
Polybius: Secure Web Single-Sign-On for Legacy
Applications

Pascal Gienger Marcel Waldvogel

University of Konstanz
Konstanz, Germany

pascal.gienger@uni-konstanz.de, marcel.waldvogel@uni-konstanz.de

Abstract: Web-based interfaces to applications in all domains of university life are
surging. Given the diverse demands in and the histories of universities, combined with
the rapid IT industry developments, all attempts at a sole all-encompassing platform
for single-sign-on (SSO) will remain futile. In this paper, we present an architecture
for a meta-SSO, which is able to seamlessly integrate with a wide variety of exist-
ing local sign-in and SSO mechanisms. It is therefore an excellent candidate for a
university-wide all-purpose SSO system. Among the highlights are: No passwords
are ever stored on disk, neither in the browser nor in the gateway; its basics have been
implemented in a simple, yet versatile Apache module; and it can help reducing the
impact of security problems anywhere in the system. It could even form the basis for
secure inter-university collaborations and mutual outsourcing.

1 Introduction

The processes in teaching, learning, research, and administration at a university are man-
ifold. As a result, the applications written for their support date back to various decades,
using dozens of different interfaces, programming environments, and authentication/au-
thorization concepts. Despite efforts into identity management, the integration in practice
is limited to a subset of applications, as it falls short of user demands and security re-
quirements. Outside a small group of “compatible” applications, there remains a chaos
of usernames, passwords, and conventions, combined with many manual and error-prone
processes. Even those few applications are sometimes combined by hard-to-use SSO sys-
tems, turning ordinary users away in despair.

In this paper, we present a generic framework, Polybius,1 which allows the creation of an
SSO mechanism which provides single-log-out and can sit on top of existing SSO or local
sign-in systems. It avoids the common pitfalls of storing passwords in cleartext anywhere.
We also have implemented the system in a light-weight Apache module, providing an in-
terface to three previously unconnected systems, none of which require any modifications
to become part of the SSO infrastructure.

1Polybius was a Greek historian who also reported on the secure way the Romans used to dis-
tribute their ephemeral passwords http://en.wikipedia.org/wiki/Password#History_of_

passwords (visited 2011-01-06)

91

The processes at a university are not only manifold, as already explained, but also tightly
interwoven. However, the various applications stemming from different decades, tech-
nologies, and manufacturers, rarely provide this integration directly.

For example, in the context of a research project, acquisition, funding planning, people
hiring, project planning, e-collaboration, and travel require several distinct applications,
requiring different tools and multiple entry of the same information. Also, lectures re-
quire time and room scheduling, assigning assistants, group assignments, preparation and
publishing of texts, notes and slides, as well as grading and entering grades, which again
involve a multitude of systems.

Therefore, important goals of application management at universities include:

1. to integrate these applications from a user’s point of view, e.g., portals, common
authentication infrastructure, . . . ; and

2. to allow applications to interoperate, i.e., have data generated by one application be
used to .

The aim of both types of integration is to improve the efficiency of processes while at the
same time allowing modularity to prevent single-vendor lock-ins and therefore provide
competitive multi-vendor integration or migrations.

Conventional designs have kept the SSO mechanism out of the actual user↔system data
flow as much as possible. However, the time is ripe to rethink traditional design rationale:
The secure design of Polybius, advances in computer performance, coupled with ease
of redundancy and graceful degradation make Polybius less of a single point of failure
than conventional SSOs in many cases. We discuss this in detail in Section 3 and show
applications with and without password synchronization in Sections 4 and 5, respectively.

2 Related work

Many different approaches to the SSO problem have been developed, most notably Ker-
beros [NYHR05], Shibboleth [Sco05], and CAS [Jas].

Kerberos is very widespread, frequently deployed as part of Microsoft Active Directory.
Applications do check issued Kerberos tickets which are requested in authentication phase
from the Key Distribution Center, KDC (‘Domain Controller’ in Active Directory par-
lance). The concept has been slightly modified by Microsoft to be able to send Kerberos
tickets through by HTTP to allow their Microsoft Internet Explorer to use the same au-
thentication structure for web applications [JZB06].

In an effort to offer an SSO infrastructure to a broader audience and heterogeneous envi-
ronments, other schemes did evolve. Shibboleth is widely used in the European academic
community whereas CAS is often found in North America. Shibboleth is well known for
its cross-domain authentication, which we will not cover here.

