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Efficient Bounded Jaro-Winkler Similarity Based Search

Jan Martin Keil1

Abstract: The Jaro-Winkler similarity is a widely used measure for the similarity of strings. We
propose an efficient algorithm for the bounded search of similar strings in a large set of strings. We
compared our approach to the naive approach and the approach by Dreßler et al. Our results prove a
significant improvement of the efficiency in computation of the bounded Jaro-Winkler similarity for
querying of similar strings.
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1 Introduction

The Jaro-Winkler similarity is a widely used measure for the similarity of strings. It was
developed for the detection of duplicated persons in a dataset based on their name [Wi90].
Compared to other measures it provides both good results and fast computation [CRF03].
Nevertheless, the sequential calculation of the Jaro-Winkler similarity for the search of
similar strings in large sets of strings is still a time-consuming task. Therefore, an optimized
algorithm is needed for time-sensitive use cases like real time duplicate detection during
data input, real time identification of named entities in input text (named entity linking), or
real time fuzzy search.

We propose an optimized algorithm for the search of similar strings in a large set of strings.
This work is structured as follows: In Sect. 2, we explain the Jaro-Winkler similarity and
give an overview of related work, followed by the description of our approach in Sect. 3. In
Sect. 4, we present the empirical evaluation of our approach. Finally, we conclude our work
in Sect. 5.

2 Related Work

In this section we introduce the Jaro-Winkler similarity as well as other work on the efficient
computation of this similarity measure.
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2 Jan Martin Keil

2.1 Jaro-Winkler Similarity

The Jaro-Winkler similarity, often wrongly called Jaro-Winkler distance, is a similarity
measure for two strings proposed in [Wi90]. It is based on the Jaro similarity

Jaro(s1, s2) =


1
3 ·

(
m
|s1 | +

m
|s2 | +

m−t
m

)
: m > 0

0 : otherwise
(1)

where |s1 |, |s2 | are the lengths of both strings, m is the number of matching characters,
and t is the number of transpositions. Matching characters are common characters in both
strings with a maximum distance of w = max( |s1 |, |s2 |)

2 − 1 [DN17; Wi90]. Some sources
give an alternative definition of w = min( |s1 |, |s2 |)

2 [CRF03]. A character matches at most one
character in the other string, selected by picking the first candidate during a nested iteration
over both strings. The number of transpositions t is half the number of not equal positions in
the concatenated strings of all matching characters in order of original occurrence [CRF03;
Wi90]. Contrary to frequent assumptions, t is not equal to the number of permutations that
is required to align the order of the matching characters. For example, t(abc, bca) = 1.5,
even though two permutations are required to align the matching characters abc and bca.

The Jaro-Winkler similarity adds a boost for equal prefixes to high Jaro similarity values:

JaroWinkler(s1, s2) =


Jaro(s1, s2) + l · p · (1 − Jaro(s1, s2)) : Jaro(s1, s2) ≥ bt
Jaro(s1, s2) : otherwise

(2)

l is the length of the common prefix of both strings up to a maximum lbound , bt is the boost
threshold, p is the prefix scale, and lbound · p ≤ 1 must holds true. Implementations typically
use the values lbound = 4, bt = 0.7, and p = 0.1 as in the original implementation2.

2.2 Efficient Jaro-Winkler Similarity Computation

Dreßler et al. proposed an optimized algorithm to reduce the computation effort for pairwise
similarities of strings from two large sets of strings given a similarity threshold [DN17].
They reduced the number of Jaro-Winkler similarity computations by applying filters to
the pairs of strings. The first filter determines an upper bound of the Jaro similarity based
on the lengths of both strings. The second filter determines an upper bound of the Jaro
similarity based on the maximum number of matching characters using the character
histograms of both strings. This approach provides an enormous performance improvement
compared to a naive implementation for the matching of two large sets of strings. Therefore,
it is useful for the matching of datasets or the detection of duplicates. However, if the task is
to process user input or queries, i.e. compare one or a few strings with a large set of strings,

2 https://web.archive.org/web/19990822155334/http://www.census.gov:80/geo/msb/stand/strcmp.c
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a naive implementation outperforms this approach due to its overhead. Thus, this approach
is not appropriate for the processing of user input or queries.

