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Abstract: The problem of 3D face recognition has received a growing interest in

the past decades. While proposed approaches have proven their efficiency over re-

nowned databases as FRGC, little work has been conducted on the robustness of

such algorithm to the quality of 3D models. In this work, we present a study of the

robustness of our 3D face recognition algorithm, namely MS-ELBP+SIFT, to face

model degradations. Those degradations include Gaussian noise, decimation, and

holes. Degradations are generated on a subset of the FRGC database, hence enabl-

ing us to compare the robustness of our approach to them. Results are provided

through a comparative study with the baseline ICP method.

1 Introduction

While studies have proven the effectiveness of current approaches to 3D face recogni-

tion, few of them have evaluated the impact of 3D model degradations. Those degrada-

tions may have several origins. At first, some degradation may be issued from the 3D

acquisition itself. 3D laser scanners have been reported to be sensitive to the wave-

lengths of artificial lightings. In some cases, a high reflectance of the acquired surface

can also generate holes or spikes on the resulting model. Since they are electronic devic-

es, binocular sensors also suffer from thermal noise (Nyquist-Johnson noise), Schottky

noise, etc. We shall count the acquisition conditions as a source of degradations also,

since occlusions, self-occlusions or movements resulting in a blur might occur during the

acquisition process. A short study of those model degradations for 3D Face Recognition

within the FRGC database [Ph05] was conducted in [Fa07], as well as in [Ka07]. Com-

pression might also be useful for storage capacity matters, as well as sampling (resolu-

tion reduction of the 3D model). The distance of the subject to the 3D scanner also has

an impact on the resolution of the 3D model. Those considerations are to be taken into

account especially in the case of asymmetric biometric scenarios, in which the enrolment

step can benefit from high quality acquisition conditions, while the verification step is

often to be conducted with light gear, in rather unconstrained conditions. Analyzing the

behavior of recognition algorithms in the presence of such degradations is a necessary

step before using such methods into a real environment application.
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A majority of authors in the domain of 3D face analysis seem to have, often implicitly,

admitted the existence of such issues in their work; hence the use of pre-processing steps

[Fa07][DHu10][Dr10]. Those pre-processing steps include peaks, and more generally

noise removal with the help of mean, median or Gaussian filters over the Z coordinates.

Resampling, remeshing techniques are also used [Dr10]. Pre-processing methods also

include hole filling algorithms by the mean of interpolation techniques. Authors have

also dedicated works, and developed techniques relative to occlusion handling [Co06],

which is in some cases equivalent to holes handling.

Despite 3D model degradations are generally admitted to have an impact over face rec-

ognition algorithms performances [Ro09][Po09], to our knowledge little to none work

has been presented to measure it. In this paper, we propose a study on the performances

of our state of the art face recognition approach, MS-ELBP + SIFT [DHu11], under var-

ious canonical model degradations such as noise, decimation and holes. Results were

compared with ICP [Be92], which is generally considered as a baseline algorithm for the

problem of 3D face recognition.

This paper is organized as follows. The second section exposes our method for 3D Face

Recognition, providing results on the FRGC database. The third section exposes our me-

thod for measuring the robustness of 3D Face Recognition algorithms to degradations.

Experimental are provided. Section 4 concludes the paper.

2 Our 3D Face Recognition Algorithm: MS-ELBP + SIFT.

In this section, we describe our method for 3D face recognition, also detailed in

[DHu11]. The first step is based on a novel approach for representing the 3D face depth-

map, called Multi Scale Extended Local Binary Patterns (MS-ELBP). The second step is

using the rather classical Scale Invariant Feature Transform (SIFT) approach.

In the state-of-the-art, block-based 3DLBP histograms [YHu06] and LBP based range

faces [DHu10] were investigated for 3D facial representation, while they do not provide

accurate description of local shape variations. In this section, we first recall the basics of

LBP. We then introduce Extended Local Binary Patterns (ELBP) and Multi-Scale strate-

gy to generate the new 3D geometric facial representation, called MS-ELBP Depth Fac-

es (MS-ELBP-DFs), which accurately encodes local shape variations of range faces.

Results are eventually exposed and prove the effectiveness of our approach.

2.1 LBP and its descriptive power of local shape variations

LBP [Oj02] is a non-parametric algorithm, and was first proposed to describe local tex-

ture of 2D images. The most important properties of LBP are its tolerance to monotonic

illumination variations and computational simplicity. So, it has been extensively adopted

for 2D face recognition in the last several years [Ah04].
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Specifically, the original LBP operator labels each pixel of a given image by threshold-

ing in a 3×3 neighborhood. Each of the 256 LBP code can be regarded as a microtexton.

