
Service Oriented Security Architecture

Cristian Opincaru
University of the German Armed Forces, Munich

cristian.opincaru@unibw.de

Gabriela Gheorghe
Politehnica University of Bucharest

gabrielagh@gmail.com

Abstract: As Service Oriented Architectures (SOA) and Web services are becoming
widely deployed, the problematic of security is far from being solved. In an attempt
to address this issue, the industry proposed several extensions to the SOAP protocol
that currently reached different levels of standardization. However, no architectural
guidelines have yet been proposed. In this paper we first outline the security chal-
lenges and the specifications that address these challenges and then present our con-
cept - the Service Oriented Security Architecture, SOSA . We argue that the different
security functions (authentication, authorization, audit, etc.) should be realized as dif-
ferent stand-alone Web services - security services. These security services can then
be chained together by means of Enterprise Application Integration (EAI) techniques
such as message routing on Enterprise Services Buses (ESB). Next, we will present
a prototypical implementation of this framework and describe our experiences so far.
We show that by distributing the security functions, a more flexible architecture can be
designed that would lower the costs associated with implementation, administration
and maintenance.

1 Introduction

While Web services were designed to lower integration costs and to open new ways of
doing business, many organizations are still reluctant to opening their businesses to Web
services although standards like SOAP and WSDL are in place for almost a decade. One
of the major factors for this is the inadequate understanding of the security risks involved
and the false belief that they will have to make costly reinvestments in their security in-
frastructures [GFMP04].
In an attempt to make Web services a secure ground, OASIS1 has standardized a number of
extensions to SOAP messaging which address different security issues related to Web ser-
vices. These extensions are WS-Security, WS-Trust, WS-Federation, WS-SecureConversation
and WS-Policy (this last one has been submitted for standardization at W3C). In addition
to the SOAP extensions, other security specifications can be used in combination with
Web services - XACML [OAS05a], SAML [OAS05b] or the Digital Signatures Services
[OAS07a] are some examples.

1Organization for the Advancement of Structured Information Standards - http://www.oasis-open.org

61



These specifications define how security techniques and mechanisms should be applied for
individual SOAP messages (encodings, message exchanges, etc), but they do not define ar-
chitectural guidelines for possible implementations. In this paper we address this issue by
proposing an architecture for the realization of Web services security systems: the Service
Oriented Security Architecture, SOSA . This architecture is based on the now popular En-
terprise Services Bus (ESB) architecture. The idea behind it is to build modular security
services that address well defined security functions (i.e. authentication, authorization,
etc.). Message routing techniques can be then used to combine these security services and
to develop complex security solutions.
SOSA builds on the idea that rather than creating a ”fat” security component which is
integrated in the application or in the messaging middleware (and therefore not portable
and hard to reuse), it is more appropriate to build security into modular services that are
platform independent, easier to test and document, and have a high degree of reusability.
The remainder of this paper is structured as follows: Section 2 describes the main security
issues that must be addressed in the context of Web services (references to the specifi-
cations that address these issues are made where appropriate), Section 3 presents archi-
tectural approaches for the implementation of security systems, Section 4 introduces the
proposed architecture and describes its most relevant elements - communication between
security services, service composition and possible security services, and in Section 5 we
comment on some similar approaches. After this we present our prototype implemen-
tation, the SOS!e framework, in Section 6, make a functional as well as a performance
analysis in Section 7 and finally present our conclusions.

2 Security Requirements for Web Services

The main security issues to be addressed by Web services, as also discussed in [GFMP04,
WSF+03, (W304], are enumerated below. Because Web services are all about interoper-
ability, we provide references to the specifications that address these security issues, where
appropriate.
Please remark that, relative to the OSI network stack, Web services are located at the ap-
plication layer. Therefore, in this paper we are only addressing application layer security;
security at the lower layers is out of scope.

Authentication The requester might be asked to provide credentials prior to accessing a
Web service. Authentication is a key issue, since without knowing the requester’s
identity, other security functions can not be accomplished - i.e. you cannot charge
someone for using a service without knowing who he is. Authentication is addressed
by various specifications, most importantly by WS-Security and SAML [OAS05b]
(single sign on).

Authorization Access to Web services should be restricted based on authorization poli-
cies, that is, clear conditions should be stated under which an entity is allowed to
access certain Web services. Authorization is addressed in XACML.

