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Framework for Fuzzing USB stacks with Virtual Machines

Tobias Mueller!

Abstract: The Universal Serial Bus (USB) is a widely deployed technology that connects peripheral
devices to computer systems. Despite its popularity and the vast number of existing USB enabled de-
vices, assessing security properties of the USB key-components in an automated fashion has not yet
been achieved by existing solutions. While malicious USB devices exist, they still require physical
actions such as plugging the device in. At present, arbitrary USB behaviour cannot be implemented
in software for easy consumption with virtual machines, thus making it hard to test USB stacks, USB
drivers or applications using the functionality a driver exposes.

This paper presents a design to write software defined USB devices, using them to automatically
fuzz-test key components of a USB enabled system, and to record abnormal behaviour of systems
under test.

The design was prototypically implemented and successfully applied to a simple kernel driver. The
results suggest that USB exposes a considerable attack surface and that real attacks are possible.
They also demonstrate that the design developed is capable of uncovering flaws in kernel level
drivers as well as user space applications. It is also capable of detecting USB stack fingerprints
of various operating systems which can enable an attacker to build a physical USB device which,
when plugged in to the victims machine, can be used to launch a targeted attack.
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1 Introduction

The Universal Serial Bus (USB) [Co00] is a widely adopted technology which replaced
serial and parallel IO ports in 1996. USB emerged because attaching peripheral devices
to a PC was cumbersome and error-prone. This was primarily due to the traditional 10
paradigm which mapped the devices into the CPU’s IO address space and assigned an
interrupt line (IRQ). The design of USB allows attaching, configuring and accessing pe-
ripheral devices with low cost and simplicity from the user’s perspective. Other benefits
include one interface for many devices, automatic configuration, hot pluggability or built-
in power supply for the device [AI97]. A modern PC is equipped with USB ports to attach
keyboards, mice, cameras, printers, scanners, hard-drives, mobile phones or other devices.
Even embedded systems such as printers or mobile phones have the ability to attach de-
vices via USB. Key features of USB include its versatility, its inexpensiveness and support
by major operating systems.

When an operating system encounters a device attached via USB, it needs to load the ap-
propriate driver to expose the functionality of the device to the user. Presently, although
nowadays some drivers can be written in user-space®, many drivers still reside in ker-
nel space, not only for legacy reasons but also for performance or convenience purposes
[CRKO5].

Even though kernel developers are usually very experienced and kernel code is subject to
repeated review, varying code quality for USB drivers can be expected for multiple rea-
sons. Not only do many different devices exist which require numerous different drivers,
but these devices will also have time-to-market constraints which do not allow for driver
code security audits. Examining the history of the Linux kernel source code* supports that
claim.

If those drivers in kernel space were vulnerable, an attacker could gain elevated privileges
because it can be assumed that the kernel runs with the highest privileges on the system.

Several concrete attack scenarios exist. An attacker could manipulate elections if a USB-
based voting device [ABS07] was used. Publicly available computers with USB interfaces
could be attacked by simply plugging in a malicious device. Such a public computer could
be a photo-terminal used to load photos to be printend from a pendrive or a digital camera,
a PC in a library or an unsupervised machine in a shop. Even some aircraft have an in-
flight entertainment system which allows USB devices to be plugged in to listen to songs
on portable music players or view documents on a pendrive [Th06]. But the attacker does
not necessarily need to physically attach a malicious device herself. Simply distributing
a new and expensive looking device (i.e. a digital camera or music player) will most
likely lure the victim to plug the device into her computer and thus allow the attacker gain
control over it. It is also possible to run USB over IP networks (using USB/IP [Hi05]) and
Wireless USB [Le07] uses radio technology as the transport layer for USB. Thus, physical
access to the targeted machine is not necessarily needed.

3 Using libusb, which provides a high level API to communicate with a USB device
“ie. by executing git log -grep=’overflow’ in the USB driver directory
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class USBInDeviceDescriptor (Packet):
name = ’DeviceDescriptor’

fields_desc = [
LEShortField (’bcdUSB’, 0x0200),
ByteEnumField (’bDeviceClass?’, 0, CLASS_ENUMS),
ByteEnumField (’bDeviceSubClass’, 0, SUBCLASS_ENUMS),
ByteEnumField (’bDeviceProtocol?’, 0, PROTOCOL_ENUMS),
ByteField (’bMaxPacketSize’, 64),
LEXShortEnumField (?idVendor?’, Oxffff , VENDOR_ENUMS) ,
LEXShortField (’idProduct’, 0x1337),
LEShortField (’bcdDevice’, 0x2342),
ByteField (?iManufacturer’, 0),
ByteField (’iProduct’, 0),
ByteField (’iSerialNumber’, 0),
ByteField (’bNumConfigurations?’, 0),

List. 1: Python code representing a device descriptor using Scapy

Given the popularity of USB and the expected privileges, exploiting USB is very attractive
to an attacker. Consequently, being able to uncover flaws and to fix them is important.
Finding bugs, however, often is a non-trivial task, especially in the case of USB, quite
simply because providing arbitrary input for the USB driver is not easily possible today,
without a USB development board which allows delivery of arbitrary data.