LBP can describe local shape structures, such as flat, concave, convex etc. when operat-

ed on depth images. However, the direct application of LBP on range images potentially

results in unexpected confusion to similar but different local shapes. To address this

problem, we considered two complementary solutions. The first one aims at improving

the discriminative ability of LBP with Extended LBP coding approach, and the other one

focuses on providing a more comprehensive geometric description of the neighborhood

by exploiting Multi-Scale strategy. Both solutions are discussed in the two following

subsections respectively.

2.1.1 Extended Local Binary Patterns

The reason why LBP cannot be competent to recognize similar shapes is caused by its

operational mode. It only compares relative differences between the central pixel and its

neighbors. Instead of LBP, ELBP not only extracts relative gray value difference be-

tween the central pixel and its neighboring pixels, but also focuses on their absolute dif-

ference. ELBP is a generalized version of 3DLBP [YHu06].

Specifically, the ELBP code consists of several LBP codes at multiple layers which en-

code the exact gray value difference (GD) between the central pixel and its neighboring

pixels. The first layer of ELBP is actually the original LBP code, encoding the sign of

GD. The following layers of ELBP then encode the absolute value of GD (Fig. 1). The

first layer of the ELBP simply encodes the sign of GD. The absolute values of GD, i.e. 1,

5, 3, 2, 1, 2, 3, 0, are then encoded in their binary numbers: (001)2, (101)2, (011)2, (010)2,

etc. Using a LBP scheme on all the binary bits, we finally generate the corresponding

ELBP code for each layer. As a result, the information encoded in the additional layers

can be used to distinguish shapes described as similar by the first layer (original LBP).

Theoretically, in one image, the maximum value of GDs is 255 (between 0 and 255),

which means that 8 additional layers are required to encode GDs. However, range faces

are pretty smooth; and the GDs in a local surface generally do not vary dramatically. It

was also proven by the work in [YHu06] that more than 93% of GDs are smaller than 7

between points within two pixels. Hence, we set the number of additional layers to 3.

2.1.2 Multi-Scale Strategy

LBP facial representation can be achieved in two ways: one is LBP histogram [Sh08];

another is LBP face. The latter approach, as investigated in our method, regards the cor-

responding decimal number of the LBP binary code as the intensity value of each pixel,

and generates the LBP face.

MS-ELBP-DFs of range face image can be achieved by varying the neighborhood size

of LBP operator, by first down-sampling the range image and then adopting the LBP

operator with a fixed radius (Fig. 2). The number of sampling points is 8, and the value
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of radius varies from 1 to 8. As we can see in Figure 2, the original range image is very

smooth, while the resulting MS-ELBP-DFs contain many more details of local shapes.

2.2 SIFT BASED LOCAL FEATURE MATCHING

Local feature extraction operated directly on smooth 3D face images leads to few local

features with low distinctiveness. Meanwhile, the produced MS-ELBP-DFs contain

many more details of local shapes, and thus enhance their distinctiveness. Once the MS-

ELBP-DFs are achieved, the widely-used SIFT based features [Lo04] are extracted from

them for similarity score calculation and final decision.

We use the SIFT operator on each MS-ELBP-DF separately. Because MS-ELBP-DFs

highlight local shape characteristics of smooth range images, many more SIFT-based

keypoints can be detected for the following matching step than those in the original

range images. From statistical work done on the FRGC database, the average number of

feature points extracted from each of MS-ELBP-DFs is 553, while that of each range

image is limited to 41.

Figure 1. An example of the ELBP Operator.

Figure 2. MS-ELBP-DFs of a range face image with different radii from 1 to 8 (from left to

right).
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Given the local features extracted from each MS-ELBP-DF pair of the gallery and probe

face scan respectively, two facial keypoint sets can be matched. Matching one keypoint

to another is accepted only if the matching distance is less than a predefined threshold t

times the distance to the second closest match. In this research, t is empirically set at 0.6

as in [Lo04]. A bigger number of matched keypoints means a better matching relation-

ship. A face in the probe set is matched with every face in the gallery. The multi-scale

analysis is then achieved by fusing the matching scores of all scales by using a basic

weighted sum rule. More details about that step are provided in [DHu11].

2.3 Performances

We have conducted experiments over the FRGC v2.0 database [Ph05]. This database is

one of the most popular datasets, containing 4007 3D face models of 466 different sub-

jects. Table I provides comparative results of the Rank One experiment with other state

of the art approaches.