Confidentiality The information flow between services must be protected. Special thought

62



should be given to the fact that SOAP messages often pass through multiple servers
before reaching their destination. Confidentiality is addressed in XML-Encryption
and WS-Security.

Integrity The information received by a Web service must be the same with the one sent
by the requester. Messages must not be altered along the path. Integrity is addressed
in XML-Signature and WS-Security.

Non-repudiation The service provider should be able to prove that a requester used a
certain Web service (requester non-repudiation) and the requester should be able to
prove that the information he has originates from a certain service provider (provider
non-repudiation). Non-repudiation is addressed in XML Digital Signature.

Privacy Both service requester and service provider should be able to define privacy poli-
cies. Both of them should agree on these policies prior to the actual delivery of the
service. Privacy is addressed in WS-Policy and WS-SecurityPolicy.

Audit User access and behavior should be traced in order to ensure that the established
obligations are respected. Audit is enforced by audit guards, that can be both active
and passive [(W304].

Trust Service requester and service providers should be able to determine if they trust one
another. Both direct and brokered trust relationships should be taken into consider-
ation. Trust is addressed in WS-Trust.

Accounting, Charging These two aspects are not primarily concerned to the security of
the system, but are nevertheless tightly coupled with the other security functions
described above (i.e. charging requires the service to know the identity of the re-
quester). Most eBussiness applications require a complete A4C2 system.

3 Security Implementation Approaches

When it comes to implementing the previously introduced security functions in the con-
text of Web services, several architectural approaches are possible. These are graphically
presented in figure 1 and described in the following.

Embedded in the Application In this case the security implementation is coded in the
application itself (figure 1A). The developer of the Web service is responsible for writing
the code for the security logic. For this task he will probably chose to implement some of
the functionality himself, while reusing some code in the form of 3rd party libraries for
implementing other security aspects. Example of such libraries include the Java Authenti-
cation and Authorization Service (JAAS) and the security features found in Web Services
Enhancements (an extension to the Microsoft .NET platform).
Because the communication between the security system and the application is done by

2A4C is an acronym for Authentication, Authorization, Audit, Accounting and Charging.

63



Middleware System

Web Service

Security Implemenation

Middleware System

Web Service

Security Implemenation

Security Implemenation

Middleware System

Web Service

A. Embedded in the
application

B. Embedded in the
middleware C. External

Figure 1: Approaches for the Implementation of Security Features in Web Services

APIs, the performance is very good in this case. However, this approach lacks scalabil-
ity and results in implementations which are complex, hard to document and have a low
degree of reusability and extensibility. These findings are backed by [Bro03].

Embedded in the Middleware In this case security is provided by the middleware sys-
tem where the Web service is executing (figure 1B). This is the case of most application
servers such as the Systinet Server for Java3 or Apache AXIS4. Here, the security aspects
are handled by the application server. Before and after the Web services hosted by the mid-
dleware are invoked, the messages are inspected and the security policies are enforced.
In comparison with the previous approach, a noticeable improvement here is the fact that
the security implementation is separated from the application logic. This leads to less
complex implementations which are easier to document. Furthermore, it is possible to
define security policies that cover several services which run inside the same instance of
the middleware system. Nevertheless, the security implementation can not be ported on
a different middleware system and it is hard to define and enforce policies for services
distributed on different middleware systems.

External In this case security is implemented outside the middleware system (figure 1C).
The Web service is loosely-connected to the security implementation through a messaging
interface. This approach is taken for example by XML firewalls - these are deployed at
the network perimeter and enforce security policies by processing incoming and outgoing
messages. [DGFRLP04] elaborates on application firewalls.
In comparison with the previous two approaches, here not only that the security is decou-
pled from the application, but the two communicate by means of messages. This makes the
security implementation independent of the middleware system where the protected Web
service runs and results in more understandable implementations (the security aspects are
not mixed with the rest of the application). Furthermore, because the security system is

3http://www.systinet.com/products/ssj/overview
4http://ws.apache.org/axis, http://ws.apache.org/axis2

64



essentially a Web service, it has all the advantages that these ones have: scalability, porta-
bility, higher degree of reusability.
As disadvantages to this approach we see performance as a potential issue, because there
is a significant computational effort associated with message processing, especially if the
messages are XML (as is the case of SOAP).

