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Abstract: In this paper we describe the modeling process and the resulting model of a
typical car seat. The requirements of this seat are documented in [Chr00] which are the
input of our process. We used the tools AUTOFOCUS [AF-02], DOORS [Tel02], and
Validas Validator [Val02]. Starting with requirements analysis we develop first model
fragments. Afterwards the graphical, component oriented approach of AUTOFOCUS
is used to model the system. Requirements management and tracing techniques ensure
that all requirements are implemented. The model-based core of the development
process helps very much for the requirements tracing. The model fragments of the
earlier phases can be updated so that tracing information is consistent. Compared to
traditional requirements tracing techniques less manual interaction is needed.

Beside this the test management is also done based upon the requirements. For rel-
evant requirements test cases are specified. This is done using the AUTOFOCUS nota-
tion of Extended Event Traces (EETs) a variant of Message Sequence Charts (MSCs).
Afterwards the generated code of the model is tested based upon those test cases. Fur-
ther validation techniques like simulation, consistency, and determinism checks of the
Validas Validator have led to the detection of inconsistencies in the model and in the
specification.

1 Introduction

In the following an adapted process for the development of embedded systems with AU-
TOFOCUS, DOORS, and the Validas Validator is shown by an example system dealing
with the control of a typical car seat. The process starts with some requirements analy-
sis activities. Our graphical, component oriented approach is used to model the system.
Requirements management and tracing ensures that all requirements are implemented.

Component orientation is a special form of object orientation. The used description tech-
niques are similar to UML-RT. We use the tools AUTOFOCUS and the Validas Validator
to check consistency and to generate code. One difference to UML-RT is that we use EETs
[HMS�98, HSS96] instead of MSCs. EETs have a precise semantics, and can be used to
express repetition for a certain time, and to generate tests. Simulation is used for building
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a prototype of the software parts of the car seat controller. We implemented a GUI for
testing the model, based on the given interface specification.

Components have (compared to objects and classes) some advantages. They are static,
so their size can be determined which is important for efficient C code generation. The
simple, well typed communication model used allows to determine the size for messages
and buffers as well. Together with the scheduling concept for the components the model
is a perfect base for real-time applications. For prototyping the model we implemented
a timer component, and used the Java method currentTimeMillis() to access the
system time.

In the development of the model we put more effort to the process (requirements structur-
ing), modeling, and prototyping. C-Code generation was not in the focus, because it was
easier to test the Java code and integrate it with a simple GUI. The total amount of time
spent with this case study was approximately four weeks.

We start with a short description of the method and refer the applied tools. Section 3
contains a sketch of the model and the applied design principles. Section 4 shows some of
the validation methods used.

2 Method

Nowadays even embedded systems become more and more complex. Beside this chal-
lenge even embedded systems are heavily interconnected. To guide developers new me-
thods have to be established. Those methods should be compositional and hierarchical
so that the functionality of the target systems can be split into different hierarchical com-
ponents. The methods should support the developers in every stage of the development
from requirements engineering over design till validation and test of the developed sys-
tem. Equally important is that tools support this method.

The UML [UML99] provides notations for the development of object-oriented systems.
These notations are loosely coupled and are heavily influenced by object-oriented pro-
gramming languages like Java, Smalltalk, or C++. The UML defines no method how this
language may be used. There are many different methods which use the UML in the con-
text of internet or business applications, but especially in the context of embedded systems
there are only first steps towards methods. As the object-oriented approach used in the
UML doesn’t seem to support the development of embedded systems very well, another
component-oriented language named UML-RT will be integrated in future versions of the
UML. The notations of this language support hierarchical components, beside some other
concepts and fit the needs better than pure UML.

In the following we will describe some facets of our method, which we have used to de-
velop the software part of the seat controller described in [Chr00]. Our method provides
a component based approach to develop and describe the software part of embedded sys-
tems. We use fewer notations than provided by UML or UML-RT, but most of the notations
are very similar to their counterpart in UML/UML RT. A main difference is that our nota-
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tions are founded by a mathematical theory and therefore they are integrated very tightly.
Note that a developer has not to know this mathematical theory to access the benefits.

As stated above tool support is essential. Our method is based upon a tightly integrated
tool chain. The tools we use are DOORS from Telelogic for Requirements Engineering
and Requirements Management, our own component-oriented CASE-Tool AUTOFOCUS
for the specification of software systems and code generation, and the Validas Validator
for validation and verification support.

