
PEARL-Rundschau, Heft 2, Band 2, Juni 1981 29

Der f olgende Beitrag ist die Niederschrift eines Vor­
trag s, auf der Prozeßrechnertagung '81 im März 81
in München.

Comparison of Languages (Coral, PASCAL, PEARL, Ada)

H. Sandmayr

Abstract. The facilities of some languages used for

realtime applications are summarized and compared.

It is not intended to give a recommendation for the

use of one of these languages. Instead a set of

different approaches is presented which provides

an overview.

SOME REMARKS ON LANGUAGE DEVELOPMENT

Before discussing details of the languages consi­

dered in this paper some remarks on language develop­

ment seem to be appropriate. The development of each

of the languages was influenced by the state of the

art at the time of their design.

In the development of programming languages three

phases can be distinguished [we 76]:

- discovery and description of programming con­

cepts and basic implementation techniques in

the 1950" s,

- elaboration and analysis of this concepts, de­

velopment of models, abstractions, and theori�s

concerning languages in the 1960"s, and

- emphasis on the engineering approach in the soft-

ware development technology (in the 1970"s).

In the first phase languages were regarded as tools

to facilitate the formulation of programs;this phase

includes the development of FORTRAN, ALGOL 60, COBOL,

and many other languages.

The languages development in the second phase, e.g.

PL/I, SIMULA 67, and ALGOL 68 are elaborations or

generalizations of earlier languages. PL/I, for

exampl �, comb1 nes features · of FORTRAN·; ALGOL 60,

and COBOL and attempts to replace different languages

by one. ALGOL 68 is a systematic generalization of

the features of ALGOL 60.

These attempts to achieve greater power of expres­

sion led to excessively elaborated and_ very complex

languages. In the third phase we encounter a return

to the essentials, to simple languages which support

structured programming, modularity, and verification

efforts. Examples of such methodology-oriented lang­

uages are PASCAL, and MODULA.

The development of real-time languages is embedded

in the above mentioned development. CORAL an PEARL

are languages developed in the second phase mentio­

ned above. CORAL (1964, 1966) is an attempt to com­

bine features of ALGOL 60, FORTRAN and macroassembly

languages into an efficient language suited for real­

time applications on small machines. PEARL (1971)

follows the ideas of ALGOL 68 and of PL/I, and adds

further multiprogramming facilities. PASCAL (1971)

is a product of the third phase whereas ADA (1979)

is an attempt to unify, elaborate and generalize

the features of languages of the third phase.

DESIGN GOALS

In this section a short summary of the design goals

of the different languages is given, Same goals were

never stated explicitly but were implied by the time

of the design.

CORAL has been designed for the implementation of

systems on small, dedicated computers to replace

machine code in this type of systems. The specific

requirements were:

- compilers must be small enough to run in the pro­

duction systems or standbS' systeni, and

- the language must allow to make full use of in­

dividual machine hardware and any other special

facilities provided for example by an operating

system. At the same time, the implementation

must be possible on a wide range of machines.

PASCAL was designed and implemented with the follo­

wing principal aims [Wi 71]:

To make a notation available in which the fun­

damental concepts and stuctures of programming

a re expre ssi1Yle1n·a----sy-stelITTftic:-;-l)Y'e-cts"e and

appropriate way.

- To make a notation available which takes into

account the various new insights concerning

systematic methods of program development.

30

- To demonstrate that a language with a rich

set of flexible data and program structuring

facilities can be implemented by an efficient

and moderately sized compiler.

System programming aspects were only considered

in so far as necessary for compiler developments.

PEARL has been designed as high level language for

industrial process control applications. It should

provide multiprogramming facilities tailored to the

particular application area, and facilities for a

suitable description of the interaction between

processes and environment. The syntax of PL/I has

been adopted for the algorithmic part of the langu­

age.

In contrast to CORAL, machine independence and pro­

tability are considered more important than efficiency

ADA has been designed with three overriding concerns

[AD 79]:

- a recognition of the importance of program reli­

ability and maintenance,

a concern for programming as human activity, and

efficiency.