Mixed Of course it is possible to have mixed approaches where some security aspects
are implemented in the application, some in the middleware, while others are externalized.

4 The proposed architecture

In this paper we build on the external security approach described earlier and propose an
architecture for security systems where the security functions are realized as small modular
services. We call these services security services. In order to have a simple, understand-
able and verifiable design, the principle of separation of concerns is applied. According
to this principle, the security system is functionally divided into services and a taxonomy
of possible security services will be presented. These services can be regarded as infras-
tructure services, as they can be shared by applications living in the same network. This
makes the design highly reusable. Additionally, through the use of standardized messag-
ing interfaces, overall system portability is ensured.
Enterprise Application Integration (EAI) techniques are used to ”glue” the security ser-
vices together with the Web services which are protected. Because of flexibility, the En-
terprise Services Bus model is used. ESBs support both service orchestration and service
choreography and implementations usually come equipped with simple-to-use orchestra-
tion editors and runtime environments which can easily be used to architect a security
solution from security services. Perhaps two of the most important features of an ESB
are message routing and the mediation pattern, which allow functionality to be built in the
system in a totally transparent fashion.
In this paper, we consider that security services are realized as ESB mediations and that
they are chained together by means of message routing. Other possibilities exist (such as
for example BPEL or WS-CDL), however these are out of the scope of this paper. Media-
tions and message routing are enough to design scalable, extensible and easily configurable
security systems.
The realization of such a system is illustrated in figure 2. A message reaching the endpoint
will be routed by the ESB through several security services before reaching the protected
service. Each of these security services implements some security function and will en-
force some portion of the security policy. The response message is also routed through
several security services before being returned to the requester.
In the proposed model, we consider that the security services trust one-another and that
they are located in a trusted network; scenarios such as service hijacking are out of the
paper’s scope. Nevertheless, by using encryption and digital signatures, the model can be
extended to include scenarios where the security services are only partially trusted (they
are trusted to perform their task, but not trusted for anything else). However, this is not

65



Enterprise Services Bus (ESB)

Web Service
Requester

P
ro
te
ct
ed

W
eb

S
er
vi
ce

E
nd
po
in
t

Security Services

Private Network (Trusted)Public Network

Figure 2: Security system composed of several security services

discussed here.
Because this model is applied to Web services and Service Oriented Architectures (SOA)
and because the core idea is to think of security in terms of reusable services, the model
was named Service Oriented Security Architecture or SOSA . The following subsections
present the main elements of this model, namely how security services communicate, how
they are coupled together and what security functions can be implemented as services.

4.1 Communication between security services

Each of the security services will process incoming messages in order to accomplish its
task. Some tasks may require several services to cooperatively process one message (for
example authorization normally requires the identification of the requester). It is clear that
in this case intermediary processing results (in the previous example, the identity of the
user) need to be exchanged between services.
If we follow the patterns described in [HW03], here are two possibilities for this. The
first approach is to have the two services communicate by means of a shared database:
after processing a message, the first service stores the intermediary results in a database,
while the second one later queries this database. The second approach is through annota-
tions: the first service appends the intermediary processing results to the message before
dispatching it to the next service; we call this an annotated message. For the particular
case of security services, this latter approach is more appropriate because the intermedi-
ary processing results normally refer to the processed message (i.e. identity attributes,
authorization decisions, obligations, accounting information, etc.) and can be therefore
transported together with the message.
To have an idea about how annotations work, think about a document-based work flow in
a corporation: assume that Bob (an employee) wants a new computer. For this makes a
written request and mails it to his boss. The boss will first analyze Bob’s reasons, approve
it, perhaps annotate it, and forward it to the financial department. The financial department
will verify if there are enough funds (perhaps annotate it) and send it to the Infrastructure
department. Here the computer is ordered and a reply is sent to Bob informing him that
his new computer is on its way. The persons involved in this work flow act similar to the
mediation services: first inspect the request they receive, then they approve it (they can

66



also reject it), they may annotate it, and finally forward it along the chain.