92

All these methods share disadvantages when it comes to legacy web applications2: They
will not work out of the box. Instead, you will have to rewrite each and every application
to make use of these structures. Applications have to be “kerberized” to use Kerberos,
“shibboletised” to use Shibboleth, and so on.

First, any such modification requires access to the application source code to modify the
login process. Second, it may even require modification of the application logic, as dif-
ferent information is available as part of the login process. Third, it may not even work at
all, if the backend insists on password-based authentication, as is common when accessing
legacy services such as terminal emulations or non-Web protocols including many IMAP
or LDAP servers.

3 Polybius design

To avoid these problems, our approach is to keep the passwords as part of the process.
Storing or transmitting passwords is generally frowned upon, as they increase the vulner-
ability of the system: An attacker may gain access to the password store or to the user’s
browser. To avoid attacks on data at rest or data in flight, Polybius employs a form of
secret sharing between the browser and the SSO gateway: Neither of them has enough
information to get at the password, but on every request, the browser delivers the informa-
tion which allows the gateway to recover the password for this request; which the gateway
forgets immediately after using it for the backend service.

To accomplish this, user credentials (e.g. user name(s) and password) are stored in a
session database encrypted using AES in CBC mode, using a 256 bit encryption key and a
128 bit initialization vector (IV). These two values together with a session ID (to reference
the appropriate record in the database) form the unique session “key” needed by the SSO
server to reconstruct the password when needed. This SSO session key is stored as an
HTTP cookie in the user’s browser (cf. Figure 1).

This method leaves the session database useless for an attacker – without the keys he is
not able to extract the credentials. When capturing a cookie from a browser the attacker
will be able to take over the session (as it is the problem with every cookie based session
mechanism) but even if he gets the session database he would only be able to decrypt the
session record tied to his session key. Compared to other methods (storing passwords in
cleartext during a session) this reduces the abilities of an attacker to gain any secrets.

The latter can be minimized in impact by expanding the scheme to random temporary
session passwords, created especially for this session only (see below).

Polybius runs as an Apache module and makes use of the reverse proxy features. Every
web application running under Polybius SSO is accessed using an application-specific
prefix specified in the proxy configuration. The chosen prefix makes Apache forward

2We define a legacy web application to be an application which does not use some shared authentication
mechanism consisting of exchanging cryptograms like kerberos tickets or shibboleth hashes to be verified against
an authentication server and which cannot be modified to use them. Legacy web applications rely on the input of
a username and a related password via a an HTTP POST request or a WWW-Authenticate-Header.

93

Encrypted
username:user-
info:password
(aes256-cbc)

username:userinfo:password

KeyIV

50a3cb06cb…29+fb195a95…baf8f5:ffe413b23fe72…8b6f5
Cookie: SessionID+IV:Key

Session ID

Figure 1: User credentials are stored encrypted in the session database.

(reverse proxy) the request to the specified web application. Apache’s proxy modules are
capable of rewriting HTTP path responses, cookie domains, and cookie paths.

Applications may still be accessed without a Single-Sign-On. Every application may re-
main a standalone installation. Polybius also can be used to allow helper applications to
automate processes involving one or more backend systems. Single logout is possible by
simply erasing the database record belonging to this user.

4 Polybius with synchronized passwords

In this case, the organization has already integrated its applications to access a single user
store or multiple stores with synchronized passwords. This can be obtained by identity or
user management software.3

4.1 Basic HTTP authentication

The interaction with legacy web applications using HTTP basic authentication4 is shown
in Figure 2.

3The actual identities need not to be the same, but then Polybius needs access to a service which can link
those identities.

4WWW-Authenticate: header in the server’s reply, followed by the client repeating the request in-
cluding Authorization: Basic XXXX in the request, where XXXX is the base64-encoded form of
username:password.

94

User
agent

SSO
module

Appli-
cation

AES key and initialization vector (IV)
Session ID
Username/password
Encrypted username/password
in session database

POST

Reply, Redirect

GET /prefix/ABCDE

Reply

Set-Cookie

Cookie GET /ABCDE

Basic Auth

Reply

Login
form

Figure 2: Cookie flow diagram for the basic http auth scenario

• The user enters his username and his password on a HTML Form which is part of
Polybius’ infrastructure.

• The password has been checked against the authentication database. If it is wrong,
the servers aborts the request with an appropriate error.

• Random 256 bit AES key, 128 bit IV, and 128 bit Session-ID are generated.