The intended application range are "embedded compu­

ter systems", i.e. software systems which are embed­

ded intu an existing physical environment, comparable

to process control applications. The language should

be used by application prgrammers.

PROGRAM STRUCTURES AND COMPILATIO� UNITS

A CORAL program consistes of segments and communica­

tors. Communicators allow communication between seg­

ments and allow access to items which exist outside

the program.

program_name

'COMMON' name (specific. of data items, labels,

switches, procedures, segments and

overlays);

'LIBRARY' (specification and eventual renaming of

library routines used in program);

'EXTERNAL' external_symbol_name (List data items);

'ABSOLUTE' (speci fi cati on of absolute adresses of

da ta items) ;

segment_name

'BEGIN' segment_declarations;

s taternenr_-s1:querrc

'END';

further_segrnents

'FINISH'

Fig. 1: Structure of a CORAL Program

PEARL-Rundschau, Heft 2, Band 2, Juni 1981

Independent compilation of segments is possible. The

start address of a program can be any segment or label

in a segment defined in a COMMON. It must be specified

explicitly by means of an 'ENTER' definition.

CORAL has adopted the ALGOL 60 block structure, the

scope rules and visibility rules for identifiers, ex­

cept for macro identifiers whose definitions are valid

until they are deleted explicitly.

The structure of a PASCAL program is shown in the

following figure.

PROGRAM name (file_parameters);

LABEL label definitions

CONST constant definitions

TYPE type_definitions

VAR variable declarations

Procedure and function declarations

BEGIN statement_sequence

END.

Fig. 2: Structure of a PASCAL program

In PASCAL the program is the compilation unit; however

many implementations allow independent compilation of

procedures.

Blocks are bound to procedures, functions, and pro­

grams. There exist no anonymous blocks as in ALGOL 60.

A PEARL program consistes of a set of modules; modu­

les as show in Fig. 3 are compilation units and cannot

be nested. A module consists of a system part and/or

a problem part. The system part defines the relation

of the program to elements of the computer systems and

of the technical process. The problem part contains

algorithms solving the given problem.

MODULE (name);

SYSTEM; description_of_configuration

PROBLEM; specification_of_imported_objects

declaration_of_objects

declaration_of_tasks/procedures

MODEND;

Fig. 3: Structure of a PEARL Module

The scope of objects is a module or a block. The scope

of objects declared on the module level can be exten-

ed to other mm:taties-ny--ctecta-rtn-g-51rch objectsa:s--g'll,---­

ba l and specifying them in other modules as imported

objects.

Modules cannot be nested in contrast to procedures

and tasks.

PEARL-Rundschau, Heft 2, Band 2, Juni 1981 31

An ADA program can be composed of program units:sub- rules redefinition of an identifier in an inner

programs and modules. Modules are either tasks, task block does not necessarily hide its definition

types, or packages. A package is a set of logically in the outer block. An identifier denoting more

related types, objects, ani operations. Units can be than one entity is said to be overloaded. When

nested, i.e. a task can contain subtasks and packages, using such an overloaded identifier the context

and a package can contain local tasks as well as must allow to determine which definition is to

packages. be used.

PACKAGE

f 1
TASK

module name IS

declaration of objects and operations

visible to environment

PRIVATE

declaration of structural details

of exported objects

END module_name;

PACKAGE

f t BODY module name IS

TASK

declaration of types, objects, and operations

BEGIN statement_sequence

EXCEPTION list_of_exception_handlers

END module_name;

Fig. 4: Structure of an ADA Module

In general, a unit consists of two parts, the spe­

cification and the body. The entities declared in

the specification part are visible outside the unit

and can be used by outer units.

Structural details of some declared types or ob­

jects may be irrelevant to their use outside a mo­

dule. Declaring them in the private section prevents

other units to make use of this information. Thus,

the scope of an entity declared in the declaration

part of a program unit is the range from the

entity's declaration to the end of the scope of

the program unit containing the declaration.

The scope of an entity declared in the body of a

unit or in a block is the respective program unit,

or more precisly, the range between an entity's

declaration and the end of the unit containing the

declaration.