4.2 Possible Security Services

In section 2 of this article, the security requirements for Web services were presented. Most
of these requirements can be implemented as standalone Web services. In fact, several
service interfaces for security services have already been standardized by OASIS as part of
the WS-* specifications. Examples for this include WS-Trust [OAS07b], WS-Federation,
XACML [OAS05a] or the newer DSS [OAS07a]. All these services are defined though
WSDL documents and follow a request-reply pattern. In this article, as stated earlier, we
are looking instead at implementing security as ESB mediation services. Considering this,
we argue that the following are candidates for possible security services:

Authentication Two types of authentication services are possible: verification and iden-
tification. The first one will verify the credentials (keys, passwords, etc.) found in
a message, while the second one is responsible for providing identity attributes. An
identification service will annotate messages with these attributes so that the other
services along the chain (i.e. authorization, audit, charging) can use this informa-
tion.

Authorization If we follow the XACML [OAS05a] service model, three types of autho-
rization services are possible: Policy Information Point (PIP) , Policy Decision Point
(PDP) and Policy Enforcement Point (PEP). The task of a PIP is to annotate mes-
sages with additional attributes that the PDP may require in the decision making
process. The task of the PDP is to evaluate the message, produce an authorization
decision and annotate the message with this decision and possibly also obligations.
The task of the PEP is to enforce the decisions of the PDP services and to discharge
the obligations.

Audit Two types of audit services can be envisioned according to [(W304]: services that
perform passive audit such as a logging service and services that perform active
audit such as a notification service.

Cryptographic Services Encryption and digital signing are tasks that require significant
computational power and therefore ideal for distributing on more powerful machines
or machines with specialized hardware.

Accounting If accounting represents a complex task, it makes sense to realize it as a
standalone service. The task of an accounting service is to meter service usage and
to provide input for the charging service (in the form of annotations).

Charging If charging is done immediately (i.e. not on a periodical basis), the task of the
charging service is to charge the requester according to the information provided by
the accounting service.

67



Infrastructure Services In addition to the above mentioned services, other mediation
services might be useful, especially if we think about coupling different security
services together. [Cha04] identifies the following three: orchestration services,
message transformation services and message storage services.

This list of services is not complete: depending on the concrete deployment scenario,
other services may be required. Furthermore, the granularity of the services is also an
issue to be considered: concrete implementations may chose to realize several of the up-
mentioned services as a single service (for example instead of PIP, PDP and PEP one
single authorization service), for performance reasons. Alternatively, in complex systems
consisting of different realms, messages may be routed through several PDP services, each
one enforcing the policy of its realm. A detailed analysis of these issues is not within the
scope of the article. However, in section 7.1 we analyze the performance of our prototype
implementation and comment on the relation between the number of security services and
message delay.

4.3 Putting it all together: Message Routing Patterns

The next design step is to connect the security services with the application Web service.
Because the security services are realized as mediation services on an ESB, message rout-
ing patterns can be applied in architecting the security solution. Some common patterns
applicable here are the following ([HW03] elaborates on message patterns):

Content-Based Routing Messages are routed between services based on their content
(for example, incoming messages are routed to appropriate identification services
depending on the authentication token they contain).

Itinerary Routing A routing slip describing the itinerary is attached to the message. This
one is then forwarded according to the slip (for example a route may be authentica-
tion - authorization - audit - protected Web service).

Splitter / Aggregator The message flow needs not necessarily be linear. One single re-
quest can be split (i.e. forwarded to several services that process it in parallel) and
these parallel flows can be synchronized by means of an aggregator which combines
the results. Imagine a message being sent in parallel to several decision services and
then the authorization decisions being combined by means of AND / OR logic.

In order to illustrate how the proposed architecture fits together, an example is presented
in figure 3: after reaching the endpoint, an itinerary is attached to all incoming messages.
According to this itinerary messages get first authenticated, then authorized, then logged
and only then reach the Protected Web Service. On their way back, response messages
are logged, digitally signed and only then returned to the requester. Please remark how
services are reused: the same instance of the log service is used twice in the itinerary.