This work extends an existing approach which concentrated on mutation-based fuzzing of
the communication between a physical device and a host [JJ10]. Contrasting that exist-
ing work, a method to attach USB devices to a virtual machine and to generate arbitrary
packets in software is presented here. As the USB devices are written in software , tests
can be run without needing to physically attach real USB hardware. Additionally, tests are
conducted using packets with payload produced by “fuzzing”.

The contributions of this paper are:

° software-defined USB devices with fuzzing capabilities,
e a framework for executing automated fuzz tests, and
° reliable detection of operating systems through fingerprinting.

This paper is structured as follows. Section 2 describes fuzzing techniques and why fuzzing
is a viable approach to identify vulnerabilities. Section 3 lists the components involved
around a USB-enabled system. Section 4 discusses how the components can be tested
using the described techniques. Section 5 details how the implementation was performed
and results obtained. Section 6 concludes this paper and gives an overview of future work.
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2 Fuzzing

This section describes the fuzzing technique that will be used to search for vulnerabilities
in USB stacks, drivers and applications.

“Fuzzing” (or “fuzz testing”) was coined in the late 80’s while trying “to evaluate the ro-
bustness of various UNIX utility programs, given an unpredictable input stream” [TDMOS].
With the development of better tools, such as “american fuzzy lop™ or “Address Sani-
tizer”®, fuzzing gained popularity as a security method. Fuzzing results are likely to be
exploitable, because the input, which is necessary to produce the erroneous state, is gener-
ated during the fuzzing process. Fuzzing is also well suited to expose bugs in kernel level
drivers as shown by Keil and Kolbitsch in [KKO07].

Tradionally, fuzzing is used to conduct blackbox and state-less tests with randomly gener-
ated bytes. Blackbox because the fuzzer does not know anything about the tested program.
Since knowledge of internals of the program is not required, this general purpose approach
is widely applicable. The drawback of this method, however, is its inability to test either
specific input fields or complex protocols. State-less because the fuzzer generates bytes
independently of each other regardless of the context or semantics of that byte. Thus, if
the input is expected to contain a checksum over the randomly generated bytes and that
checksum is not properly updated, the program aborts processing and the fuzzer tests only
the checksum validation code. Those fuzzers are labelled “dumb”.

“Smart” fuzzers take into account properties of the expected input and can thus force the
tested program to execute more code paths. Also, specific fields of the expected input can
be tested, i.e. the field indicating a length. This allows the generated payload to penetrate
deeper into the tested program, thus testing more aspects of the program. This is also
known as “schema-based fuzzing” because a known pattern is modified [NNOS].

Because the USB protocol is stateful and most packets have a fixed structure, this paper
follows such a schema-based approach using Scapy [Bil0Oa]. Scapy is a framework that is
designed to interact with packets on ethernet networks. It is primarily used to craft and ma-
nipulate packets on various network layers resulting in a powerful networking framework
to rapidly create tools for conducting various tests, “but instead of dealing with a hundred
line C program, you only write 2 lines of Scapy” [Bil0b]. It also provides a fuzz () func-
tion to generate packets with random yet appropriate values for the packet’s fields. This
includes the width in bits of the generated value as well as adjusting modelled dependen-
cies such as checksums or length indicating fields. Listing 1 shows how Scapy can be use
for USB packets, instead of network packets.

3 USB Components

This section describes the key components that an operating system needs in order to
support USB. Some of these components will later be targets of attacks.