There exists no explicit feature or restriction

for the import of entities which are defined in

an outer progra.m unit. Every object whose name·--­
i s visible at the point of the unit's declaration

is implicitly imported and can bP. used within the

unit, unless the name is hidden by a local rede­

finition. However, in contrast to the usual scope

Units of compilation are module declaration, mo-

dule bodies, subprogram declarations, and subpro­

gram bodies. PRAGMAs allow to control the compi­

lation process, e.g. specification of configuration,

or optimization criteria. By means of a context

specification the set of units visible by the com­

pilation unit can be specified.

Subprograms

Subprograms (procedures and functions) can be de­

clared in all the languages. PEARL and AD� all-0w to

specify whether a subprogram should be expanded in­

line at each call or whether the usual subroutine

mechanism is to be used. In Ada inline subprograms

can be used to included assembly code in a program.

Subprograms can have parameters in all the langu­

ages. In CORAL, PEARL, and PASCAL, variables can be

passed either by value or by reference. In ADA,

three parameter modes are provided:

IN or constant,

OUT or result, and

IN OUT or update parameters.

For IN parameters default values can be defined.

Different otjects are accepted as parameters:

CORAL: values (represented by expressions)

variables (arrays and tables by reference

only)

procedures

PEARL: every object except tasks and modules

PASCAL: values, variables, and subprograms

ADA: values and variables only,

(however variables can be of task types)

Actual -parameters are associated t-v the format

ones by their positional order. In addition, ADA

also permits an association by name, i.e. formal

and actual parameters are explicitly associated

in the actual parameter list.

32

TYPES AND STRUCTURES

The following tables show a summary of the types

and structures provided by the compared languages.

Table 1: CORAL 66 and PASCAL

i CORAL 66 PASCAL
---·------+
basic INTEGER INTEGER
types FLOATING REAL

FIXEn (+ scale)
IIOOLEAN
CHAR
enumeration tvpes ·
subrange types
pointer

-------------+--------------------+----------------------+

structures
I

ARRAY (static)
1

ARRAY (static)
TABLE RECORD (variants)

�ET
FILE

remarks structures cannot
be nested

one or two dimen­
sional arrays only

structures can be·
nested

-------------+--------------------+---------------------+

allocation in common or stack in heap or stack at
of variables at address deter- address determined

mined by compiler by runtime system or
or specified in compiler resp.
program

overlays possible
-------------+--------------------+---------------------+

access to by name or absolute by name or reference
variables address if dyryamically

allocated

aliasing possible aliasing possible
(parameter,overlay, (parameter)

anonymous reference)

The type concept provided by CORAL is rather poor.

There are only numeric types and two structures.

Arrays are restricted to vectors and matrices of

numerical values. Tables, the equivalent to a vector

of records, require references to the internal re­

presentation of data for the definition of fields.

In contrast to the remaining languages new types

cannot be named except by the general macro faci­

litiy provided in the language.

PEARL adheres to the type concept of PL/I and adds

some simple types for multiprogramming purposes and

time specification�. Particular features are pro­

vided to define the interface to computer and process

peripherals (DATION).

PASCAL and ADA have a strong type concept; the type

of any object is determinable during translation and

therefore the set of applicable operations is known.

PEARL-Rundschau, Heft 2, Band 2, Juni 19B1

Table 2: PEARL and ADA

PEIIRL i AD!\ j
----------------------------------·---------------------+
basic types FIXED INTEGER (RANGE)

FLOAT FLOAT (DIGITS)

BIT
CHIIR

RF.F
CLOCJ(, DURATION
SEHA, IIOLT

fixed point (DF.LTA)
BOOLEAN
<:!IARACTER
enumeration
derived types
subtypes
ACCESS
DURATION

-------------+--------------------+---------------------+
structures

I
array (dynamic)

1
ARRAY (dynamic)

�TRUCT RECORD (variante)
bit chain STRING
DATION

remarks
1

structures can be

I

structures can be
nested nested

types can be para­
meterized

-------------+--------------------+---------------------+

representation no. of bits for range, absolute and
specification numerical values relative accuracy

for numerical values

repr. of
enumeration types
record types

--- ·---------+--------------------+---------------------+

allocation at addr determined at addr de.termined
of variables by compiler, by compiler or run-

RESIDENT attribute time system for·
indicates fast dynamically alloca-
access ted objects:

explicit address and
spec possible

-------------+--------------------+---------------------+

access to by name or by name o� reference
variables reference if dynamically

allocated

aliasing possible
(parameters and
references}

no aliasing
(except for dynam.
aUoc. variables)

stinguish types with formally identical set of va­

lues and operations (but eventually different re­

presentation).

