
Clone Detection in a Product Line Context ∗

Thilo Mende, Felix Beckwermert
University of Bremen, Germany

{tmende,beckwermert}@informatik.uni-bremen.de

Abstract: Software Product Lines (SPL) can be used to create and maintain different
variants of software-intensive systems by explicitly managing variability. Often, SPLs
are organized as an SPL core, common to all products, upon which product-specific
components are built. Following the so called grow-and-prune model, SPLs may be
evolved by copy&paste at large scale. New products are created from existing ones
and existing products are enhanced with functionalities specific to other products by
copying and pasting code between product-specific code. To regain control of this
unmanaged growth, such code may be pruned, that is, identified and refactored into
core components upon success.

Clone detection offers effective means to identify duplicated source code. How-
ever, variablity in product lines, especially when targeting embedded devices, is often
implemented using a preprocessor. This limits the applicable clone detection tech-
niques to ones with lower precision. We describe how information about function
locations can be used to improve the results of these token-based clone detectors.

1 Introduction

A software product line (SPL) is a set of software-intensive systems sharing a common,
managed set of features. They satisfy the specific needs of a particular market segment or
mission and are developed from a common set of core assets in a prescribed way [CN01].
According to Verhoef et al. [FV03], SPLs are either created proactively, i.e. designed
upfront, or reactively, i.e. emerging from existing products, that possibly have been created
using large-scale copy&paste programming.

The evolution of proactive SPLs is difficult to predict, thus an oscillation between generic
and specific versions can be observed, also known as configuration oscillation [FV03].
Verhoef et al. propose to use a grow-and-prune approach to manage the consequences of
the configuration oscillation. By explicitly allowing the uncontrolled growth, a customer’s
new needs are satisfied. After some time, a pruning phase identifies commonalities and a
generic solution can be created. To reactively create an SPL from existing variants, one
also has to identify parts that can be moved into the SPL core.

The identification of commonalities is thus required for both scenarios, and clone detec-
tion offers effective means to identify duplicated source code. However, SPLs, especially

∗This work was performed as part of the project ArQuE (Architecture-Centric Quality Engineering), which
is partially funded by the German Ministry of Education and Research (BMBF) under grant number 01 IS F14.

176



those written in C or C++ targeting embedded devices, often make extensive use of a
preprocessor to implement variability, which limits the applicable techniques.

Overview. This paper describes how clone detection can be used to identify common
source code that can be moved to the SPL core. The challenges applying clone detection
in the presence of a preprocessor are described in Section 2, and Section 3 outlines an
approach to address them using information about function location. Related work is
described in Section 4, and Section 5 concludes.

2 Clone detection in product lines

Clone detection tools are used to search for duplicated source code. In the following, we
consider tools that perform this search based on textual similarity, e.g. code that has been
created using copy&paste. Unfortunately, these tools produce false positives: On the one
hand, limitations in the programming language lead to code that is textually similar, but
not refactorable. On the other hand, the developer may regard cloned code as not prunable,
e.g. due to coding conventions. A high precision, i.e. a low false positive rate, is crucial
for a practical adoption of the grow-and-prune approach, since the developer otherwise
wastes time reviewing code he is not interested in.

Bellon et al.[BKA+07] and Bailey et al.[BB02] compared different clone detection tools.
The best precision in both studies was achieved by syntax-based techniques. These iden-
tify code clones by comparing subtrees in abstract syntax trees, thus have to preprocess
and parse the source code. This is a severe problem when the preprocessor is used to
implement variability: Product-specific features are then enabled using conditional com-
pilation, so after preprocessing only the code for one specific product can be parsed and
analyzed.

In contrast, token-based techniques search for duplicated code on the non-preprocessed
token stream. However, these tools have a much lower precision [BKA+07, BB02]. This
aligns with our practical experiences, where we applied a token-based clone detector to
an industrial SPL. The amount of false-positives as perceived by the developers was too
high. Many of the detected clones started in one function and ended in another one, or
were outside function definitions, and thus regarded as non-refactorable.

It became apparent that the developers were mostly interested in function-level clones.
These are easier to refactor than arbitrary clones and the results are better to grasp using
function names than source locations. We hence propose to filter the results of token-
based clone detection using detailed information about function locations. Many of the
false-positives mentioned above are then not existing.

As an additional aid for the developer, we then calculate the textual similarity of all func-
tions sharing code. This value can be used to roughly estimate how much effort is neces-
sary to merge the corresponding functions.

177



3 Improving token-based clone detection using function locations

As mentioned in the previous section, we only want to consider clones inside functions.
Thus we have to map the clone candidates as determined by the detection tool onto the
locations of function within the code. After that we calculate the textual similarity of
each pair of functions sharing code. Finally, we build a graph containing the similarity
information and filter the results to finally present them to the developer.

Function Locations To determine the similarity between functions, one obviously needs
information about their location in the source code. Whenever a preprocessor is used, it is
difficult to get this information reliably, because conditional compilation may change the
location of a function depending on compile-time switches.

A heuristic approach to acquire this information non-preprocessed source code revealed
severe problems in reliability. Instead, we use a C parser to extract this information from
the preprocessed source code. The original, non-preprocessed source locations are avail-
able in the parser and used in the following steps.

Candidate Locations The candidate locations are used to determine which functions
share at least some code. We use a token-based clone-detector (see section 2) similar
to Baker’s [Bak95] to detect clones in the original, non-preprocessed token-stream, with
token-granularity. For each resulting clone pair, we determine the list of functions in each
source code range and create a candidate pair for each function pair.