68



Enterprise Services Bus (ESB)

Web Service
Requester

P
ro
te
ct
ed

W
eb

S
er
vi
ce

E
nd
po
in
t

Authentication Authorization

Digital Signing

Lo
g

Itinerary Router

Private Network (Trusted)Public Network

Figure 3: Security Services combined by means of message routing patterns

5 Similar Approaches

There are several similar approaches where security functions are implemented as stand-
alone services. To begin with, the SOAP protocol specification [(W303] describes interme-
diaries which can be either forwarding intermediaries (they forward the inbound message
with minimal modifications) or active intermediary (they modify the outbound message
in ways not described in the inbound message). Examples of intermediaries performing
security tasks are also given in [(W303]: a logging service is an example of forwarding
intermediary while an encryption service is an example of active intermediary.
In [Bro03] an architecture where security functions are implemented into proxies is de-
scribed. A single security proxy acting as a gateway is used to secure several Web services
deployed in a network. The paper compares this approach to library-based approaches.
[AKT+06] enumerates the threats in the context of Web services and describes another ex-
ternal security approach. Here, incoming messages first pass through a perimeter gateway
which secures several services within a network (similar to [Bro03]), then pass through a
service agent which is attached to a particular Web service, and only then reach the pro-
tected Web service. The security functions are divided in this case between the gateway
and the agent: the first one enforces security at a coarser level (for the entire network),
while the latter one does it at a finer level (for individual services).
In all these approaches, even though the security functions are separated from the Web
service to be protected, they are not realized in a modular fashion. In our approach, the
security functions are realized into modular services which are designed according to the
principle of separation of concerns - different security functions should be implemented
as different security services. The advantages of this approach are presented in section 7.
An approach where security functions are realized into different services is presented in
[HHH05]. Here, the services are combined by means of an ESB to form a security gate-
way. However, only authentication, authorization and cryptographic services are taken
into consideration and no communication between security services is designed (in our
approach security services communicate by means of annotated messages). Furthermore,
no architectural analysis is made, no implementation is presented and hence, neither prac-
tical experiences nor performance analysis are described.

69



6 Implementation

In order to show the feasibility to this architecture a prototype implementation was built:
the SOS!e 5 framework. The implementation is open-source and was realized in Java. It
relies on a number of open-source tools, including Apache Tomcat, Apache Axis, Apache
Ant, WSS4J, OpenSAML and the Mule ESB. It was designed for SOAP Web services
and takes advantage of the SOAP processing model (security services are realized as in-
termediaries) and several SOAP extensions (most notably WS-Security). The framework
implements message routing and the annotation-based processing model described above.
On top of SOS!e several common security services have been developed.

Security services are realized as regular Web services based on the popular Apache Axis
platform. The framework provides APIs for the manipulation of annotations. They
allow the creation of new annotations, as well as the retrieval, modification and
deletion of existing annotations from a message.

Annotations have been realized as SAML Attribute Assertions [OAS05b]. These can
store several attribute-value pairs together with information about the author of the
annotation, timestamp and other fields. SAML assertions have the advantage of
being XML encoded, are easy to attach to SOAP message headers (through the
WS-Security SAML Token Profile [OAS06]) and have built-in support for digital
signatures.

Message routing For message routing, the Mule ESB6 was used. This is a 100% Java
based Enterprise Services Bus implementation which supports a variety of transport
mediums, message types and routing patterns. It also provides a very convenient
and simple way to specify orchestration scripts and to expose these orchestrations
as an endpoint. In our implementation (refer to figure 2), a proxy to the protected
Web service is exposed in the public network. The Mule ESB is configured to route
incoming messages through the necessary security services, before finally invoking
the protected Web service. If a request-reply message exchange pattern is used (i.e.
the call is not asynchronous) the same happens to the response message.

On top of the SOS!e framework, several security services have been prototypically built:

• Two authentication services which are able to authenticate users based on username-
password and X509 certificates. If the verification is successful, an LDAP repository
is contacted, user attributes are retrieved and the message is annotated with these
attributes.

• A simple authorization service which performs authorization based on simple rules.

• Two audit services: one logging service and one alert service. The first one per-
sistently stores messages (in whole or only parts of them), while the latter one can

5SOSIE - Service Oriented Security, an Implementation Experiment. The name is inspired from the French
word sosie (look-alike in English), because a proxy of the protected service is exposed through the framework.

6http://mulesource.com

70



be configured to send emails if certain criteria are met (these are specified through
XPath expressions relative to the SOAP envelope).

• Two cryptographic services, one for encryption and one for digital singing. The
parts of the message to be encrypted / digitally signed are also specified through
XPath expressions relative to the SOAP envelope.

• Currently an accounting and a charging service based on PayPal7 are under devel-
opment.

