
of basic library functions, for instance, can be considered as such "low semantics
joinpoints". Thus, in our approach, it is possible to explicitly filter the huge set of
available joinpoints to a quite small subset by selecting the feature “JoinPoints
Filtered”, which results in a very efficient system, since unnecessary checks are avoided
at each joinpoint.

If even the set of potential aspects is known in advance (“Aspects Known”), it is possible
to generate such a filter automatically from their pointcut descriptions and thereby,
registering only those joinpoints, which are going to be affected by the aspects.
Furthermore, if the number of aspects is known in advance, it is possible to fix the size
of runtime advice lists associated with each joinpoint, and thereby, avoiding the use of
costly dynamic data structures.

In some cases, there is a need to define the order of execution “AspectsOrder” of the
advices, to resolve the conflicts between different advices, affecting the same joinpoints.
The order of activation is supported in static weaving technologies like AspectC++
[Sp02], Aspect] [KiO1]. In certain dynamic weavers it is not allowed that more than one
aspect can affect the same join point. Thus, in such dynamic weaver constructions there
is no need to select the feature “AspectsOrder”. Moreover, if all the aspects are known
in advance, “AspectsKnown”, then the order of advice execution can be defined and
resolved statically, saving runtime.

The joinpoint model can also be defined, as per the application requirements, by
selecting only those features from “Supported AOP Features” which are needed, and
same is the case regarding support for different type of advices (before, after, around),
and for changing the static structure of (“Introductions”) the program.

In the case of extensible systems, the feature “ExtensibleSystem” is needed to be
selected. The selection of this feature means that dynamic aspects can not only be
applied to the main application, but also to the extension modules. A more detailed
description of how this feature enables the dynamic aspects to be woven in distributed
environment will be provided in the next section.

The different instances of the weaver are generated completely automatically by the
variant management tool by selecting the required features. This truly application-
oriented weaver construction drastically reduces the costs (in terms of performance and
memory consumption) of the dynamic aspect weaving infrastructure. If the set of
effective joinpoints is small, it should even be feasible to implement dynamic aspect
weaving as efficient as dynamic class loading.

5 Dynamic Weaver Implementation

Aspect weavers should be able to support both static as well as dynamic weaving, thus
combining the advantages of both techniques. Aspects that do not need to be adapted at
runtime should be woven statically for performance reasons. In the following

100

subsections, we give an overview of the subset of the features currently supported by our
family-based weaver, the weaver architecture, and a discussion of the different variants
that can be instantiated from the feature model. The architecture consists of three main
modules:

= Weaver Binding
= Run-time monitor
= Dynamic Aspects (shared libraries)

All these modules are completely independent of each other. In this specific construction
of the family member, the main aim is to provide low-cost dynamic weaving.

5.1 Weaver Binding

The weaver binding generates information about the joinpoints in the system. This could
be a symbol table, generated by the compiler, in the case of binary code manipulation
employed as a weaver binding, or a joinpoint information repository, in the case of static
weaver employed as a weaver binding etc. The selection of the binding mode is
completely dependent on the specific application requirements.

In the current implementation of the different variants of the weaver family, “Static
Weaver” is used as a weaver binding for code instrumentation. Use of a static weaver as
a binding mode helps support both static as well as dynamic aspects. Here, the main idea
is that all the potential dynamic joinpoints can be controlled by a static aspect
implementation. There are some available static weavers like Aspect] and AspectC++,
but again this selection is dependent on the specific application requirements. We are
using AspectC++ for this purpose. AspectC++ is an extension to C++, and facilitates to
have a dynamic weaver with a very small memory foot print. The code below shows, for
example, how we are hooking the execution joinpoints in the base code of some
application by making use of pure virtual pointcut in the static aspect.

aspect beforeafterInstr{
pointcut virtual dynamicJPS() = 0;
public:
advice dynamicJPS():around(){
monitor->BeforeAdviceList(JoinPoint::id ());
tjp->proceed(); //method itself is called
monitor->AfterAdviceList(JoinPoint::id ());
¥
¥
aspect beforeafterExe:public beforeafterInstr{

pointcut virtual dynamicJPS() = execution("% ... :: %()");

15

101

Class Buffer { tuntime monitor

ublic:
"void ut0); List of before
void put(); JoinPoint Register advices
int get(); [Sointoint Register | Shared Library of
% Dynamic Aspects

sel) m— List of around [Aspect.so]
pu() = advices
List of after
advices
Weaver Binding

DynamicAspect

Project
Repository

Adyice Register

staticAspect
Synch

Debug
Trace SynchAspect DebugAspect

subStaticAspect

Fig 3: Dynamic weaver architecture with static aspect as weaver binding mode

It can be seen from the above code that the around advice is not supported in this
specific variant. Thus, by means of derived aspects, joinpoint filtration mechanism is
performed. This results in minimal hooks being inserted into the component code and
hence, provides us with an efficient and portable dynamic weaver.