Similarity Calculation The edit distance described by Levenshtein [Lev66] measures
the minimal amount of changes necessary to transform one sequence of tokens into a
second sequence of tokens. For each candidate pair, as determined in the previous step,
the Levenshtein distance is calculated.

Each function is represented as a normalized sequence. The normalization removes com-
ments, line breaks and insignificant white spaces. The resulting edit distance then de-
scribes the number of tokens that have to be changed, removed or inserted to turn one
function into the other. This can again be normalized to a relative value using the length of
the corresponding sequence. We currently use the maximum length to get a relative value.
While the Levenshtein distance is symmetric, the similarity is directed, since it describes
the relative amount of tokens in one normalized sequence that is subsumed by the other.

Similarity Graph The next step is to build the similarity graph, a weighted graph con-
taining all functions as nodes and all similarities as edges attributed with the similarity
between them. Usually, the calculated similarities will be filtered to consider only sim-
ilarities that might justify a refactoring. Besides a threshold for the similarity itself, a
minimum number of equal tokens, a minimal length of each function, or other function-
level metrics can be used to filter edges.

Aggregation and User Presentation To practically install a grow-and-prune approach,
it is not feasible to periodically review all the similarities between functions. Instead,
summaries are necessary to detect if and where it is advisable to start a restructuring ef-
fort. Therefore, similarity edges between functions are aggregated to a higher level. The
hierarchy used to aggregate similarities can either be the structural decomposition on the

178



file system or the logical composition in the software architecture. We currently use the
amount of subsumed tokens and the amount of similar functions as aggregated metrics.

The visualization of the potentially large result set is crucial for the practical adoption of
the tool-based grow-and-prune approach. On the one hand, the developer is interested in
the detailed similarities found by the analysis in order to merge similar functions. On the
other hand, to decide whether a pruning phase is necessary and to monitor the evolution
of an SPL, a higher-level view on the whole similarity graph is necessary.

A hierarchical adjacency matrix is used to display both aggregated similarities between
hierarchical elements and similarities between functions. The developer is then able to
explore the results by navigating from higher-level elements, such as directories or files,
to the detailed list of similarities for one function.

4 Related Work

Using clone detection to manage and create product lines is mentioned in several papers,
such as Baxter et al.[BC02]. In Kolb et al. [KMPY05], text-based clone detection is used
to detect similarities in variants that are supposed to be merged into an SPL. The false-
positive rate was too high so that the threshold for the minimal clone length was increased.
However, we showed that this strategy might ignore interesting similarities at the function
level[MBKM08].

There are three approaches similar to ours [MLM96, KST99, YMKI05]. The first one de-
tects function clones by comparing a set of metrics for each combination of functions and
then categorizes the results on an ordinal scale. This leads to an explosion of comparisons
necessary to compare different products, and the ordinal scale makes an aggregation diffi-
cult. The second approach also uses metrics to identify similar lines in so called parameter
files that are used to control variance of a telecommunication system. The third approach
compares files with diff and uses the amount of shared lines as the similarity between
files. Clone detection is used to reduce the necessary comparisons and the file granularity
makes this approach scalable for large systems. However, measuring the similarity using
lines might underestimate the similarity when only small changes to each line are made.

5 Conclusion

This paper described our experiences applying clone detection to support the creation and
evolution of software product lines. An approach to enhance token-based clone detectors
with information about function locations leads to promising results. It has been success-
fully applied to assess the restructuring potential of an industrial SPL with approximately
200 KLOC in more than 6.000 functions. A detailed description of this assessment, along
with two other case studies, can be found in [MBKM08].

Further evaluations of different similarity measures, the aggregated metrics and the preci-
sion are left for future work.

179



References

[Bak95] B.S. Baker. On Finding Duplication and Near-Duplication in Large Software Systems.
In Proc. of 2nd WCRE, pages 86–95, 1995.

[BB02] J. Bailey and E. Burd. Evaluating clone detection tools for use during preventative
maintenance. In Proc. of SCAM, pages 36–43, 2002.

[BC02] I.D. Baxter and D. Churchett. Using Clone Detection to Manage a Product Line. In
ICSR7 Workshop, 2002. PositionPaper.

[BKA+07] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and Evalua-
tion of Clone Detection Tools. IEEE TSE, pages 577–591, September 2007.

[CN01] P. Clements and L.M. Northrop. Software Product Lines : Practices and Patterns.
Professional. Addison-Wesley, 2001.

[FV03] D. Faust and C. Verhoef. Software product line migration and deployment. Journal of
Software Practice and Experiences, 33(10):933–955, August 2003.

[KMPY05] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A Case Study in Refactoring a Legacy
Component for Reuse in a Product Line. In Proc. of 21st. ICSM, pages 369–378, 2005.

[KST99] A. Karhinen, M. Sandrini, and J. Tuominen. An approach to manage variance in legacy
systems. In Proc. of the 3rd CSMR, pages 190–193, 3-5 March 1999.

[Lev66] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. Technical Report 8, Soviet Physics Doklady, 1966.

[MBKM08] T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the Grow-and-
Prune Model in Software Product Lines Evolution Using Clone Detection. In Proc. of
the 12th CSMR. IEEE Press, 2008. Accepted for publication.

[MLM96] J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In Proc. of 12th ICSM, pages
244–253, 1996.

[YMKI05] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue. Measuring Similarity of Large
Software Systems Based on Source Code Correspondence. In PROFES, pages 530–
544, 2005.

180