• The user name(s) and the password are encrypted with this (key, IV) tuple using
CBC mode of AES.

• This encrypted data is stored in the session database under the Session ID as the
database key.

• A Set-Cookie: header is sent in the reply to the user’s browser consisting of the
session ID, the AES key, and the IV.

The user is now logged on. The legacy application is defined as an apache proxy target
under a specific prefix. So whenever a GET/POST request arrives regarding an URL under
this prefix the following happens:

• The user browser sends the SSO cookie along with his request. The Polybius Apache
module extracts this cookie and deletes it from the request header. The application
behind the Apache proxy will not see it.

95

User
agent

SSO
module

Appli-
cation

AES key and IV
Session ID

Username/password
Encrypted username/password
in session database

POST

Reply, Redirect

GET /prefix/START

Reply

Set-Cookie

Cookie POST /..../login...

HTML FORM DATA
ReplyReply Reply

Login
form

Application cookie(s)

Set-Cookie Path=/prefix/... Set-Cookie Path=/...

Reply Reply

Cookie Cookie

Figure 3: Cookie flow diagram for the session cookie scenario

• The SSO module retrieves the session data stored in the database under the session
ID given in the browser cookie. It then decrypts it using the AES key and IV also
included in the cookie.

• The SSO module now constructs an Authentication: Basic XXXX header
line in the request using the username and the password decrypted from the session
database.

• The Apache proxy module now takes this HTTP request and forwards it to the web
application.

• The response is passed through to the user’s browser.

4.2 Cookie-based authentication

The interaction with legacy web applications using a cookie-based session management
is also possible using a “Polybius Login Helper” for the application. The communication
diagram is shown as Figure 3.

• After the login phase (same as above), the user requests a special session start URL

96

which in turn starts a login helper for that application.

• This login helper POSTs the appropriate FORM data to the application to “log in”
as if it where the real user agent.

• The cookie given back by the application is passed slightly modified to the user’s
browser: The cookie path specification is changed so that this cookie is only sent
when requesting the application (distinguished by the Apache proxy prefix).

• The SSO module ensures that neither SSO key nor SSO session ID are passed to the
application. Also, no secrets from the backend cookie will be leaked to browser.

4.3 Example Apache configuration

To include a service authenticated using HTTP Basic, such as an Subversion (SVN) version-
control repository, the following Apache configuration fragment could be used:

LoadModule polybius module /usr/lib64/apache/modules/mod polybius.so

SetOutputFiler POLYBIUS

SSLProxyEngine On

ProxyPass /svn/ https://svn.uni-konstanz.de/

ProxyPassReverse /svn/ https://svn.uni-konstanz.de/

<Location /svn>

PolybiusAuthType basic

PolybiusUidAttribute cfn

</Location>

5 Polybius with temporary passwords

Sometimes passwords cannot be synchronized between all applications. This can be due to
conflicting character set restrictions or due to the fact that the application does not include
a mechanism compatible with the identity management system.

This is no problem for Polybius, as the schema above can be extended to make use of
temporary session passwords instead of “real” ones. Some changes in the authentication
infrastructure is needed however, as the password (and the respective hashes) is a unique
single-value property in many systems. The concept is to slightly modify the existing
infrastructure to add multiple temporary passwords5 against the applications may authen-
ticate instead of the “real” one. The idea is sketched in Figure 4.

5The usage of a single-value would result in a situation where multiple concurrent logins for the same user
are prohibited - which can be a desired feature.

97

User
agent

SSO
module

AES key and IV
Session ID
Username/password

Encrypted username/temporary password
in session database

POST

Reply, Redirect

Set-Cookie

LDAP
SQL
user
DB

Appli-
cation

Appli-
cation

Appli-
cation

Login
form

Au
th

en
tic

at
ion

Au
th

en
tic

at
ion

Au
the

nti
ca

tio
n

Temporary password

Figure 4: Using temporary passwords for SSO auth

Applications using LDAP BIND may use different LDAP subtrees containing only such
temporary elements to benefit from multiple passwords (and to retrieve the user account
data values). Applications using LDAP requests directly to read user data and verify it
themselves may be reconfigured to use also other attributes as data store. Also, SQL
database tables (for SQL authentication) can generally be altered.

The benefits of this system would be that even if an attacker manages to get the temporary
password (by getting the AES key, IV, and the session database) for one entry it will be
useless after this temporary password expires.