5.2 Runtime Monitor

The runtime monitor is responsible for coordinating between the aspects (advices) and
the component code (e.g. “class Buffer” in figure 3). All the joinpoints and aspects are
registered with the runtime monitor.

In our different variants implementations, static AspectC++ weaver generates an XML
based file containing information about the joinpoint signatures and their unique ids,
which are going to be affected by the dynamic aspects. The joinpoints are registered with
the runtime monitor. This information is used by the runtime monitor to create data
structures for each potential dynamic joinpoint.

5.3 Aspects

We are working to build a weaver family, where the static as well as the dynamic aspects
could be described with a single description language. Whenever some advice registers
with the runtime monitor, it carries with it information about the joinpoints that it is
going to affect. The list of joinpoints registered with the monitor is traversed to find out
the joinpoints on which this advice is interested. Three lists of pointers to before, after
and around advices are maintained against each affected joinpoint. If there is an around
advice registered for some joinpoint, then it means that the around advice is executed
instead of the joinpoint.

In our current implementation, static aspects are described using AspectC++ language,
and the dynamic aspects are simple C++ classes. The dynamic aspects are shared
libraries, and so the advices are loaded at runtime. In the case of non-extensible systems,
the compilation process of the dynamic aspects is shown in figure 4. The pointcut
expression describes the joinpoints of interest by means of string matching and wild
cards. The XML file contains the joinpoint signatures and their unique ids. At the

102

I Pointcut I Dvnamic Aspect Code
v

.| Compilation

!

I Binarv Dvnamic Aspect I

Pointcut Evaluation

(id extraction) ids

e —
JoinPoint Repository

Fig 4: Compilation process of dynamic aspect

compile time, pointcut evaluation is performed by extracting id information from the
respective XML file, to find out the ids of the joinpoints that are going to be affected by
the dynamic aspects. Thus, at runtime, id matching is performed instead of joinpoint
signature matching, which results in an efficient runtime system. Once ids are extracted,
they are compiled in combination with the dynamic aspect with a standard gcc compiler.
The object file is converted into a shared library, which can then be loaded and unloaded
at runtime into the system by means of “weave” and ‘“unweave” commands from the
shell. But in the case of extensible systems where the aspects, already into the system,
might be required to affect the modules coming later into the system, this poincut
evaluation is completely done at runtime. In our implementation, more than one advice
can affect the same joinpoint. Therefore, the feature “AspectOrder” can be selected from
the feature model in order to resolve the conflicts between multiple advices. In such
variant of weaver, each advice carries with it, its priority number. So when a certain
joinpoint is reached, then, these advices are executed as per their priorities or order of
execution.

5.4 Dynamic Weaver Implementation in Extensible/Distributed Systems

A dynamic weaver variant to support weaving aspects into the modules loaded later into
the running system can be generated from the feature model by selecting the feature
“ExtensibleSystem”.

In such a scenario, in the start, we have the “main application” running, which is affected
by a static aspect, as shown in figure 5. This produces information of dynamic joinpoints
of the main application in the form of an XML file, named as O.acp. The main
application, as well as each module, either remote or on the same machine, added later to
the system, has its unique runtime monitor object, which registers itself with a monitor
registering object called “MonitorRegister”. The registration of monitors happens only in
the case of extensible systems. In case of non-extensible systems, no such monitor
registration is employed, thus, saving resources. Additional modules are loaded into such
extensible system at runtime. The same static aspect affects all the new modules, and
produces their corresponding joinpoint information files (.acp files). We could have used
separate static aspects for the instrumentation of these different modules, but this purely
depends upon the specific application requirements. In our proposed mechanism, it is
possible to generate a customized weaver for each of the modules separately, but this is
again a question of specific application requirements. The white indicate each module
registering its monitor object with “Monitor-Register”. Each of these monitor objects is
associated with a specific module, and hence, only registers dynamic joinpoints and

103

Monitor_Register

Monitor_0

Monitor_1

Monitor_3

Monitor_d4

Module_1 Main Application Module_3

Fig 5: Dynamic weaver for extensible system

aspects for its respective module. Dynamic aspects for extensible systems can
specifically be compiled to affect only the main application, one of the modules,
multiple modules or some combination of the main application and the modules. While
writing the dynamic aspects for different modules, first the monitor object for a specific
module is extracted from the monitor repository (MonitorRegister). The joinpoint
repositories might be located in different remote locations. The developer has access to
the joinpoint repositories for different modules as well as to the main application. This
enables him to write an aspect which could affect any joinpoints of interest in the whole
system, whether it is any combination of modules or the main application.