7 Analysis and Evaluation

It is well known that complexity is security’s biggest enemy: as a system becomes more
complex, it is harder to observe the flaws and back door opportunities are opened. SOSA
splits security into small functional components that can be separately developed, thus re-
ducing the complexity and allowing the components to be better tested (unit tests can be
used). Because they are less complex, it is also easier to reuse these components.
Services are combined by means of message routing patterns. This allows for a clear de-
sign which is also easy to document. Because services are running inside an Enterprise
Services Bus, orchestrating the security services is a matter of configuration which does
not require an expert, as most ESBs are equipped with graphical editors and specialized
tools for such purposes.
Additionally, the fact that the security services are independent one from the other makes
the upgrades to the security system faster and less costly. New services can be introduced
without affecting the existing ones, by simply altering the path of messages. It is not
even necessary to stop the system, the modifications can be done at runtime, by simply
temporarily redirecting the message flow (a technique often used when upgrading web
servers).
Since the security services are not bound to the application that they guard and also not
bound among them, they can be developed in any programming language and can run
on any operating system. This will reduce the costs associated with implementation be-
cause programmers will be able to choose the APIs and platforms which are most suitable
for their project. For example, in an application where user information is stored in Mi-
crosoft Active Directory and authorization is based on XACML, the authentication service
might be developed in C# (because C# has better support for Active Directory), while the
authorization service might be implemented in Java (because Sun offers a free XACML
implementation on SourceForge).
Another advantage of this architecture is that the same instance of a service can be used
in several applications, thus making the administration and deployment of new services
simpler. We showed in figure 3 how the same instance of a security service can be invoked
several times in an itinerary. In figure 4 we show how the same security service can be used
in two different deployments: in this example the same authorization service is used for
both services A and B (the other security services, like the authentication, are different).

7http://www.paypal.com

71



Enterprise Services Bus (ESB)

W
eb

S
er
vi
ce

A

E
nd
po
in
t

A

Authentication

W
eb

S
er
vi
ce

B

E
nd
po
in
t

B

A
ut
ho

riz
at
io
nAuthentication

Figure 4: Security service being shared by two security system deployments

Furthermore, sharing security services also solves some well known security issues: shar-
ing the authentication service leads to single-sign-on and sharing the authorization service
leads to federated access control.

7.1 Performance Analysis

As a possible disadvantage to SOSA we see a decrease in throughput and higher latencies
due to additional network traffic and overhead resulting from XML parsing (each security
service must process the message content). In order to determine the feasibility of SOSA,
performance testes were carried out against the SOS!e prototype implementation.

Throughput for SOS!e

0

100

200

300

400

0 1 2 3 4 5

Number of Security Services

Th
ro
ug

hp
ut

[r
eq

ue
st
s/
s]

No Annotations With Annotations

JM
et
er

P
ro
te
ct
ed

W
eb

S
er
vi
ce

Security Services

1s
tS

ec
ur
ity

S
er
vi
ce

2n
d
S
ec
ur
ity

S
er
vi
ce

3r
d
S
ec
ur
ity

S
er
vi
ce

4t
h
S
ec
ur
ity

S
er
vi
ce

5t
h
S
ec
ur
ity

S
er
vi
ce

Testing Environment

Figure 5: a.Testing environment b.Throughput for the SOS!e framework

For tests, mid-class computers were used (Pentium 4 2.8GHz CPU, 2GB RAM, connected
via 100MBit network). The results of these tests, together with the testing environment
are displayed in figures 5 and 6. We tried to determine the influences of the number of
security services on the most relevant performance parameters - the throughput (TP) and
the round-trip-time (RTT) for one message.
Our testing methodology is similar to the one described in [UT06]. In order to only mea-
sure the overhead introduced by our framework, ”dummy” security services were used -
these are services that implement no security functionality. The protected Web service,
was a very simple one: the purpose was to have this one respond faster than the security

72



Round Trip Time for SOS!e

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Number of Security Services

Ro
un

d
Tr
ip

Ti
m
e,

A
ve

ra
ge

[m
s]

Configuration A, No Annotations

Configuration B, No Annotations

Configuration A, With Annotations

Configuration B, With Annotations

Figure 6: Round Trip Time for the SOS!e framework

framework (otherwise this one would have influenced the results).
For the measurements we used Apache JMeter8. We considered two different configura-
tions: Configuration A, where all the security services were hosted on the same machine
as the Mule ESB and Configuration B where each security service was hosted on a dif-
ferent machine. For each of these configurations, we tested two use-cases: one where the
services were only forwarding the messages and one where the services were processing
the annotations existing in the message and adding new annotations.