The idea - which is not implemented yet - consists of Polybius creating a random password
and pushing it to all authentication sources/databases used by the configured legacy web
applications. This random password is then stored in the same way as the “normal” user
password would be saved encrypted in the Polybius session database.

6 Performance

6.1 AES decryption with OpenSSL

For our performance tests, the AES implementation built into OpenSSL has been used –
OpenSSL is already loaded as a module in Apache. A single thread (single CPU) AES
decrypting loop has been run on an AMD Athlon 64 X2 machine several years old, contin-

98

1 4 8 16 32 64

600

400

200

requests/s

of concurrent requests

Figure 5: Request rates for proxy passthrough (white) and SSO operation (gray)

uously performing 256 bit key selection followed by AES-CBC decryption on 160 bytes
of data. 1 million decryption operations, this setup requires 1.8s, equivalent to ≈550,000
decryptions per second. So AES performance on even an aging machine will not be the
bottleneck in this application.

6.2 Latency due to database communications

Latencies occurring when communicating with the database (we used PostgreSQL as the
module’s storage engine, accessed using prepared statements for efficiency and security).
We ran the “ab” Apache benchmark program doing 3000 requests through the Apache
Proxy to a static file on another server, also consisting of 160 bytes. To model browsers
keeping their sessions to the proxy open and thus save SSL/TLS negotiation time, we
used the ‘keepalive’ feature of “ab”. The results are shown in Figure 5, which allow the
following interpretation:

1. Performance loss due to the database lookup is almost visible when request concur-
rency is high, which will be the typical operating point for highly loaded proxies.
For weakly loaded proxies, performance will also not be a problem.

2. In the sequential test (concurrency=1), each request is slowed down by 0.8 ms longer
(4.8 ms compared to 4.0 ms, resulting in 207 requests/s compared to 249).

Our database log (which I turned on for testing) shows that binding the parameter to
the prepared statement plus executing it takes 0.3 ms.6 The remaining offset is due
to network latency.

This has all been measured on a version of Polybius which has not yet been tuned for
optimal performance, as our focus so far has been on functionality and correctness.

6≈ 0.2ms to bind to the variable and 0.1ms to execute it and return the result.

99

7 Conclusions and future work

Recent developments allow the simplification of Single-Sign-On within an organization,
as most applications are web-based and even more so in the near future. Server-side Web
proxies are commonly used as load-balancing and failover mechanisms, show high perfor-
mance, and are well known by systems administrators. Even in the unlikely case the SSO
proxy should ever fail, the backend applications may still be accessed in the traditional
way.

Combining these insights with a secret sharing mechanism allows Polybius to not only
create a flexible and easily configurable as well as extensible SSO mechanism, it can also
reduce the impact of break-ins or unauthorized disclosure. These combinations make Poly-
bius well-suited for the academic environment with its openness and heterogeneity.

We are working on extending the number of backend protocols supported in Polybius and
also believe it will be possible to include Polybius into cross-domain SSO systems such as
Shibboleth or certificate-based login mechanisms.

Also, the concept of temporary passwords can be extended to provide (1) flexible user
rights delegation or (2) single-use authentication data, enabling the use of a one-time pass-
words or other restrictions when having to use a public terminal to access one’s applica-
tions. The beauty of this approach is that, unlike other SSO infrastructure, such mecha-
nisms can be added purely inside the SSO gateway, not a single configuration or source
change is needed for the backend applications.

The University of Konstanz is evaluating the usage of Polybius to include their webmail
and collaboration applications as well as the central SVN service in a uniform user por-
tal.

References

[Jas] Jasig. CAS 2 Architecture. http://www.jasig.org/cas/

cas2-architecture. Accessed 2011-01-11. 2

[JZB06] Karthik Jaganathan, Larry Zhu, and John Brezak. SPNEGO-based Kerberos and NTLM
HTTP Authentication in Microsoft Windows, June 2006. 2

[NYHR05] Clifford Neuman, Tom Yu, Sam Hartman, and Kenneth Raeburn. The Kerberos Net-
work Authentication Service (V5). IETF RFC 4120, July 2005. 2

[Sco05] Scott Cantor, editor. Shibboleth Architecture: Protocols and
Profiles. http://shibboleth.internet2.edu/docs/

internet2-mace-shibboleth-arch-protocols-200509.pdf, Septem-
ber 2005. Accessed 2011-01-11. 2

100

