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Abstract: Recording traces from an embedded system is a common procedure in the
process of developing real-time systems. While this technique is generally used for
debugging and performance analysis, the recordings contain much more information.
These pieces of information however can be useful to generate or maintain a system
model in an automated manner. Therefore, the goal is to develop an approach that cre-
ates a model of a real-time system, especially of its observed temporal behaviour, from
events logged in a trace recording. This research aims to extract, analyse and deduce
information about the system under observation from a limited view of the proceedings
in the system. Also as a consequence of this intention a detailed specification on events
necessary for specific use cases emerges. To achieve all this, an iterative approach con-
sisting of three consecutive steps is proposed. At first the necessary algorithms will
be developed on a model-based foundation utilising a discrete event simulation. In a
next step, the implementation will be aligned to take also specifics of the execution on
real hardware into account. Finally, the approach can be evaluated on hardware with
examples from real life.

1 Motivation

Contrary to popular belief, the development of software for embedded and non-embedded

systems are fundamentally different [GLT03]. Processes and technologies have to address

additional requirements such as timing constraints. This means the correctness of such a

system depends not only on the functional correctness but also on its temporal accuracy.

Consequently, traditional debuggers cannot be used to observe the runtime behaviour of

software since they require halting a system’s execution, which would result in a signifi-

cant alteration of the timing behaviour. Instead, tracing is used during the development of

embedded software systems. ‘Concretely, trace recording implies detection and storage of

relevant events during runtime, for later off-line analysis’ [KWK10, p.1].

Nowadays, execution traces are used in most parts of the industry for dynamic timing anal-

ysis [WEE+08]. From the recorded events in a trace, the event-to-event execution time is

calculated. That way the minimal and maximal observed execution times are determined,

which help to estimate the actual execution time bounds. Metrics that are calculated this

way are for example the Execution Time (ET) of functions [SSD+13], and the Response

Time (RT) [QHE12] or the mean Normalised Blocking Time (mNBT) [AMS+13] of tasks.

2233



However, much more information can be extracted from execution traces. This is due to

the fact that events from different abstraction levels of a system can be recorded [Hus07].

On the one hand a trace can contain events from the system level, where system events

such as task switches or the creation and termination of tasks can be registered as well as

calls to functions. On the other hand also proceedings on a process level can be moni-

tored. Those are for example events because of accesses to resources such as data signals

or semaphore queues. Therefore, the main goal of this research is to define an approach

how a temporally accurate design model of a real-time system can be automatically cre-

ated based on trace recordings.

Such a generated model has many advantages over a manually maintained one and can be

used for multiple purposes. In the simplest way it can tremendously help to understand

the behaviour of a software system in general [HLL05]. Although model-driven software

development (MDSD) is standard in the embedded industry, it is also common to modify

the generated code afterwards by hand. Thus, an approach, which can easily keep a model

up-to-date, would be a huge benefit not only for simple documentation purposes during

development but also for the verification of software models [HA05] or the maintenance

of legacy systems [TVD12]. But the currently probably most important reason for such

a generated model is simulation-based timing analysis [KKM11]. With the tendency to-

wards a commitment to multi-core technology, software that has run on a single core for

years has now to be allocated on different cores and optimised regarding certain metrics.

Thus, the use of a discrete event simulation helps to handle the resulting complexity by

imitating the key characteristics of a system on the basis of a model. That way it is pos-

sible to estimate the effect of design decisions without the need for physical access to the

system.

Although trace recordings can give a valuable in-depth look into a system’s execution be-

haviour, collecting all this data is expensive. In the area of embedded systems, where only

very limited resources are available, this might result in an unintended alteration of the

system behaviour [Gai86] or an unmanageably large growth in data traffic [RS13]. Due

to the fact that not every event contributes to the model extraction in the same way, an

additional motivation is to develop a detailed specification on all the events necessary for

specific use cases. That way a work flow is targeted, which can make a precise statement

about the needed quality of a trace recording in order to achieve specific goals.

The remainder of this paper is organised in the following way: In the next section, we

discuss the presented problem in more detail. After that, an overview of related research

and state-of-the-art is given. In Section 4, we present the approach to implement the afore-

mentioned research goals. We conclude with an outline of the current state of research and

the achieved results so far.

2 Problem

As mentioned above, the main goal of this research is to define an approach that creates a

design model of an embedded system, which is coherent and consistent in timing, based

on the information contained in execution traces. Another prerequisite is that this model
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has to be compliant to AUTOSAR [aut13], the Automotive Open System Architecture, in

order to guarantee applicability in the industry for this research.

The mentioned model must therefore cover elements from hardware to software as well as

operating system characteristics. The former has to include an abstract description of the

used processing unit with the number of cores and their frequencies.