Throughput As seen in figure 5b, the TP decreases significantly when the security frame-
work was introduced between the client and the protected service (almost 60%).
This is due to latencies introduced by the Mule middleware. However, if the num-
ber of security services is increased, the effect on TP is little. Furthermore there is
no difference if annotations are used or not. This shows us that annotations have no
visible influence on throughput.

Round Trip Time As expected (see figure 6), the RTT increases linearly with the number
of security services introduced between the requester and the protected service. The
processing of annotations leads to a slight increase in latency.

In conclusion, we see that the framework has significant influence on the performance
(both TP and RTT). The decrease in performance increases with the number of security
services introduced between the requester and the protected service.
Whether or not the SOS!e framework is appropriate for a given scenario depends on the
particular performance requirements of this scenario. In those cases where the RTT must
be low, the SOS!e framework is inappropriate. However, in those cases where the RTT
may be higher or if the interactions are asynchronous, SOS!e fits well.
Furthermore, we have to take into consideration that SOS!e is only a prototype implemen-
tation, which is not optimized. Better, more optimized implementations for the proposed
architecture can be envisioned.

8http://jakarta.apache.org/jmeter/

73



8 Conclusions

In this paper we presented an architecture for security systems protecting Web services -
the Service Oriented Security Architecture. We showed that realizing the security func-
tions into modular, stand-alone security services results in less complex and more flexible
designs for security systems. In addition to this, the presented approach has several other
advantages (see section 7).
We also presented a prototype, open-source implementation to SOSA , the SOS!e frame-
work, and showed our experiences with this framework so far. In section 7.1 we presented
the results of performance tests that were run on our implementation, and showed that
even though both RTT and throughput are affected by the fact that messages are routed
through several security services, there are numerous application scenarios in which such
an architecture fits well.

References

[AKT+06] Mohamad Afshar, Nickolaos Kavantzas, Ramana Turlapati, Roger Goudarzi, Barmak
Meftah, and Prakash Yamuna. Best Practices for Securing Your SOA: A Holistic
Approach. Java Developer’s Journal, June 2006.

[Bro03] G. Brose. Securing Web Services with SOAP Security Proxies. Proc. Int’l Conf. Web
Services (ICWS’03), pages 231–234, 2003.

[Cha04] David A. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[DGFRLP04] N. Delessy-Gassant, E.B. Fernandez, S. Rajput, and M.M. Larrondo-Petrie. Pat-

terns for application firewalls. In Proceedings of the Pattern Languages of Programs
(PLoP) Conference, 2004.

[GFMP04] C. Gutiérrez, E. Fernández-Medina, and M. Piattini. Web Services Security: is the
problem solved? Information Systems Security, 13:22–31, 2004.

[HHH05] Heather Hinton, Maryann Hondo, and Dr. Beth Hutchison. Security patterns within
a service-oriented architecture. IBM white paper, November 2005.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[OAS05a] OASIS. eXtensible Access Control Markup Language v2.0, February 2005.
[OAS05b] OASIS. Security Assertions Markup Language (SAML) V2.0 - Core, March 2005.
[OAS06] OASIS. Web Services Security: SAML Token Profile 1.1, February 2006.
[OAS07a] OASIS. Digital Signature Service Core Protocols, Elements, and Bindings Version

1.0, February 2007.
[OAS07b] OASIS. WS-Trust 1.3, March 2007.
[UT06] K. Ueno and M. Tatsubori. Early Capacity Testing of an Enterprise Service Bus. Pro-

ceedings of the IEEE International Conference on Web Services (ICWS’06)-Volume
00, pages 709–716, 2006.

[(W303] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging Frame-
work, June 2003.

[(W304] World Wide Web Consortium (W3C). Web Services Architecture, February 2004.
[WSF+03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-

man, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid services. High Perfor-
mance Distributed Computing, 2003. Proceedings. 12th IEEE International Sympo-
sium on, pages 48–57, 2003.

74