A recently published approach by Wang et al. addresses this issue [WQW17]. They developed
an index for the Jaro-Winkler similarity search that contains special string signatures. Based
on a lower bound of the number of matching characters and these signatures, they select
candidate strings that might be similar to a query string. Further, the order of the signatures
in the index allows to abort the scan of the remaining index at a certain point.

3 Approach

We propose another Jaro-Winkler similarity algorithm, which reduces the computational
effort for the search of strings (terms) that are similar to a single string s1 (query) in a
large set of strings S2 (terminology) given a similarity threshold θ. The terminology will
be stored in a customized PATRICIA tree [Mo68] that additionally stores at each node
the string lengths of all subjacent leaf nodes. This enables to skip irrelevant terms by
skipping whole branches of the tree. Compared to a trie it avoids node chains without
junctions at the bottom. This reduces the number of similarity computations. The maximum
distance between matching characters (w) and thereby the number of matching characters
(m) depends on the lengths of both strings. Therefore, the tree will be traversed once for
each length of terms in the terminology, as in List. 1. Nodes without subjacent leaf nodes
with this length will be ignored. Many traversals will stop at the root node, due to of the low
maximum Jaro-Winkler similarity of strings with a notable difference of lengths.

During the traversal at each node the maximum Jaro-Winkler similarity will be computed
based on the query string s1 and the known prefix s∗2 of the term strings, as in List. 2. If the
maximum Jaro-Winkler similarity is less then the threshold θ, the traversal of the current
branch will be skipped, as in line 11 of List. 2. This requires a function for the maximum
Jaro-Winkler similarity of a string s1 and all strings S∗2 with prefix s∗2 and length |s2 |.
JaroWinkler, Jaro, l, m, and t depend on s1 and s2. Given max

s2∈S∗2
(Jaro) ≥ bt , 0 ≤ l · p ≤ 1,

and 0 ≤ Jaro ≤ 1, then

max
s2∈S∗2

(JaroWinkler) = max
s2∈S∗2

(Jaro+l · p · (1 − Jaro)) (3)

= max
s2∈S∗2

(1 − 1 + Jaro+l · p − l · p · Jaro) (4)

= max
s2∈S∗2

(1 − (1 − Jaro) · (1 − l · p)) (5)

= 1 − (1 − max
s2∈S∗2

(Jaro)) · (1 − max
s2∈S∗2

(l) · p) (6)
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Therefore, the maximum Jaro-Winkler similarity is

max
s2∈S∗2

(JaroWinkler) =


1 −
(
1 − max

s2∈S∗2
(Jaro)

)
·
(
1 − max

s2∈S∗2
(l) · p

)
: max
s2∈S∗2

(Jaro) ≥ bt

maxs2∈S∗2 (Jaro) : otherwise
(7)

The function for the maximum Jaro similarity is

max
s2∈S∗2

(Jaro) =


1
3 · *,

max
s2∈S∗2

(m)

|s1 | +
max
s2∈S∗2

(m)

|s2 | + 1 −
min
s2∈S∗2

(t)

max
s2∈S∗2

(m)
+- : max

s2∈S∗2
(m) > 0

0 : otherwise
(8)

List. 1: Search Initialization
1 FUNCTION search(s1,S2,θ)
2 treeRoot := tree(S2)
3 result := ∅
4 FOREACH lengths(treeRoot) AS |s2 |
5 w :=

max(|s1 |, |s2 |)
2 − 1

6 s := newState()

7 s.minM := 0

8 s.minT := 0

9 s.maxL := min(4, |s1 |, |s2 |)
10 s.saveCommonChars1 := 0

11 s.assigned1 := boolean[ |s1 |]
12 s.assigned2 := boolean[ |s2 |]
13 s.commonChars2 := ""