Main focus of the research however will be on the software model. This must describe

how the system is composed in the matter of tasks, functions and used resources. Each of

these components have again a number of characteristics that have to be determined. For

tasks these are, for example, the priority, preemptability, maximum number of concurrent

activations, period and offset. In case of functions, especially the exact modelling of ac-

cesses to resources provided by the operating system, such as data signals or semaphores,

is of importance. That way the dependency between functions in the system is compre-

hensible, which is crucial for deploying software on multiple processing cores. Finally,

the operating system has to be described by determining the used scheduling algorithm

and modelling its characteristics.

Based on these requirements this work is organised around the following four research

problems:

1. Method for model extraction

First of all, a method for automatically building an AUTOSAR compliant model

based on the observed behaviour recorded in a trace has to be developed. Such a

general applicable method itself already states a huge innovation for the industry

due to the fact that currently only very limited research has been done in the area of

reverse engineering for embedded systems [KKM11].

The method can be developed based on different technical approaches. On the one

hand it can be implemented purely algorithmically, where all known is explicitly

programmed. On the other hand knowledge can also be learned inductively.

Therefore, a method has to be developed, which not only solves this problem best

but which also performs best regarding accompanied challenges such as creating the

most confidence in the resulting model or providing the best robustness regarding

abnormalities in the trace.

2. A heuristic for tracing

The information contained in a trace depends on many facts such as, for example,

the length of time recorded in real time. This means that recording for a longer time

period can result in more details about the system. Similarly, the levels of abstrac-

tions considered as well as the granularity of the system proceedings observed are

crucial. Hence, the quality of a trace can vary greatly. However, the accuracy of the

model is again dependent on the quality of the measured data.

Unfortunately, recording every detail of the proceedings in a system all the time is

also not possible. This is due to the fact that every measurement affects the tim-

ing behaviour of the system in a little, known as the so called probe effect [Gai86].

Thus, extensive recording can lead to erroneous runtime behaviour of a system.

Furthermore, tracing has to cope with the limited system resources and connectivity

available for embedded systems [TVD12]. Those lead to the fact that not enough

trace data can be stored and transferred to obtain all arising events.
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For those reasons, we think a heuristic for tracing is necessary, which tackles the

question how to get the most usable information into a trace recording for building

a coherent and consistent model regarding a specific use case.

3. Model refinement

Another fact regarding tracing is that each recording only contains information about

the system’s behaviour that has actually been observed. So each time just a fraction

of the complete system behaviour is received [HA05]. The quality of the targeted

model however is dependent on those observations. If there is no recording of a

certain component of the system, the approach and consequently the model cannot

get knowledge about this. Yet, the more detailed and complete the created model is,

the more valuable and significant it gets for further purposes.

Hence, additional thoughts have to be given on how new, informative recordings can

be explored in order to gradually refine the quality of an existing model.

4. Quality of the approach

Finally, the quality of the approach has to be assessed in a convincing and confident

way. One of the goals of the reverse engineering is to get a model that can be used

for timing simulation and further analysis. As a consequence, the resulting model is

only of value, if and only if a clear statement about its quality can be made. Quality

in this case means, to measure to what extent the model behaviour conforms to that

of the actual system. When considering the targeted field of application for such an

automatic reverse engineering approach, for example the automotive industry, where

functionality is bought from suppliers in form of black boxes, it gets obvious that

trace recordings are the only available information sources about the actual system.

Hence, in order to get such a quality measure, a precise way to compare a model

with trace recordings has to be defined.

3 Related Work

In general ‘surprisingly little research in reverse engineering targets embedded systems’

[KKM11, p.8]. In this work a broad overview on the research activities in the area of soft-

ware reverse engineering for embedded systems is given.

One of the latest publications about architecture recovery mentioned there is [MW10].

Marburger and Westfechtel present an approach to analyse the structure as well as the be-

haviour of a system. For that, a state machine is extracted from the available source code.

Our research however seeks applicability in the automotive industry. There the availabil-

ity of source code cannot be ensured, since it is common to purchase functionality from

external suppliers, which then have to be considered as black boxes.

Huselius [HA05, AHNW06, HAHP06, Hus07] provides probably the most related work.

In the context of his Ph.D. thesis [Hus07] he researched reverse engineering of legacy

real-time systems in order to develop an automated approach based on execution-time

recording. For this, he creates a probabilistic state-machine model expressed in the ART-

ML language [HA05]. Nevertheless, his work provides some shortcomings, which are
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crucial for our purpose to use the model for simulation-based timing analysis. ART-ML,

for example, provides a very high-level view on the system. This means resource accesses

are associated with tasks instead of functions. To be able to allocate software to different

cores and to optimise it regarding certain metrics however, the knowledge of functions

and their execution order is significant. He moreover makes certain assumptions for his

research, such as the knowledge of the priority or the triggering method of the tasks, which

are not acceptable for our intended applicability.