S http://lcamtuf . coredump.cx/afl/
% https://code.google.com/p/address-sanitizer/
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Fig. 1: Key components of a system with USB support

Figure 1 shows the fundamental parts of a USB system. At the bottom a USB device is
connected with the USB controller on the host at the electrical layer. The USB controller
is controlled by the USB stack which takes care of low level USB message passing and
other USB protocol-related aspects such as error correction. The USB stack sends and
receives messages from either sources or sinks on the device, called endpoints. Connec-
tions to endpoints build logical pipes between the host and the device which are exported
to drivers. Upon the USB stack, various drivers are implemented which use the provided
USB messaging capabilities to exchange messages either via control, isochronous, bulk or
interrupt transfer packets. The drivers may reuse already existing functionality from one
or more subsystems (i.e. SCSI for hard-drives or v4l for video cameras). Applications can
then use the device through one of the various interfaces that a driver could expose (i.e
block device or mmap ()).

After a device has been plugged in, the operating system asks the device for its details
in order to establish the pipes and to know which driver to load. This process is called
“enumeration” and it involves so called descriptors to be sent from the device to the host.
Every USB device is asked by the USB standard to answer a set of commands that might
be issued during enumeration.

As shown in Figure 2, four descriptor types exist: device, interface, endpoint and string
descriptor. The very first descriptor requested by the operating system is the device de-
scriptor which describes basic aspects of the device in question such as a globally unique
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[ Device Descriptor ]

Configuration

[ Interface ] [ Interface ] [ Interface ]

[Endpoint] [Endpoint] [Endpoint] [Endpoint]
Fig. 2: USB Descriptor hierarchy

vendor ID, a product ID, the “class” of the device and the number of “configurations”
which the operating system can select the device to run under. A configuration describes,
among other things, whether the device is self-powered or how many “interfaces” the de-
vices exposes. The class indicates that a device speaks a well defined protocol to expose
its functionality. Defined classes include mass-storage, audio or video. A device can also
announce to not belong to a prefined class or to implement several classes. In the latter
case the class information is attached to the interface which is described by an interface
descriptor. It also contains information about the number of available endpoints which in
turn have their own descriptor defining the packet size and the interval for the host to poll
for new messages [Co00].

Once the enumeration is complete, the kernel loads the appropriate driver. To find a suit-
able driver the kernel first’ looks at the vendor ID and product ID. If it finds a driver that
claims to be responsible for that device it will be loaded. If no driver is found a generic
driver for the class of the device (or the interface) will be sought. The driver is then repon-
sible for exposing features of the device to the user [Ve08].

These components can be attacked using fuzz-testing. The electrical layer, however, is
not of interest in this work because we focus on fully automated virtualised testing. Thus
physical connections are out of scope. The USB stack can be attacked, i.e. by signalling
many device attachments or by interfering with the enumeration process. Knowing the
driver-loading mechanism and the structure of the descriptors allows us to trigger a certain
driver to be loaded which in turn enables us to send fuzzed messages to the driver and
thus assess its robustness. Furthermore, it is possible to send messages to applications if
the higher level protocol is known. However, due to their limited applicability and impact,
attacks on applications are not as compelling as their driver counterparts. Therefore, focus
was given on rendering the latter possible.

7 This is considering the Linux kernel, but other operating systems do it similarly
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Fig. 3: Architecture of the automated fuzz-testing setup

4 Implementation

To find vulnerabilities in the components mentioned in Section 3 using the techniques de-
scribed in Section 2, a prototypical architecture was built which allows automated testing.
It extends an existing design [JJ10] such that no physical device needs to be connected to
the host in order to find vulnerabilities.

Figure 3 depicts the built setup. To allow automated tests the host operating system runs
a fully virtualised guest operating system. Note that it is possible to do the testing on the
host itself. However, potential crashes of the kernel and lost log-files are inherent draw-
backs of that approach. Instead of talking to physical devices, the virtual machine pipes
USB communication in and out to a separate process on the host which behaves like a reg-
ular USB device. The virtual device then generates USB packets using fuzzing. A monitor
watches the guest operating system and reports if unexpected behaviour, i.e. a crash, oc-
curs. A controlling component is responsible for actually spawning the above mentioned
components.

The actual implementation uses QEMU [Be05] as virtualisation software to run the guest
operating system. QEMU is a free virtualisation solution that fully virtualises different
CPUs along with the necessary hardware such as hard-drive, network interface or USB
controller. It allows complete and unmodified operating systems to be run in a virtual
machine. It also allows the machine state to be saved and loaded at a later time. This can
be used to prepare a virtual machine that is fully booted or has a special program started so
that testing will take less time. QEMU supports physical USB devices to be passed from
the host to the guest. It also supports simple virtual internal USB devices such as keyboard
or mouse implemented inside QEMU to allow delivery of keystrokes or mouse movements
from the host to the guest.
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QEMU was enhanced in two steps: First with a USB packet filter functionality and then
with support for external virtual USB devices. The latter is depicted in Figure 3. The USB
packet filter intercepts communication between the guest operating system and a USB
device attached to a Linux host®. The intercepted packets are piped out to a process on the
host and read back in. The process on the host can thus either write the packets out to disk
or modify them in place.