The PASCAL set structure is not available in ADA.

Files are provided in ADA in a predefined package.

References to variables exist in all languages in

some form. CORAL and PEARL allow references to any

variables with the inherent problem of references

to objects in a no langer existing block. In PASCAL

and ADA there exist only references to dynamically

allocated and (explicitly) deallocated objects.

STATEMENTS

_____ N_ew_t�y�p�e_s_c_a _n_b_e_d_e_f_in_e_d_a_n_d_n_a_m_e_d_._Ty�p�e_e_q�u_i_v_a _l_e_n_c_e_�Overv,�i�w�---------------------------1
is related to name equivalence, a solution which is

not totally realized in PASCAL.

PASCAL's subrange types are elaborated to subtypes

in ADA. The derived type in ADA even allows to di-

The following tables list the statements provided

in the different languages. The most detailed ver­

sion is shown for statements allowing several

variants.

PEARL-Rundschau, Heft 2, Band 2, Juni 1981

Table 3: List of CORAL 66 and PASCAL Statements

CORAL 66 PASCAL
-- · -+

location :• expression variable :� expression
GOTO identifier GO'l'O number
procedure call procedure call
ANSWER expression

BEGIN declarations DEGIN statements
statements END

END

IF condition
THEN simple statement
ELSE Statement

FOR variable :•
expr STEP expr UNTIL expr
00 statement

FOR variable :• expr
WHILE condition
DO Statement

IF boolean expression
THEN stat'ement
ELSE Statement

CASE expresston OF
constant: Statement:

END·

FOR variable :•
expr (�TOJ expr

00 statem.ent

WHILE boolean expr
00 Statement-

REPEAT Statements
UNTIL boolean_expr

CODE BEGIN WITH record_variable DO
assembler_statements statement

END

i/o not defined · 1 predefined i/o procedures

Neither CORAL nor PASCAL provide facilities for

multiprogramming. However, tasks can be repre­

sented by programs and the procedure call me­

chanism can be used to access operating system

functions, especially functions allowing inter­

process (interprogram)communication.

Table 4: List of PEARL and ADA Statements

PEARL

variable :• expression,
GOTO identifier;

CALL identifier;
RETURN(expression);
INDUCE Signal identifier

BEGIN declarations
statements

END;

ON signal_id: statement,

IF condition
THEN statements
ELSE Statements

FIN1

CAS� expression
ALT Statements

ADA

variable :• expression;
GOTO identifier;
EXIT loop identifier

WHEN condition;
proc call
RETURN expression;
RAISE exception;

DECLARE declarations
BEGIN statements

EXCEPTION exc handler
END;

IF boolean expression
'l'HEN stat'ements

RLRIF boolean expression
THEN statemerits
ELSE statements

END IF1

CASE expression OP
WHEN choice
=> statcments

33

The statements which control the sequential flow

of instructions in the different languages provide

almost identical possibilities and differ only re­

spect to their syntax. This difference can however

influence the style of a program; note for example

the difference between the overloaded loop state­

ment in PEARL and the set of simple loop statements

in PASCAL, or the difference between the not very

readable CASE statement in PEARL and its counter­

part in ADA.

Input/Output-Facilities

CORAL follows ALGOL 60 and gives no definition of

input-output facilities. This allows an implementor

to use directly the mechanisms provided by an un­

derlying operating system. This solution can be very

efficient but does certainly not enhance portability

of a program.