2.1 Requirements Engineering and Requirements Management

Usually the software development processes starts with analysis and specification of the
problem space. The process starts with roughly structured User Requirements which are
transformed into System Requirements. This is a very universal process which deals with
lots of informal notations and very few structure. Tools like DOORS support those steps by
providing the possibility to structure text to some extend and by focusing on requirements
management and tracing. The support given by DOORS mainly helps developers to not
lose the overview and to manage the relationship between different kinds of information at
this early stage. Starting with the System Requirements the step from the problem space
towards the solution space has to be done. This step from “What” to “How” or from
analysis towards design has to be taken carefully. It is essential that this step is at least
traceable. Preferable this step is provided by a continuous method, so that as many links
as possible between design and analysis information are generated automatically.

In our method we first import and split the requirements so that they can be managed with
DOORS. The result of this step are one or more documents with all System Requirements.
The step to these System Requirements from the User Requirements can be supported by
DOORS. The resulting documents are plain text, which is structured into smaller quantities
which contain requirements. Now these text blocks are classified by their kind. They may
specify requirements for the software, the hardware, the environment, or any combination
of them. This classification is important as we only concentrate on software. Design of
hardware could be carried out in parallel. The decision which parts of the overall system
are realized in software and which are realized by hardware can be revised later. The de-
cision that a part is realized in software is a decision, that description techniques provided
by AUTOFOCUS are used to describe the functionality of that part.

After this classification a new document containing the requirements for the software sys-
tem could be generated. The generation ensures the traceability between the original doc-
ument and the document with the software requirements. Depending on the structure of
the original document some work has to be done, to adapt the new document so that it is
at least readable and structured appropriately.

The next step is the identification of some coarse model-frame for the design. Therefore
the software requirements document is used. Here some requirements are attributed with
e.g. components or component-types fulfilling those requirements. Within a new docu-
ment “model-frame” these recognized component-types are further described. Instances
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of component-types can be connected to other component-types using links. The model-
frame document contains further model-types and relations.

Using the information in the “model-frame” a so called surrogate module can be generated
which is another DOORS document. This document is used to generate a first AUTOFO-
CUS model, which can be developed further using AUTOFOCUS. As every “object” in
this surrogate module has links to the “model-frame” and the software-requirements doc-
ument and that contains links to the original requirements document it is initially ensured,
that a developer can see all requirements which resulted in model-elements. As the model
is developed further a translation back to DOORS is possible, using the abovementioned
surrogate module (which relates the unique identifiers of model-elements used in DOORS
and in AUTOFOCUS). Surely new relevant model-elements must be related to their re-
quirements appropriately.

With this technique it is at least possible to control if all recognized requirements are
“satisfied” by some model-element. Further it is possible to show at all requirements for
a given model-element, and even more important to identify all model-elements which
are related to a requirement. This traceability is very important if some requirements are
changed.

Figure 1 shows an overview of the above described process. The process starts with the
system requirements. The system requirements are structured and classified. A resulting
document containing the software requirements is generated. This document has to be
further refined and structured. By identifying some model-elements within the software
requirements and by providing a model-frame, some first fragments of a model can be
generated. In parallel the development of test-sequences ensuring some software require-
ments can be described within the test-frame. From the test-frame EETs containing these
test-sequences can be generated.

Figure 1: The overall process
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2.2 Design

The design phase the model build upon the recognized model-elements is further devel-
oped. The design is carried out using AUTOFOCUS which supports an important subset
of UML-RT:

� System Structure Diagrams (SSDs) describe the system structure and the interfaces
of the components.

� State Transition Diagrams (STDs) describe the behavior of the System.

� Data Type Definitions (DTDs) define data types which are e.g. used for the spec-
ification of communication channels of the system. Together with the data types
auxiliary functions dealing with them can be defined.

� Extended Event Traces (EETs) describe the dynamic behavior by example com-
munication sequences between the components. EETs are automatically generated
during simulation or from other validation techniques.

All description techniques are hierarchical, so that the model can be structured appropri-
ately.

The system is developed top-down, i.e. the structure is designed hierarchically. Additional
requirements lead to refinements or incremental changes of the system. It is easy to ex-
tend the interfaces in order to send additional messages required for additional features.
Requirements tracing allows the designer to check if all features have been modeled and
tested.

2.3 Validation

Building a model with AUTOFOCUS is quite simple, however building a correct model
is not. The first step is to check the consistency of the model. This allows to detect for
example unconnected channels or misspelled ports in transition diagrams.

The next validation step is to simulate the model (or parts of it). Simulation shows the
developer the dynamic behavior of the system and allows to debug the behavioral descrip-
tions. Within the simulation the model is animated according to given inputs using the
input examples of the user.