6 Results

Dynamic weaving is generally an expensive approach and is not affordable in resource
constraint domains like embedded systems. The idea of family-based weavers enables to
produce a very optimized and low-cost dynamic weaver, which could be viable for even
resource constraint systems. Our approach has advantages over other existing
approaches in two ways. First, it allows for the optimization of the runtime support for
each application according to its specific requirements in comparison to the generally
fixed runtime support offered by other available dynamic weavers. And, secondly, our
approach allows for the minimal hooking of the base code to build a weaver which is
efficient and highly portable.

6.1 Cost of Runtime System

Our approach makes it possible to build dynamic aspect weavers with as much runtime
support as one application can afford. Each feature in our dynamic weaver feature model
has a fixed cost, associated with it in terms of memory consumption. Table 1 shows cost
in terms of byte consumption of some of the features from the dynamic weaver feature
model. One example of saving resources by making use of before hand knowledge of
system can be observed from the different cost of advice features presented in the table.
If the number of aspects, going to affect the system, is known in advance, the cost of

104

“before”, “after” and “around’ advice supported by the runtime system falls around
22%. This is due to the reason that in the case of the feature “AspectsKnown” selected in
combination with any of the “before”, “after”, or “around” advice features, each of
these advice features is mapped to the implementations that make use of fixed size
arrays. The size of array is defined by the user while generating the dynamic weaver
from the variant management tool according to the before hand knowledge of the
number of the aspects going to affect the system. In the case of the number of aspects not
known in advance, the different advice features are mapped to implementations that use
costly dynamic structures. This results in a more expensive system in comparison to the
one with beforehand knowledge of the number of aspects. Furthermore, the cost of the
feature “AspectsOrder” is quite considerable (2155 bytes). This feature is needed to be
selected only if the different advices coming into the system for the same joinpoint have
interdependencies, which is not a very usual case. The weaver becomes considerably
expensive if it is to be constructed for extensible systems. The cost of the feature
“ExtensibleSystem” is the maximum in the whole feature model and stands at 5078
bytes of memory.

Table 1. Feature cost in terms of memory consumption

Features Cost in Bytes

1 before 1192
2 after 1192
3 around 1331
4 AspectsOrder (order of execution) 2155
5 ExtensibleSystem 5078
6 before (Aspects Known) 934

7 after (Aspects Known) 934

8 around (Aspects Known) 1034

Figure 6 illustrates that as we move towards more support for dynamism in building the
dynamic weavers, we pay more in terms of resources. Three different variants of the
dynamic weaver family are depicted in the figure along with their memory consumption.
It can be seen that the construction of the first variant (1) is the lightest one in terms of
memory consumption. The features supported by the first variant (1) are limited as
shown in the figure. If more support for dynamism is required like that of the third
variant (3), more features have to be selected from the feature model. This means that
the construction becomes more expensive. It can be noted from the graph that there is
significant difference in memory consumption between the variant supporting only one
type of advice (1) and the other one (3) which is extensible, supports all types of advices
and their order of execution. The memory cost of different variants of the dynamic
weaver ranges from 11045 bytes to 23315 bytes. This means that the construction of a

105

dynamic weaver with maximum dynamism would consume at least twice as much
memory as the one with the lightest construction. The goal, while constructing a
dynamic weaver for any application, is to get to some point in the graph in figure 6,
where we are not exhausted of the resources and we have as much features added to our
weaver construction, to support dynamism, as possible.

6.2 Minimal Hooking Approach

Binary code manipulation approach is cheap in terms of resource consumption, but it is
not portable and carries limitations like compiler and architecture-specific
implementation, fixed runtime support etc.

Code instrumentation avoids these problems and provides a very portable solution.
However, there are certain costs associated with code instrumentation. Firstly, the
instrumentation of all the joinpoints results in a large memory overhead. Secondly, it is
expensive, because the instrumentation of all the joinpoints result in severe performance
overhead because of checks performed, at runtime, at each joinpoint to find out if there
is any advice registered. As one experiment with our weaver, we took an open source
webserver called “MyServer” [Sc05], implemented in C++, to illustrate this point. We
instrumented all the joinpoints of “MyServer” including all the call and execution
joinpoints. There were, in total, 1830 joinpoints instrumented. The code size of the
executable increased 7.04 times from 102597 bytes to 722589 bytes. This fully
instrumented version of server considerably slowed down in terms of the average
response time, and the number of connections handled per second.