PASCAL bases its i/o on the file structure and a set

of predefined procedures. The procedures for text i/o

are treated by the compiler in a special way. They

accept an optional file parameter, a varying number

of parameters of different types, and a special field

width seperator. The file structure with the basic

procedures PUT and GET requires in general a simple

runtime interface to the underlying system. Initiali­

sation of this interface is assumed to be implicit.

Experience shows that many PASCAL implementations

provide further procedures allowing access to special

file system facilities, e.g. random access. This is

the main source of difficulties when moving a PASCAL

program from one installation to another.

Low level- or process-i/o is not defined in the lang­

uage. It can only be provided by language extensions

or the use of operating system procedures.

PEARL provides the most comprehensive (and complex)

set of i/o facilities. The basic elements are data

stations (DATION). They are either system defined

(e.g. terminals, disc, or a sensor) or user defined.

I/0 operations read or write data structures from or

OUT statements to such data stations. There are facilities for for-
FIN; END CASE;

FOR Variable matted i/o (PUT/GET +format specifications), for i/o
{FOR variable IN rangej FROM expr BY expr TO ·expr WHILE boolean expr in internal representation (READ, WRITE), and process WHILE condition · LOOP statemenfs

-------lf--RE_PE�A�T_d�ec�l�a�r�a�t�io_n_l_i_s_t_-+--_E_X_I�T�WH_E_N�b_oo_l_e_a_n_e_x_r�1_,__ _ ___,•_t.,._,;-n-form-of-b+'t-se*ttence---L�,
ENB,+-.

-------------t
statements , statements / u 1 '1 :::> \

END1 END LOOP;

OPEH, CLOSE,
PUT, GET, TAKE, SEND +

formatting facilities,
READ, WRITE

predefined packages
defining i/o types
and operations

statements for multiprogramming see next section

A complex set of attributes allows specification of

all kinds of data station characteristics but requires

a sophisticated runtime system for the support of the

different i/o operations.

34

A totally different approach is taken by ADA. No

attempt is made to define special features covering

the large range of input-output applications. The

language facilities are designed in a way which

allows the development of input-output packages with­

out the definition of special features.

Three standard packages are predefined in the language:

INPUT OUTPUT for general user level input-output

operations,

TEXT IO for text input-output, and

LOW LEVEL IO for operations dealing low level

input-output.

This solution has the advantage that not every user

and every translator must handle the additional com­

plexity; however, a solution realized within the lang­

uage can be realized in a much more flexible way than

by using standard language features, e.g. lists of a

varying number of output elements could be supported.

Exception Handling

In PEARL and ADA exceptions can be treated explicitly;

however, different solutions are provided.

In PEARL, exceptions are considered to be infrequent

events but not necessarily errors. ,,;us an exception

can provoke execution of some actions and then control

may return to the point where the exception interrup­

ted the normal execution of a task. It is assumed that

the exeption handler has performed some repair actions

and normal execution can be resumed. (However, the

exception handler can decide to branch to an other

point of the program).

Exceptions are related to signals and occurrence of

an exception activates an exception handler if present.

Exception handlers are statements of the form

ON signal id : statement

The scope of an exception handler is the task, proce­

dure, repetition or block containing its declaration.

Its scope includes all nested units which da not pro­

vide a handler for the particular exception.

Thus,-these faridTers behave like -subröutines which

can be anonymously activaded at any point of exce­

cution. This undetermined behaviour poses almost un­

solvable problems for the verification of program

units containing exception handlers.

PEARL-Rundschau, Heft 2, Band 2, Juni 1981

In ADA , exceptions are restriced to events which can

be considered as erros or at least termination condi­

tions. Therefore exception handlers can be declared

at the end of a subprogram body, module body, or

block, e.g.

BEGIN statements

EXCEPTION

WHEN exception_id statements

WHE: 1 OTHERS

END;

statements

Exceptions can be raised implicitly or explicit­

ly (by means of the RAISE statement). When an ex­

ception is raised, normal program execution is

suspended and the appropriate local handler is

activated and replaces execution of the remainder

of the current unit. If no local handler is pro­

vided execution of the current unit is terminated

and the exception is reraised in the outer unit

(for a subprogram the outer unit is the unit con­

taining its call). An exception is propagated in

this way until a handler is encountered or the

body of a task is reached and the task is termi­

nated.