In order to carry out the schema-based fuzz-testing we need to obtain the schema first.
Either valid communication patterns can be crafted by looking at the protocol specification
or valid USB packets can be recorded for subsequent decoding. We chose to record valid
communication by attaching a physical USB device to the host and thenn pass it through
to QEMU. The guest running in QEMU started to communicate with the USB device and
the above mentioned USB filter functionality was used to record the USB conversation.

Since the filter allows packets to be modified in place as they are in transit, this would
already enable fuzz-testing. However, it would not be automatable since a physical device
needed to be plugged in to the host. Also, only dumb fuzzing could be conducted as the
obtained packets have not been decoded.

In order to build Scapy models for the packets, the USB specification [Co00] was used to
dissect the packets and determine the types of the packet’s fields, i.e. Short or IntEnum.
This led to a proper description of the protocol and packets used for enumeration which in
turn allowed easy packet generation and modification using Scapy’s facilities.

4.1 USB Device Emulation

Although QEMU supports virtual internal USB devices as described above, they are not
backed by an external program. To keep this framework modular, a second feature for
QEMU was implemented: Support for external software-defined USB devices which are
communicated with via a pipe so that USB packets are, as with the USB packet filter
mentioned above, piped out to the host and read back in. Because the interface to the
virtual machine consists of two named pipes only, the internals of the virtual machine are
abstracted and implementing a software USB device is much simpler than writing a new
virtual internal USB device for QEMU.

The actual fuzzing is done in the USB Device Emulation component which is responsible
for generating USB packets and writing them to the virtual machine’s USB in-pipe. Hence,
the virtual USB device can do as simple things as replaying already obtained packets.
Naturally, dumb-fuzzing can be applied on these packets.

Two generations of software USB devices were produced. The first and simple genera-
tion reads previously obtained packets and decodes them. A configuration then tells the
software device which fields in which type of packet have to be fuzzed before sending
them to the host. Obviously, this can resemble dumb-fuzzing by simply configuring all

8 Porting this filter to other platforms such as BSD should be trivial
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packet types and all fields to be fuzzed. The second generation is a stand-alone state-
machine which autonomously answers packets from the host. To save time this automaton
did not implement every command required by the USB specification but rather only the
commands which were used in the initially obtained USB communication. This allowed
for implementation of rudimentary USB devices such as web-cams or hard-drives. Again,
packet types and fields to be fuzzed need to be configured.

4.2 Monitoring

In order to detect whether the tested operating system behaves unexpectedly (i.e. crashes),
a monitoring component reports back every predefined number of seconds. It needs to
implement a reasonable probe routine which is capable of detecting whether the guest
operating system 1is still fully operational. The probe can be implemented as a simple
check whether opening a TCP connection to a port on the guest is successful or as a
complex routine that logs on to the guest, retrieves and analyses log-files.

In this framework, the monitoring component is realised as a Python module which is
loaded in a separate thread by the controlling component. Thus communication between
the controlling component and the monitor is possible using Python objects. The separate
thread enables the monitor to accidentally block and not stall the execution of the con-
trolling component. The controller regularly executes the monitor’s is_alive function
and assumes the guest operating system to be dysfunctional after a predefined number of
probes have not been answered. The monitor is also reponsible for exposing information
that is valuable for identifying potential malfunction, i.e. by writing out log files that were
obtained from the guest operating system.

4.3 Controlling

A controlling component is responsible for starting the virtual machine, attaching virtual
USB devices and alert when the virtual machine does not behave as expected.

To run many fuzz-tests, even on multiple machines, the design presented in this paper does
not require elevated privileges and is able to be run in many instances in parallel. Also,
the components can easily be exchanged, as long as the interfaces are implemented. The
interfaces are simple by design: Two named pipes for the emulated USB device, a Python
module for the monitoring instance and a process to be called for the virtual machine.
This implies that any type of virtual USB device, not only a fuzzer, can be used in this
framework. Given the ability to prototype a USB device in software using a rather high
level description for Scapy, this framework might be helpful for driver programmers to test
whether their implementation fulfils functional requirements.
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5 Evaluation

This section summarises the findings the implementation mentioned in Section 4 yielded.