TABLE I. RANK-ONE RECOGNITION RATES ON FRGC V2.0.

Rank-One Recognition Rate

ICP 72.2%

Mian et al. [Mi07] 96.2%

Kakadiaris et al. [Ka07] 97.0%

MS-ELBP-DFs 97.2%

Extended results and analysis are provided in [DHu11].

In the following section, we are looking forward to analyze the behavior of our approach

in the presence of original model degradations.

3 Robustness to Degradations

As stated in the introduction, 3D models can suffer from various types of degradations,

from various origins. It seems difficult to acquire ground-truth over model degradations

or to model degradations precisely. Hence, in this experiment, we decided to generate

degraded data from original 3D scans. That choice allows us to keep mastery over the

parameters of the degradations. The degradations we applied may be considered as ca-

nonical degradations, namely Gaussian noise, Decimation and Holes.

Our experimental protocol is the following. We first randomly picked 100 different sub-

jects within the FRGC v2.0 database. For each subject, one model is randomly picked as

a gallery model, which expression is neutral. Also 100 different models were randomly

picked for each subject, as probe models. From there, we are looking forward to analyze

the performance loss in our algorithm under model degradations. For that purpose we

applied basic degradations to our probe models set to generate new, degraded sets. At

that point, the first concern we should have is that the original data we are working with
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(gallery, probe) are as little degraded as possible. We chose to apply to both gallery and

probe sets a pre-processing inspired by the method exposed in [Fa07]. More precisely,

we cropped the faces based on the nose-tip within a sphere of diameter 100mm. Nose-

tips were manually located on every face. Then, we applied a median filtering within a

5x5 square for every pixel in the depth image. The probe face set was then altered to

some extent to create new, degraded sets, according to the following degradations:

‚ Gaussian noise corresponds to the injection of an error within a Gaussian distribution

on the Z coordinates on the depth image. This tends to emulate the behavior of elec-

tronic noise of acquisition devices, albeit a simplistic manner. In our experiments, we

set the RMS value of the error to 0.4mm.

‚ Decimation corresponds to removing vertices from the original data. In this experi-

ment, vertices are picked randomly and removed from a ratio of x4. That means that

the decimated model includes 4x fewer vertexes than the original ones.

‚ Holes are generated at random locations on the face. At first, we pick a random ver-

tex on the surface of the face. Then, we crop the hole according to a 1 centimeter ra-

dius sphere centered on the latter vertex.

Figure 3 shows examples of those degradations.

We judged several measures to be interesting. The Rank-One Recognition Rate; the

Rank-Five Recognition Rate; the Equal Error Rate (EER) appeared to us like good indi-

cators of the decrease in performances relative to models degradations. Experiments

were conducted with both the baseline algorithm ICP [Be92] and our MS-ELBP+SIFT

method. Results are exposed in Tables II and III. In those tables, “Rank-1 RR” lines

stand for Rank One Recognition Rate, “Rank-5 RR” stand for “Rank Five Recognition

Rate” and “EER” for Equal Error Rate.

TABLE II. BEHAVIOUR OF THE BASELINE ICP ALGORITHM IN THE PRESENCE OF DEGRADATIONS

Original Noise Decimation Holes

Rank-1 RR 0.712895 0.693431 0.669100 0.720195

Rank-5 RR 0.824818 0.817518 0.793187 0.836983

EER 0.1350 0.1392 0.1977 0.1353

Figure 3. An example of degradations applied to one model. From left to right: the Original face,

Noise applied, Decimation applied, Holes applied. On the decimation picture, no interpolation w

conducted. Then, blank parts correspond to a lack of pixels.

as
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TABLE III. BEHAVIOUR OF OUR MS-ELBP + SIFT ALGORITHM IN THE PRESENCE OF DEGRADATIONS.

Original Noise Decimation Holes

Rank-1 RR 0.934307 0.905109 0.927007 0.927007

Rank-5 RR 0.963504 0.944039 0.956204 0.958637

EER 0.0546 0.0638 0.0559 0.0592

Interestingly enough, in our case holes did not produce any performance decrease on the

baseline ICP algorithm (almost no change in EER, slight improvement in recognition

rates). While both performances are consistently lowered, the ICP algorithm seems to

suffer more from decimation than from Gaussian noise. While our algorithm is affected

by every type of degradation, this experiment shows its robustness to decimation and

holes, for both the EER and recognition rates. Our algorithm is slightly less robust to

Gaussian noise, while maintaining rather high performance rates and EER. Overall, this

experiment shows the overall good robustness of our algorithm to various kinds of mod-

el degradations.