MULTIPROGRAMMING FACILITIES

Multiprogramming facilities are only provided in

PEARL and Ada. Both language allow the declaration

of tasks; in PEARL they have a structure similar to

that of a subprogram, in ADA that of a module.

Table 5 lists the operations available to control

execu:ion and synchroniuation of tasks.

Table 5: Multiprogrammirg Facilities

PEARL

extended time specification
AC'T'IVA'T'E task;

'T'ERMINATE task;

SUSPEND task;

time spec CONTINUE task1
time-spec RESUME task;
PREVENT task;

operations on semaphores:
REOUES�, RELEASE

operations on bolt varibles:
RESERVE, FREE,
ENTER, LEAVE

operations on interrupts:
DISABLE, ENABLE, 'Y'RIGGER

WHEN interrupt identifier
task_control_Statement

operations on signals:
ON signal: statement;
:u,mnc� -�J.gn�l ; __

ADA

tasks are activated
implici tly upon
task creation

ABORT taskr
RAISE task.FAILUREJ
DELAY expression;

rendezvous:

ACCEPT entry descr DO
statements -

END;

SELECT

WHEN boolean expr =>
select alternative

OR select alternative
ELSE stat'ements

ENO SELEC;T;

entry_call_statement

SEI„Ec-r ent-ry cafi -
ELSE stateme"nt(s)
END SELEC'T';

SELEC'l' entry call
statement(S)

F.LSE delay Statement
statemen"f(s)

END SELEC:�;

PEAR L-Rundschau, Heft 2, Band 2, Juni 1981

In both languages tasks can be created, and del"­
ted, activated, suspended, and aborted. Whereas
ADA only p�ovides a minimal set of basic operations,
PEARL follows a more npplication oriented approach.
Same of its operations can be :ombined with elabo­
rated timing specificatiors, e.g.

AT 16:00:30 RESUME task;

WHEN i nterrupt i d Ac-TE:\ 10 SEC EVERY 20 MIN
UNTlL 15 :20:00 ACTIVAT: task id;

This powerful mechanism requires substantial runtime
support and it may be difficult to map it on an under­
lying operating system. It is even doubtful whether
features are to be included in a language or whether
they belang to the problem set and should be realized
by simpler tools provided in the language.

Synchronization Concepts

Symchronintior, anc\ mutal exclusion must be performed
in PEARL with semaphores and bolt variables. ßolt
variables are extended semaphores and are in one of
the three states "free", "blocked", and "occupied".
Table 6 shows the effect of the bolt operations.

Table 6: Bolt operations

RESERVE: j freet -> blocked1
FREE: [blocked}-> free 1

ENTER:
LEAVE:

f free, occupied1 - > foccupied)
f occupi ed 1 - > f free (i ff #LEAVEs=#ENTERs),

occupi ed l

Thus, bolt operations provide the mechanism to achieve
exclusive access or simultaneous access to shared ob­
jects.

Semaphores and bolt variables are simple and easy to
unterstand; however their use tends to be unstructured
and prone to error: the respective operations must
occur in pairs but no automatic checks for correct
use are possible.

task 1

L (entry ca 11)

r
Fig. 5: Rendezvous

i task 2
ACCEPT ...

END ACCEPT;

35

The accept statement specifies the actions to be
performed during a rendezvous, i.e. when the corres­
ponding entry is ce1led (by task 2).T�e task arrivinc
statement is reached (by task 2). The task arriving
first has to wait for the other.

A select statement combines several accept and delay
statements, thus �aking selective wait and timeout
conditions possible. Two other forms of the select
statement allow the caller of an entry to issue a
conditional entry call, i .e. the entry call is only
issued if the redezvous is immediately possible; the
timed entry call allows the secification of a maximal
delay for the acceptance of the entry call.

The rendezvous concept is an attempt to unify process
communication and mutual conclusion. It allows syn­
chronous process communication via the parameter list
of an entry. This synchronous communication technique
allows any other synchronization or communication
concept to be modelled; however, in most cases auxi­
liary processes are required.