14 traverse(treeRoot,s1, |s2 |,s∗2,θ,w,s,result)

15 RETURN result

List. 2: Tree Traverse
1 FUNCTION traverse(node,s1, |s2 |,s∗2,θ,w,s,&result)

2 FOREACH characters of node AS c

3 append(s∗2,c)
4 updateMaxL(s1,s

∗
2,w,c,s)

5 updateMinM(s1,s
∗
2,w,c,s)

6 updateMinT(s1,s
∗
2,w,s)

7 updateMaxM(s1,s
∗
2,w,s)

8 IF |s2 | = |s∗2 |
9 finaliseMinT(s1,s

∗
2,s)

10 maxJWS := using Eq. (7)

with |s1 |, |s2 |,s.maxL,s.maxM,s.minT
11 IF maxJWS ≥ θ
12 IF |s2 | = |s∗2 |
13 add(result,<s∗2,maxJWS>)
14 ELSE
15 FOR child ∈ children(node)

16 IF |s2 | ∈ lengths(child)

17 sc := deepCopy(s)

18 traverse(child,s1, |s2 |,s∗2,θ,w,sc,result)

At each traversed node maxs2∈S∗2 (l), maxs2∈S∗2 (m), and mins2∈S∗2 (t) will be computed. The
effort can be reduced by reusing results from the parent node and updating them according
to the new s2 characters. For each new character it will be checked, if maxs2∈S∗2 (l) needs
to be reduced, as in List. 3. To compute maxs2∈S∗2 (m), for each new character mins2∈S∗2 (m)
needs to be updated, as in List. 6: Each new s2 character will be compared to the not
matched s1 characters in range. The first matching s1 character according to reading order
will be selected and mins2∈S∗2 (m) will be updated. maxs2∈S∗2 (m) will then be computed once
per node by adding the number of possible further matches to mins2∈S∗2 (m), as in List. 7.
mins2∈S∗2 (t) can only be computed for s1 characters that are already outside of the range of
new s2 characters, as new matching characters of s1 might be located before earlier ones.
Therefore, for each new s2 character mins2∈S∗2 (t) can be updated regarding s1 characters
at a new save position, as in List. 4. When s2 is complete, t can be updated regarding the
remaining characters of s1, as in List. 5. This algorithm overestimates maxs2∈S∗2 (Jaro) if t
and m can not achieve their extreme values at the same time. For example, for s1 = abcd and
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s2 = b␣␣␣ the values are maxs2∈S∗2 (m) = 4 and mins2∈S∗2 (t) = 0, but maxs2∈S∗2,t=0(m) = 3
and mins2∈S∗2,m=4(t) = 1.

List. 3: Computation of maxs2∈S∗2 (l)

1 FUNCTION updateMaxL(s1,s
∗
2,w,c,s)

2 IF |s∗2 | ≤ lbound AND s1[ |s∗2 | − 1] , c

3 s.maxL := |s∗2 | − 1

List. 4: Computation of mins2∈S∗2 (t)

1 FUNCTION updateMinT(s1,s
∗
2,w,s)

2 i := |s∗2 | − w − 1
3 IF 0 ≤ i AND i < |s1 |
4 IF s.assigned1[i]

5 IF s1[i] , s.commonChars2[s.saveCommonChars1]

6 s.minT := s.minT + 0.5

7 s.saveCommonChars1 := s.saveCommonChars1 + 1

List. 5: Final computation of t

1 FUNCTION finaliseMinT(s1,s
∗
2,w,s)

2 FOR i:= max(0, |s∗2 | −w |) TO min( |s1 |, |s2 |+w)−1
3 IF s.assigned1[i]

4 IF s1[i] , s.commonChars2[s.saveCommonChars1]

5 s.minT :+= s.minT + 0.5

6 s.saveCommonChars1 := s.saveCommonChars1 + 1

List. 6: Computation of mins2∈S∗2 (m)