Additional validation techniques allow the developer to detect nondeterminism in the mod-
els and to verify that no messages are lost, or certain inputs lead to certain outputs. In the
example all components are simple enough to apply formal methods (model checking) for
validation, however the whole system cannot be model checked.

Simulation cannot guarantee correct models as usually only some trace through the system
can be tested. Unfortunately automated validation techniques like model checking also
cannot be used for most practical relevant systems as those systems are often already to
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complex. But model checking can be used to ensure the correctness of some smaller parts
of the system. Often even those smaller parts have to be modeled more abstract with e.g.
restricted data types. So this is usually only done with some critical parts of the system.

After the validation of the components and the system the integration test is build. The
generated code supports textual inputs (test driver generation). This allows the automated
run of test cases specified by text files.

In addition to the integration test we build a GUI for testing the system using the given
interfaces.

3 Model

In this section we describe important principles of the process and the model.

3.1 Requirements Engineering and Requirements Management

As described in Section 2.1 we start with the requirements specification of [Chr00]. First
we imported the original text into DOORS. Thereby we divided the text into smaller text
blocks (requirements). After that those requirements are classified as described above. In
Figure 2 some parts of the specification describing the seat heating are shown.

After the classification into requirements for the hardware, the software and the environ-
ment a document containing the software requirements is generated. This document is
very similar to the original document as the original document already is focused on the
software. This is not the general case as some case-studies with BMW have shown.

During further “development” two main components in the “SeatControlModel” are iden-
tified. The Heater deals with requirements of the seat heating, the MotorController handles
the control of the motors. Within the MotorController, components dealing with the mem-
ory, the switches, and the hall sensors are identified. Further components for the core
control of each motor are identified.

The document shown in Figure 3 contains these initial model elements. It describes com-
ponents and component-types. Some further attributes of those components are identified
and described here too. E.g. local variables of each motor containing their current position
and their maximum positions are identified in this phase.

Starting with these components further modeling in AUTOFOCUS is carried out. To
control the development at some stages where the model or parts of it seems to have
reached a stable state, the back-translation to DOORS was done. Here the description of
the model-elements had to be further refined and the links of the model-elements have to be
adapted. So after these steps one can see if there are further requirements, which are not yet
“satisfied” by a model-element. The relation between model-elements in AUTOFOCUS
and DOORS is stored in a surrogate module. This surrogate module is normally hidden.
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Figure 2: Requirements for the seat heating

Beside these control-steps ensuring that every software requirement is fulfilled by some
model-element, the management of tests was done similarly. So for some interesting re-
quirements a test-case was written. These test-cases were specified graphically by EETs,
a variant of MSCs used in AUTOFOCUS. So it can be seen, if there are test-cases for a
specific requirement. For every test-case the requirements leading to a test-case can be
shown. In this case-study the test-cases and the model are developed independently by
different developers. An example for a test-case which is linked to a requirement is shown
in Figure 4.

3.2 Design

The model is described using simple data types for internal and external messages of
the system. System structure diagrams are used for the description of the architecture
of the system. The behavior is described using auxiliary functions dealing with data, and
state transition diagrams for the behavior of atomic components. Event traces describe
interactions within the system. Event traces are generated during simulation.

The model covers all requirements as far as this has been possible from the short and
imprecise specification.
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Figure 3: Model Frame

3.2.1 Interfaces

The design of the model has been started from the given interfaces. In order to apply our
method to the given interfaces, the interfaces are transformed into a protocol definition
that describes the interface values of the system model.

The interface of the model is described in Figure 5. We used the following DTDs to define
the interfaces:

data SeatSwitches = LAfwd | LArev | LAstop
| RHup | RHdown | RHstop
| SDfwd | SDrev | SDstop
| Bfwd | Brev | Bstop
| FHup | FHdown | FHstop
| HRup | HRdown | HRstop
| Mdown | Mup | M1down | M1up | M2down | M2up
| Heat1pressed | Heat2pressed;

data CarEnvironment = setDoorOpen | setDoorClosed
| setClamp15Off | setClamp15C | setClamp15R | setClamp15
| setClamp15x
| setSpeed(Int) | setVoltage(Int);

3.2.2 Structure

The structure of the system is derived from the requirements that have been structured into
functions. The system has two main functions: one for the motors, and one for the seat
heating. The structure refines the interface model of Figure 5 and is described by the SSD
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Figure 4: A textual specified test-case

shown in Figure 6. Since the heating shall be switched off if the motors are running, there
are channels from the MotorController calculating if the motors are activated to the
Heater. The system environment is used by both functions.