4 Conclusion and Perspectives

In this paper, we presented a novel experiment, aimed at analyzing the behavior of state

of the art techniques in the field of 3D face recognition techniques in the presence of

model degradations. More precisely, we compared the impact of canonical degradations

such as noise, decimation and holes, on both our state of the art approach, namely MS-

ELBP + SIFT, and the baseline algorithm ICP. We show that, while providing far

stronger performances than the baseline ICP algorithm, our method also proves to be

globally more robust to degradations such as noise, decimation and holes. Interestingly,

our algorithm showed some sensitivity to noisy data. This study proves that, for real ap-

plications, pre-processing tools specifically designed for dealing with noise, or noise

detection algorithms may be required. This study also proves that, depending on the al-

gorithm used, data sampling may be employed to reduce the computational time, while

affecting only slightly the overall performances. We are currently working on enhancing

the results of this experiment by varying the parameters of each type of degradations.

Acknowledgement

This work has been supported in part by the French National Research Agency (ANR)

through the FAR 3D project under the grant ANR-07-SESU-003.

217



References

[YHu06] Y. Huang, Y. Wang, T. Tan: Combining statistics of geometrical and correlative features
for 3D face recognition, BMVC, 2006.

[DHu10] D. Huang, G. Zhang, M. Ardabilian, Y. Wang, L. Chen: 3D face recognition using dis-
tinctiveness enhanced facial representations and local feature hybrid matching, BTAS,
2010.

[Oj02] T. Ojala, M. Pietikäinen, T. Maenpaa: Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns, PAMI, vol. 24, no. 7, pp. 971-987,
2002.

[Ah04] T. Ahonen, A. Hadid, M. Pietikäinen: Face recognition with local binary patterns, ECCV,
2004.

[Sh08] C. Shan and T. Gritti: Learning discriminative LBP-histogram bins for facial expression
recognition, BMVC, 2008.

[Lo04] D.G. Lowe et al.: Distinctive image features from scale-invariant key-points, IJCV, vol. 60,
no. 4, pp. 91-110, 2004.

[Ph05] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, K. I. Chang, K. Hoffman, J. Marques,
J. Min, W. Worek: Overview of the face recognition grand challenge. CVPR, vol. I, pp.
947-954, 2005.

[Ka07] I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, Y. Lu, N. Karampatziakis, and
T. Theoharis: Three-dimensional face recognition in the presence of facial expressions:
an annotated deformable model approach, PAMI, vol. 29, no. 4, pp. 640-649, 2007.

[Mi07] A. S. Mian, M. Bennamoun, and R. Owens, An efficient multimodal 2D-3D hybrid ap-
proach to automatic face recognition, PAMI, vol. 29, no. 11, pp. 1927-1943, 2007.

[Fa07] T. C. Faltemier, Flexible and Robust 3D Face Recognition Dissertation, University of No-
tre Dame, M.S., 2007.

[Be92] P. Besl and N. McKay., A method for Registration of 3-D Shapes, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 14(2):239 - 256, February 1992.

[Ro09] R. N. Rodrigues et al.: Robustness of multimodal biometric fusion methods against spoof
attacks, Journal of Visual Language and Computing, doi:10.1016/j. jvlc.2009.01.010,
2009.

[Po09] N. Poh et al., Benchmarking Quality-dependent and Cost-sensitive Score-level Multimodal
Biometric Fusion Algorithms, IEEE Transactions on Information Forensics and Securi-
ty archive Volume 4 , Issue 4 (December 2009), Pages: 849-866, 2009.

[Dr10] Hassen Drira, B. Ben Amor, Mohamed Daoudi, Anuj Srivastava: Pose and expression-
invariant 3d face recognition using elastic radial curves. In Proc. BMVC, pages 90.1-
11, 2010.

[Co06] A. Colombo, C. Cusano, R. Schettini: Detection and Restoration of Occlusions for 3D Face
Recognition, IEEE International Conference on Multimedia and Expo, pp. 1541-1544,
2006.

[Ch05] K. I. Chang, K. W. Bowyer, P. J. Flynn: Adaptive rigid multi-region selection for handling
expression variation in 3D face recognition, IEEE workshop on FRGC Experiments,
2005.

[DHu11] D. Huang, M. Ardabilian, Y. Wang, L. Chen: A Novel Geometric Facial Representation
based on Multi-Scale Extended Local Binary Patterns, Proc of IEEE International Con-
ference on Automatic Face and Gesture Recognition, 2011.

218