However, in practice full instrumentation will rarely be needed. The adaptable features
are generally affecting a limited number of joinpoints, and therefore we argue that, in no
case, there is a need to instrument all the joinpoints. As an example, consider
synchronization in operating system kernels. In a previous paper [MS02], we described
the aspect-oriented implementation of a specific synchronization policy in the PURE
operating system [Be99]. An analysis of the source showed 166 different affected
joinpoints spread out over 15 classes. Other synchronisation policies might affect some
additional joinpoints of the system later on. Even the union of all joinpoints which might
be affected by synchronization policies in the future is still much smaller than the
thousand of potential joinpoints which exist in the whole system. Therefore, for the
adaptation of synchronization policy, hooking is required only in this relevant subset of
joinpoints and not in all the potential joinpoints of the system. Thus, for the adaptation
of any global policy, a subset of the joinpoints is first needed to be derived from the
union of all the anticipated joinpoints on which a particular policy is expected to affect.

106

24000

22000 /._’/ /
20000

1 18000 J <3§
3 M
g 16000 -C
3 1 7
2 14000 @
é 12000 / J
8 i_*
& 10000 -+
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33
Features w=ip
No. | Features Supported (Variants of Dynamic Weaver Family) Cost in Bytes
1 before, AspectsKnown, call, execution 11045
2 before, after, around, AspectsKnown,, Extensible, call, execution 17990
3 before, after, around, AspectsOrder, Extensible, call, execution 23315

Fig 6: Cost of different variants of the weaver family

Our approach makes it possible to explicitly filter the huge set of available joinpoints to
a quite minimal subset, like the potential points of interest for system strategies and other
crosscutting concerns (“JoinPoints Filtered’). This minimal hooking approach enables
us to avoid unnecessary memory overhead and performance costs.

7 Conclusion and Future Work

This paper illustrates how the ideas of program family concept are applied to the
dynamic aspect weaver domain to build application-specific dynamic weavers to support
for the runtime reconfiguration of crosscutting features in the family-based software
systems. Most of the concerns in complex software systems that need to be adaptable are
crosscutting. AOP is applied for the localization and encapsulation of such crosscutting
concerns. The implementations of the features that exhibit crosscutting behaviour are
mapped by aspects in the feature models. For the weaving and unweaving of such
features at runtime, dynamic weaving is employed. To reconcile our demand on minimal
resource usage Wwith (inherently expensive) dynamic weaving, we presented a
configurable weaver family. Family-based dynamic weaver is presented as a mandatory
feature in the development of a complex family-based adaptable software system. Thus,
the software system, as well as the dynamic weaver, is customized according to the
specific requirements of any application by selecting only required features from the
feature model. Moreover, many of the features, which we offer in the feature model of
the dynamic weaver, for example around advice and instrumentation of call joinpoints,
are not yet supported by other dynamic weavers in the C/C++ domain. Most of the other

107

existing weavers are targeting specific applications, and so do not have scalability
problems yet. A simple example where we could think of constructing customized
dynamic weaver would be of some embedded system with very small memory in the
range of, for example, a few hundred of Kbytes. Now while doing application specific
construction of a dynamic weaver for such systems, we can select features from the
feature model to have as much degree of dynamism as memory space allows. The result
would be a dynamic weaver which would be able to fully utilise the available memory
space and allow us with as much dynamism as we can afford.

As a future work we intend to extend the AspectC++ compiler to have a single language
approach. This would mean that both the static as well as the dynamic aspects could be
written with the same AspectC++ language. It will be decided only at the configuration
time, whether some aspect has to be static or dynamic, depending purely on the
application requirements and resource availability.

References

[AEO4] Almajali, S., Elrad, T.: A Dynamic Aspect Oriented C++ Using MOP with Minimal
Hook. Proceedings of the 2003 Dynamic Aspect Workshop (DAWO04 2003), RIACS
Technical Report 04.01, March, 2004, Lancaster, UK.

[AUO3] Aussmann, S., Haupt, M.: Axon — Dynamic AOP through Runtime Inspection and
Monitoring. First workshop on advancing the state-of-the-art in Runtime inspection
(ASARTTI’03), 2003

[Be99] Beuche, D. et al.: The PURE Family of Object-Oriented Operating Systems for Deeply
Embedded Systems, Proceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC'99), St Malo, France, May, 1999.