One of the latest research activities in this area comes from Ciccozzi [CSCS13]. There,

a round-trip approach for component-based embedded systems is proposed. The goal is

to provide an automated support for deployment decisions at modelling level. It however

focusses only on the determination of extra-functional properties and doesn’t consider ar-

chitectural or behavioural characteristics for back-propagation to the design model.

In addition to the aforementioned related works, which cover existing ambitions in the

area of embedded systems, relevant approaches can also be found in the area of process

mining. The goal there is to extract information from event logs in order to capture the

underlying business process. An overview on the main issues around this topic can be

found in [VdAW04]. As the name already implies, process mining focusses on the appli-

cation of data mining techniques in order to achieve the desired goal. Attention however

should be paid to the fact, that models for real-time systems have to satisfy much stricter

requirements then business processes.

The confidence in the quality of the resulting model plays a crucial role. Therefore, also

a vast variety of literature on model validation can be found. Balci proposes in [Bal90]

different techniques for model validation in simulation studies. This work is amended by

Sargent [Sar04]. Law presents in [Law09] general techniques for validating a simulation

model. In the end, all of the above list just a set of statistical techniques, which can be used

for general validation. Huselius [HKHP07, Hus07] developed a metric, which is used to

evaluate the quality of models from embedded real-time systems by analysing the response

time of the available tasks. Kraft discusses in [Kra10] a possibility for the validation of

simulation models by comparing simulation traces with traces from the modelled system.

Although different steps are proposed in this work, no particular properties are presented,

but just a vague approach how to find those properties. Furthermore, most steps proposed

target obviously a manual validation and are thus not feasible for an automatic approach.

4 Approach

In order to achieve the projected goals, this research is divided into three consecutive

phases. However, the first and second phase are meant to be executed iteratively. For

example in cases, where the evaluation at the end of a phase reveals insufficient quality, an

iteration of the phase or even the previous one is necessary to improve the algorithms. In

the following subsections, the individual phases are presented in detail.
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1. Simulation-based Development & Validation Phase
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Figure 1: Simulation-based Development & Validation Phase

In the first phase as depicted in Figure 1, all necessary development is done utilizing a dis-

crete event simulation. For this, the simulation tool from the Timing Architects Toolsuite

[TA] is used. The advantage thereby is that trace recordings can be generated much faster

and more comfortable than working with real hardware. The proposed approach starts

with an implementation model, which is pictured in the lower part of the figure. Based

on this AUTOSAR compliant model, the simulator creates trace recordings corresponding

the configured granularity and length. That way the resulting information contained within

a single trace file can be set electively. This functionality is designated to investigate the

problem of specifying a heuristic for tracing.

The generated trace recordings serve then as input for the automatic model extraction. As

the name already implies, this automatic model extraction builds then again an AUTOSAR

compliant model based on the information contained in trace recordings. Thus, the quality

of the resulting model can easily be determined by comparing it with the implementation

model. That way the development of a method for model extraction can be done model-

based, which makes it possible to make a clear statement about the quality of the resulting

model and as a consequence also about the quality of the method itself.

However, later during the operation of the automatic reverse engineering approach, there

might not be an implementation model available to compare to. As a consequence, a pos-
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sibility to assess the created model with regards to trace recordings from the origin source

has to be available. This is done by simulating the gained model and afterwards compar-

ing the resulting trace with other trace recordings from the original source. This procedure

makes it also possible to test the potential of supervised learning techniques in the auto-

matic model extraction as well as in the trace comparison.

The development proceeds then until the automatic model extraction continually produces

models of the desired quality. This is evaluated by using variations of major architectural

system designs for the implementation model.

2. Operational Adoption & Validation Phase
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Figure 2: Operational Adoption & Validation Phase

In the second phase, the next step towards an operational use of the reverse engineering

approach is taken. For that, the method for model extraction developed up to that point is

validated using hardware traces instead of trace recordings generated by the discrete event

simulation.

Starting point for this are once again the exact kind of models as used before with the

simulation. Those however are now executed on real hardware by using code generation.

The resulting hardware traces are then transformed into the trace format of the simulation,

called BTF Trace Format. This process is just a simple mapping of elements from a binary

trace format, which is used to compress the data within a hardware trace, to a more usable
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trace format.

From here on, as depicted in Figure 2, the rest of the work flow remains the same. That

way, the differences between the simulation and execution can be determined and the au-

tomatic model extraction adapted accordingly.

Since this approach is still model-based, the quality of the resulting model can be deter-

mined by comparing it with the implementation model. That way the automatic model

extraction can again be improved until it continually produces models of the desired qual-

ity.