We start with a description of the Heater (see Figure 7). The Heater model consists
of several components. The core component is HeatControl, it contains the controller
that reacts on messages from the environment and from the panel. This component inter-
acts with a timer for time control (HeatTimer). Furthermore there are additional checks
(performed by other components). If one check fails a signal is passed to the merge compo-
nent MergeCheck). MergeCheck combines these signals (logical or) together with the
Motor-Commands that also switch of the heating. The arbiter HeatArbiter switches
the heating off, if some checks fail. If the checks are OK, the arbiter switches the heating
on to the last (or current) value. HeatCheck15R checks the position of Clamp15.

The more interesting part is the description of the motor controllers. Several design pat-
terns for embedded modeling have been applied to design the structure of the motor con-
troller:

� FlipFlop: translates button events into states and send them to other components
constantly.

� Scheduler: ensures that at most two motors are running in parallel, and that at most
one motor receives a command at a time.
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SeatControlModel

D

Panel:SeatSwitches

Env:CarEnvironment

acceptCommand:Int

acceptTicks:Int

setHeat:int

Figure 5: SSD of the System Interface

� Messaging: instead of global variables messages are used from memory components
to the relevant components.

� Splitting: the acceptCommand signal is split into several signals for the different
motor components.

� Merging: if several commands (or other signals) for one component are present,
they are merged according to their priorities.

� Local timing: for the modeling of real-time behavior timer components are used
where they are needed. Other possible variants are the use of a global time or an
external time.

These modeling patterns (and others, for example for cryptography) have been developed
during many projects with AUTOFOCUS.

In this paper we do not show the whole system, but for space reasons we only describe
some components more detailed.

3.2.3 Behavior

The behavior is described by numerous state transition diagrams for each atomic com-
ponent. For similar components STDs are reused several times. AUTOFOCUS allow to
assign to each component a behavior (STD), such that STDs, can be reused. This feature
has been used heavily, because six motors six controllers (and six timers, etc.) have been
modeled.

The behavior of the timer is shown as an example in Figure 8.

The real-time behavior of the timer is ensured by using the system clock (instead of the
variable CurrentTimeMillis).
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Heater

D

MotorControler

D

Panel:SeatSwitches

setHeat:int

Env:CarEnvironment

acceptTicks:Int

acceptCommand:IntPanel:SeatSwitches

Env:CarEnvironment

LAon:Control

RHon:Control

SDon:Control

Bon:Control

FHon:Control

HRon:Control

Figure 6: Structure of SeatControlModel

3.3 Code

The code consists of a generated model, and a manually implemented wrapper class that
implements the given interfaces. For testing we added two other classes: one for the
system environment (that implements CarEnvironment) and one for running the test.
We used threads for running them independently.

3.3.1 ValidasSeat

Since neither the simulation, nor the prototyping code implements the given seat interfaces
a simple wrapper has been designed, and manually implemented (ValidasSeat.java). The
wrapper initializes the model and implements the methods by simply sending the events
to the system. Since AUTOFOCUS has a synchronous execution model, it has to be
ensured that no messages are lost when passing them to the model. Therefore we used
a asynchronous model wrapper around the synchronous model. This model wrapper has
synchronized input queues and passes the values to the core model (of course this wrapper
is also generated).

The interfaces have been modeled with data types for all possible method calls. For exam-
ple the data type SeatSwitches has (among others) the following values:

data SeatSwitches = LAfwd | LArev | LAstop
| SDfwd | ... | Mup;
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HeatControl

HeatTimer

Local Variables:
  Int CurrentTimeMillis = 0
  Int Finish = 0

VoltStartCheck

Local Variables:
  Int Volt = NORMALVOLTAGE

HeatArbiter

Local Variables:
  int lastValue = 0

MergeCheck

HeatCheck15R

D

set:Int

timeout:Signal

Panel:SeatSwitches

Env:CarEnvironment

Env:CarEnvironment

setHeat:intHeat:Int

Off:Signal

C1:Signal

C2:Signal

Env:CarEnvironment

LA:Control
RH:Control
SD:Control

B:Control

FH:Control
HR:Control

Figure 7: Structure of Heater

counting

CurrentTimeMillis<Finish:set?::CurrentTimeMillis=CurrentTimeMillis+TimeIncstartTimeout

n<=0:set?n:timeout!Present:
restart

n>0:set?n::Finish=CurrentTimeMillis+n

Stop Running

start

n>0:set?n::Finish=CurrentTimeMillis+n

timeout

CurrentTimeMillis>=Finish:set?:timeout!Present:

Figure 8: Behavior of Timers

These values are passed to the system every time the corresponding method is called. The
return values are processed similar.