[BHO4] Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual Machine Support for
Dynamic Join Points, Proceeding of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD 2004), March 2004, Lancaster, UK

[B102] Blair, G.S. et al.: Reflection, Self-Awareness and Self-Healing in OpenORB,
Proceedings of the first workshop on Self-healing systems, Nov. 2002, Charleston, South
Carolina.

[BoO4] Bonér, J.: AspectWerkz — Dynamic AOP for Java, Proceeding of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD 2004), March 2004,
Lancaster, UK

[CEO0] Czarnecki, K., Eisenecker, U.: Generative Programming — Methods, Tools, and
Applications. Addison-Wesley, 2000

[Do05] Douence, R. et al.: An expressive aspect language for system applications with Arachne,
Proceeding of the 4™ International Conference on Aspect-Oriented Software
Development (AOSD 2005), Chicago, Illinois, March 2005

[EFO5] Engel, M., Freisleben, B.: Supporting Autonomic Computing Functionality via Dynamic
Operating System Kernel Aspects, Proceeding of the 4™ International Conference on
Aspect-Oriented Software Development (AOSD 2005), Chicago, Illinois, March 2005

[En05] Engel, M. et al.: Using a Low-Level Virtual Machine to Improve Dynamic Aspect
Support in Operating System Kernels, Proceeding of the 4™ AOSD Workshop on

108

[GBO3]

[Ki97]

[Ki01]

[Ko00]

[Le99]

[LS03]

[MS02]

[Pa79]

[Pa01]

[Po03]

[Pu03]

[Sa03]

[Sc05]

[SC99]

[Sp02]

[Va05]

[Z2]03]

Aspects, Components and Patterns for Infrastructure Software (ACP4IS 2005), Chicago,
Illinois, March 2005

Greenwood, P., Blair, L.: Using Dynamic Aspect-Oriented Programming to Implement
an Autonomic System, Proceedings of the 2003 Dynamic Aspect Workshop (DAWO04
2003), RIACS Technical Report 04.01, March, 2004, Lancaster, UK

Kiczales, G. et al.: Aspect-Oriented Programming, In Proceedings of ECOOP ’97,
Springer
Kiczales, G. et al.. An Overview of Aspect], Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), June 2001, Budapest,
Hungary

Kon, F. et al.: Monitoring, Security, and Dynamic Configuration with the DynamicTAO
Reflective ORB, Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing, 2000

Ledoux, T. et al.: OpenCorba: A Reflective Open Broker, Proceedings of the Second
International Adaptive and Reflective Middleware Conference on Meta-Level
Architectures and Reflection, 1999

Lohmann, D., Spinczyk, O.: Architecture-Neutral Operating System Components. WiP
Session on SOSP’03, October 19th-22nd, 2003, Bolton Landing NY, USA.

Mahrenholz, D., Spinczyk, O., Gal, A., Preikschat, W.S.: An Aspect-Orientied
Implementation of Interrupt Synchronization in the PURE Operating System Family,
Proceedings of the 5th ECOOP Workshop on Object Orientation and Operating Systems,
Malaga, Spain, June 11th, 2002, ISBN 84-699-8733-X

Parnas, D. L.: Designing Software for Ease of Extension and Contraction, IEEE
Transactions on Software Engineering, SE-592:128-138, 1979

Pawlak, R. et al.: JAC: A flexible framework for AOP in Java. Reflection 2001

Popovici, A. et al.: Just-in-time aspects:efficient dynamic weaving for Java, In
Proceedings of the 2™ International Aspect-oriented software development conference
(AOSD 2003), March, 2003, Boston

pure-systems GmbH, Variant Management with pure::variants, Technical report,
http://www.pure-systems.com, 2003

Sato, Y. et al.: A Selective, Just-In-Time Aspect Weaver. Proceedings of GPCE’03,
2003, Erfurt, Germany.

Scrivano, G.: MyServer Project, http://www.myserverproject.net/forum/portal.php, 2005

5Schmidt D. C., Cleeland, C.: Applying Patterns to Develop Extensible ORB
Middleware, IEEE Communications Magazine Special Issue on Design Patterns, April
1999.

Spinczyk, O. et al.: AspectC++: An Aspect-Oriented Extension to C++, In Proceedings
of TOOLS Pacific’02, February, 2002, Sydney, Australia.

Vanderperren, W. et al.: Adaptive Programming in JAsCo. Proceeding of the 4"
International Conference on Aspect-Oriented Software Development (AOSD 2005),
Chicago, Illinois, March 2005

Zhang, C., Jacobson, H. A.: TinyC*: Towards building a dynamic weaving aspect
language for C, Proceeding of the 2nd AOSD Workshop on Foundations of Aspect-
Oriented Languages, Boston, March 2003

109