While testing the second generation emulated USB device with different guest operat-
ing systems different behaviour in the enumeration process was observed. Variations are
caused by different implementations of the USB stack. Table 1 shows different behaviour

Operating System Packet Sequence Retries Remarks

Windows XP SP 2&3,7 SETUP, IN, OUT 3 IN length: 64

Linux 2.6.33 SETUP (9 times), RESET  4+2 4 get descr. then 2 set addr.
OpenBSD 4.7 SETUP, IN, OUT 7 IN length: 8

FreeBSD 8.0 SETUP, IN, OUT 6 sets address right away

Tab. 1: USB Stack Fingerprints of various operating systems

of various USB stacks. These samples were obtained by attaching a software USB device
that answers with zero bytes only. It it thus possible for a USB device to tell operating
systems apart. This enables an attacker to launch platform specific attacks.

It was also observed, that QEMU’s virtual USB controller sent uninitialized memory to the
device with “IN” transactions, which is similar to Etherleaking which exposes memory via
padding for Ethernet packets [BilOb]. Even if this “USB Leaking” does not happen with
real hardware USB controllers it can be used by a USB device to be able to detect whether
it is attached to a virtual machine.

The USB stack of the guest operating systems were tested rather by accident than on
purpose. While testing whether the implemented USB software devices work, they often
crashed and disrupted the communication and produced errors in the guest’s USB stack.
All errors were handled gracefully by generating a proper error message and thus no flaws
were exposed. Trying to rapidly attach many USB devices only uncovered bugs in QEMU
and not in the USB stack of the guest operating system. In fact, QEMU monopolizes the
CPU after attaching 40 devices to the guest.

To test whether USB drivers could be exploited, a Linux driver with a buffer overflow vul-
nerability was dedicatedly written. The framework was configured to make the guest load
the driver. Upon receiving a specially formatted message, the driver crashed the kernel and
left the system in an unoperational state. The monitor realised the machine malfunctioning
and reported it to be dead. The controller raised an alarm and made necessary informaton
available that is needed to reproduce the crash. Existing drivers, however, were not tested
due to time constraints.

The previous paragraphs show that this prototypical implemenation is capable of finding
flaws in the identified key components of a USB enabled system. Future work should
concentrate on making the presented framework test existing drivers of different operating
systems.
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6 Conclusion

This section will conclude the achievements, discuss limitations and show how future work
can further improve the presented work.

Firsly, the need for evaluating the security of USB key components was identified as being
necessary when assessing the security of a USB enabled system in Section 1. The reason
being the USB drivers in kernel space, which are a very compelling target for an attacker
not only because of the elevated privileges but also because of the wide deployment of
USB. Secondly, fuzzing techniques were introduced, classified and discussed in Section 2.
Furthermore, it was shown that fuzzing is well suited to expose bugs in kernel level drivers.
Thirdly, an overview of USB and its key components was given in Section 3. Three lay-
ers were identified as being attackable with the presented framework: USB stack, drivers
on top and applications using the exposed functionality. Fourthly, a design to automati-
cally fuzz-test the identified components was presented and work that was necessary to
build the architecture was outlined in Section 4. In order to build the framework various
free software products had to be patched, including Scapy and QEMU. The former was
improved by adding new fields to describe packets used in USB communication. The lat-
ter was enhanced with a USB packet filter as well as support for external software USB
devices backed by named pipes.

The presented architecture uses a software-based USB device to generate fuzzed pack-
ets. As of now, the software device supports enumeration and parts of the mass-storage
protocol only. More protocols are needed to penetrate deeper into the drivers.

The architecture is universal in the sense that knowledge of the guest operating system is
not required. If Linux is the guest operating system, we do, however, know about the inner
workings. Unfortunately, this information is not taken account when building the fuzzed
packets.

Finally, obtained results were presented in Section 5 and they identify the design as being
capable of finding flaws in USB kernel drivers. Furthermore, USB stacks of different op-
erating systems have been fingerprinted. This knowledge enables attackers to detect which
host operating system they are attached to and to subsequently launch targeted attacks.

A limitation of the presented work is the lack of support for the already specified USB-3.
While the general framework should also work with USB-3 enabled operating systems,
additional features need to be implemented in the virtual USB device in order to test new
features of USB-3 such as device initiated communication.

The fully virtualised approach may also not uncover time critical bugs. USB operates in
frames of one millisecond and as the fuzzing framework is running in userspace it might
not be able to guarantee processing in time. However, the way for easily carrying fuzz-
testing with the ability to smartly and precisely fuzz fields of USB packets has been paved
and the modular design of the framework makes it easy to be adapted.
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