4 Validation

In this section we describe the applied validation techniques. Within the given require-
ments there are no quality challenges like for example:

� ensure that every user input has an effect,

� ensure that no signals are lost (due to nondeterminism),

� ensure that the response time for a motor is below 0.1 s,

� every state in the description is reachable and tested.

We do not concentrate on the validation according to those requirements, even though the
Validas Validator supports the validation of critical properties using advanced methods
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[Slo98]. We also don’t use the generation of test cases according to different coverage
criterion, in spite we use some manually specified test cases from the requirements speci-
fication.

The applied validation techniques are:

� consistency checks,

� determinism checks,

� graphical simulation of components and the whole system,

� testing the model (textually and in batch mode),

� testing the system via the specified interface and a simple GUI, and

� requirements tracing (to the model and the tests).

In this section we describe some test results and test procedures.

4.1 Improved Models

Several errors have been detected and corrected, the most interesting error was found dur-
ing simulation of the complete system. It showed an integration error of the heater and the
motor controller due to the switch off signals from the scheduler: The scheduler does send
alternating commands to motors of group 1 and group 2. These signals are used to switch
off the heating during motor movement. The result of this toggling signal was a toggling
heating signal. A simple delay in the merge component of the heater fixed the error.

4.2 Consistency Checks

Several copy & paste errors have been found using the consistency checks, especially
during bottom-up operations, when additional features have been added.

4.3 Simulation

AUTOFOCUS models are complete, (even if they do not allow to import code for com-
ponents, actions, etc.). This allows to generate code for products, testing and simulation
from the models. Simulation runs graphically.

With simulation the dynamic behavior can be evaluated. The method requires to test all
requirements to components and to the system. For example the requirement that the
heating shall be switched off, if motors are running (see Fig. 9) is tested by entering
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SeatControlModel

setClamp15C

setClamp15R

Heat2pressed

Heat = 2

LArev

LAMotorRev

Heat = 0

Figure 9: Heater Requirement

SeatControlModel

Env.setClamp15C

Env.setClamp15R

Panel.Heat2pressed

setHeat.2

Panel.LArev

acceptCommand.129

setHeat.0

Figure 10: Protocol of Heater Simulation

the commands into the simulation environment. The result is a simulation protocol that
contains the port names for the input values, the concrete values (also for the output), and
the ticks (timing information represented by dashed lines). Figure 10 shows the protocol.

In addition to the system view also inner views can be animated. For example for devel-
opers it might be interesting to see if the timer for the heater has been set to the correct
value. AUTOFOCUS simulation also generates EETs for the subcomponents.

The real-time behavior depends on the time required for a single step (tick) on the con-
crete system. For the graphical simulation the Timer can be configured via the constant
TimeInc in the DTD Misc. The value of the constant represents the amount of time (in
ms) the timers are incremented each step. This allows a flexible simulation of the real-time
behavior.

4.4 Deterministic Check

Since we are working with a synchronous hardware oriented model, some events can oc-
cur simultaneously. In components with several inputs this can cause nondeterministic
situations. Furthermore there are no message queues in the semantics, such that messages
can get lost if they are not processed. The determinism check of the Validas Validator
helps to detect such situations. For example in the Controller of the heat component the
some nondeterministic situations have been detected (see Figure 11). Since the timeout
of the timer does not occur frequently, it is very improbable that this error would have
been found during the simulation (Note that the simulation of AUTOFOCUS also detects
nondeterministic situations if they occur).

In a similar way it is possible to check completeness. For safety critical systems it is
important to ensure that all messages are processed. This can be done using the Validas
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Figure 11: Nondeterministic Situations in the Heater

Validator. For example it could be detected that certain states do not process timeout
interrupts.

4.5 Testing

There are several forms of testing the model, the simplest one is to simulate the system
interactively (see Section 4.3). Next step is to simulate the generated code without graphi-
cal animation (textually). The Validas code generator supports this form of testing with an
interactive code that can be executed.

4.6 System Test

In order to apply an overall system test, a graphical interface has been build (see Figure
12). The interface uses the specified interfaces (seat interface) and visualizes the state of
the tests.

5 Conclusion

The component oriented approach with the synchronous model is working fine. The hi-
erarchic description techniques are very helpful in keeping the system modular (all state
transition diagrams have less than ten states).
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Figure 12: Test Environment

The generated code is well suited for real-time applications, however the size and run-time
of the Java-Code can be improved. The generated C code is static and efficient. Reusing
of parameterized functions for reused components keeps the code small.

We thank Bekim Bajraktari, Martin Rappl and Bernhard Schätz for many interesting dis-
cussions during the work on this paper.
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