FINAL REMARKS

The following summarizing remarks on each of the
languages do not consider the availability of com­
pilers, although availability and quality of a com­
pilers can be the determining factor when a language
is to be chosen.

CORAL certainly fulfills the design criteria stated
above. It is a simple language, easy to implement and
allows efficient access to hardware and operating
system facilities. However, the definition leaves
many details to a particular implementaion, e.g.
I/0. In addition assembly code insertions and usage
of anonymous references, i.e. absolute addresses, re­
duce the portability (and probably also the maintain­
ability) of programs.

The rendezvous concept in ADA tries to circumvent these PASCAL provides a set of simple control structures
difficulties. A rendezvous is an (asymmetric) inter- and a large variety of data types. The concept of
action between two tasks. One task issues a request strong typing (although not totally waterproof)
to an "e-ntry1'in the second task. -The second task per- allows thedet-ection of many errors- at compile
forms the interaction when it is ready to accept the time. However, PASCAL does not provide modules,
request. Entries are declared in a form similar to a
subprogram declaration and requests have the form of
a subprogram call.

multiprogramming facilities, and support for seperate
compilation. There are many languages extending
PASCAL in this respect which maintain its original

36

simplicity. Two examples are MODULA [Wi 78] and

PORTAL [Na 79].

PEARL provides a large set of facilities for real­

time programming. However, the language is very com­

plex and baroque. Furthermore, its design is not

very consistent, e.g. interrupts exist besides the

very elaborated timing specification possibilities,

and a primitive case statement together with powerful

input-output statements. The input-output system and

the multi-tasking model require an elaborated run•time

support. In many cases it is very difficult to map

PEARL features on an underlyng operating system in

an efficient manner.

ADA also provides a large set of facilities •. In.

comparison with PEARL, the elements are kept on a

lower level. For example, timing specifications for

process scheduling are not provided but can be reali­

zed with the given features. ADA has a consistent

typing concept which is stronger than that of PASCAL.

Since every single feature is elaborated in a detailed

way (e.g. type, subtype, and derived type are distingu­

ished)the whole language becomes rather complex. Since

many restrictions ore rules which are only under­

standable when the underlying concepts are known, the

language is difficult to instruct.

[AD79]

[AD80l

[ES79l

REFERENCES

Preliminary ADA Reference Manual,

acm, Sigplan Notices, 14,6 1979

Rationale for the Design of the ADA

Programming Language, acm, Sigplan

Notices, 14,6 1979

Reference Manual for the Ada Program­

ming Language United States Department

of Defence, July 1980

ESL, Report on Main Task I and II.

Siemens, Munich and CII Honeywell Bull,

Paris Oct. 1979

PEARL-Rundschau, Heft 2, Band 2, Juni 19B1

[Na79J Naegel i H.H.:

[PE77l

Programming in PORTAL:

Publication of Landis & Gyr, Zug,

Switzerland

Basic PEARL Language Description.

Gesellschaft fuer Kernforschung mbH,

Karlsruhe

PDV-Report KfK-PDV 120, 1977

Full PEARt Language Description.

Gesellschaft fuer Kernforschung mbH,

Karlsruhe

PDV-Report KfK-PDV 130

[We76l Wegner P.:

Programming Languages - The First

25 Years.

IEEE Transactions on Computers,

Val. C-25, 12, 1976

[Wi71JWirth N.: The Design of a PASCAL Compiler.

Software-Practice and Experience,

Val. 1,1971

[Wi77] Wirth N.: Modula: A Language for Modular

Multiprogramming.

Software, Val. 7, 3-35, 1977

[Wi78l Wirth N.: MODULA-2.

Report of the Institut fuer In­

formatik, ETH Zurich,

No. 27, Dec. 1978

[Wo70l Woodward P.M.:

Official Definition of CORAL 66.

Her Majesty's Stationery Office,

1970

[WW78l Werum, W. and Windauer H.:

PEARL, Process and Experiment

Automation Realtime Language.

Vieweg Braunschweig 1978