3. Operational Phase
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Figure 3: Operational Phase

Last but not least, the developed reverse engineering approach is ready for operation.

While the starting point of the previous phases was each time an implementation model,

this time it is not the case. Instead, the system has to be considered as a black box for dif-

ferent reasons. On the one hand, for example, the system might have not been developed

model-based and thus there was never a model available. On the other hand the source

code generated from a model might also have been altered manually afterwards without

synchronizing those changes with the model.

As a consequence, all the information available about the system comes from hardware

traces and there is no possibility to assess the resulting model with regards to an imple-
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mentation model. However, as depicted in Figure 3, the work flow of the reverse engi-

neering approach remains the same. So, since this approach already produced models of

a desired quality before throughout the previous two phases, the user can be confident in

the resulting model this time, too.

In addition to this fact, a statement about the quality of the resulting model is made by

comparing it with other trace recordings from the original source. This is also done equiv-

alently to the previous two phases by simulating the gained model and afterwards compar-

ing the resulting trace with the other trace recordings from the origin source. That way the

needed confidence from the user in the resulting model should be achieved.

5 Preliminary Results & Future Work

The preliminary results obtained so far demonstrate not only the feasibility of the proposed

approach but also the necessity of research in this area. The following paragraphs give an

overview on the current achievements and developments.

Currently, the transition between the first and second phase is in process. In a first step

the work focused on extracting individual properties of a model one by one from trace

recordings. For example, the used scheduling algorithm is determined from a trace by

using constraint programming. At first, significant changes in the state of a task, such as

task preemptions, are detected within the trace. Based on those a corresponding constraint

describing the expected behaviour of a scheduling algorithm is created. In case of a fixed-

priority scheduler, for each task preemption a constraint expressing that the priority of the

preempting task is higher than that of the preempted one would be added to the constraint

system of the represented scheduling algorithm. Finally, if the constraint system has a so-

lution, this means that there was no fact militating against the scheduling algorithm under

investigation.

Another example of determining a property of the system behaviour is the specification

of the dynamic runtime of functions. For that, the individual runtimes of a function are

calculated from the trace at first. Those values are then used for a goodness-of-fit test to

examine, how well they fit a statistical distribution. Further impressions on the work of

extracting individual properties of a model can be found in [SSD+13].

For further development on the reverse engineering approach, AUTOSAR as the targeted

meta-model was replaced by AMALTHEA [ama13]. AMALTHEA is an open-source

meta-model, which is not only compliant to AUTOSAR but also continuously covers all

information during the development of software for embedded systems [SSDM13]. That

way it was possible to gather more interesting or relevant pieces of information in the

model.

Up to now a set of heuristic methods to determine the most critical parameters from trace

recordings is available. The quality of the developed automatic modelling approach is

ensured by a model comparison. For this, the Eclipse Modelling Framework (EMF) was

used, since both, AUTOSAR and AMALTHEA, have a meta-model description available

in EMF. Thus, a plain comparison of models was possible by comparing element by ele-

ment.
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Figure 4 provides sample results from such a comparison. For that chart, 20 random mod-

Figure 4: EMF Model Comparison

els were created. Each model represents a purely periodic task set without communication

in a preemptive, fixed-priority scheduling environment. The size of the task sets varied

from four to a maximum of 18 tasks. Within those, between 1374 and 2797 functions

where called, where each function had a constant execution time. The length of the trace

was chosen such that all tasks occurred at least once. The comparison of the reverse en-

gineered model with the original model showed, that at least for such a simple example

nearly every detail could be determined from the trace recordings. First validations of the

current achievements on real hardware yielded promising results too.

In order to be also able to make a statement about the capability of the newly developed

approach compared to existing ones, a benchmark is currently defined. Due to the fact that

Huselius provides the most related work, the results published in [Hus07] will be consid-

ered for this.

Furthermore, one of the major tasks in the near future will be the comparison of charac-

teristics from trace recordings to those of a model. In the course of this research different

metrics will be examined and developed in order to define a comparison framework. Such

metrics will be on the one hand performance measures of the system such as response

times of tasks or execution times of functions, but on the other hand also abstract ones

such as the pattern of task interferences. The former are analysed using once again sta-

tistical goodness-of-fit tests such as the two-sample Kolmogorov-Smirnov test. Based on

the patterns, coherences between the individual metrics are examined by performing cor-

relation, regression and association analyses. Since this is an obvious field of application

for machine learning techniques such as supervised learning or pattern recognition, this

activity represents a good starting point to also include those techniques in the automatic

model extraction.

Before that however, an expressive evaluation of the automatic modelling approach must

be defined in order to make a statement on the impact of those techniques on the model

quality. In parallel to those activities also the work on validating the preliminary results on
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real hardware will be intensified.
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