1 FUNCTION updateMinM(s1,s
∗
2,w,c,s)

2 FOR i := max(0, |s∗2 | − w − 1) TO
min( |s1 |, |s∗2 | + w) − 1

3 IF not(s.assigned1[i]) AND s1[i] = c

4 s.assigned1[i] = true

5 s.assigned2[ |s∗2 | − 1] = true

6 append(s.commonChars2,c)

7 s.minM := s.minM + 1

8 BREAK

List. 7: Computation of maxs2∈S∗2 (m)

1 FUNCTION updateMaxM(s1,s
∗
2,w,s)

2 assignable1 := 0

3 FOR i:= max(0, |s∗2 | − w − 1) TO
min( |s1 |, |s2 | + w) − 1

4 IF not(s.assigned1[i])

5 assignable1 := assignable1 + 1

6 assignable2 := |s2 | − |s∗2 |
7 s.maxM : = s.minM + min(assignable1,

assignable2)

The underlying strategy of our approach as well as the approach by Wang et al. is the early
termination of the similarity computation for not similar strings. However, our approach
successively approximates the similarity and extensively reuses earlier results. Conversely,
the approach by Wang et al. once filters the strings by a rough upper bound of the similarity
before computing the exact similarity. Both approaches skip computations for strings based
on the intermediate results for other strings.

4 Evaluation

For the evaluation we used a Java implementation of each algorithm. Our implementation
is publicly available3 and was used in version 0.1. For the algorithm by Dresler et al. we
used their implementation4. To avoid a bias, we added a few modifications5, including the
removal of a parallel execution management overhead during serial execution, and correction
of bugs that skip parts of the result. While some of the changes decrease the runtime of
the implementation, others increased them. However, to the best of our knowledge, the

3 https://mvnrepository.com/artifact/de.uni_jena.cs.fusion/similarity.jarowinkler/0.1.0

4 https://github.com/kvndrsslr/SemanticWeb-QuickJaroWinkler

5 https://github.com/fusion-jena/QuickJaroWinkler
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modifications did not add any unnecessary increase of the runtime. For the naive algorithm
we used the Jaro-Winkler similarity implementation provided in the Apache Commons Text
library6 version 1.4. To correct the computation results we added a few modifications7,
which became part of the 1.5 release of the library. A comparison to the approach by Wang
et al. was not possible. The approach is not described in sufficient detail in the paper to
reimplement it and the implementation is not publicly available. We are in contact with the
authors, though, and aim to compare the approaches in the future.

All implementations require a preparation of the terminology, like building up the PATRICIA
tree, but of different extent. We distinguished between the preparation and the actual similarity
computation. To evaluate our approach we tested the following hypothesis:

Hypothesis 1 Using our algorithm will improve the efficiency of the bounded Jaro-Winkler
similarity computation between few queries and prepared large sets of terms, compared to
the algorithm by Dresler et al. and the naive algorithm.

4.1 Methods

We used the Java benchmark harness OpenJDK JMH8 to execute performance measurements
of the three implementations. A collection of 1.429.572 names from the dataset “Person data”
in the DBpedia dump 2016-109 was used as test data. We used the following measurement
parameters, which cover the intended use cases: (a) The number of queries (100 to 105; 106

was skipped du to long duration), (b) the number of terms (100 to 106), (c) the threshold of
the Jaro-Winkler similarity(0.91, 0.95, 0.99). (d) the overlap of the set of query string and
term strings (full means that all terms are contained in the queries, if possible for the given
number of queries; half means that half of the terms are contained in the queries, if possible;
none means that none of the terms is contained in the queries), and (e) the preparation
of the terminology, specifying whether the time for preparation will be contained in the
measurement (unprepared) or not (prepared).

Each configuration and implementation was executed on three machines with 20 different
pseudo random subsets of names for the terms and the queries, resulting in 60 executions
per configuration and implementation. We measured the throughput, which is the number of
executions of all queries (= one operation) per second. The usage of the throughput results in
a high precision of the measurement for short running computations, but decreasing precision
for longer running computations. This fits to the intended use cases. The measurements were
executed on 18 machines each equipped with two Intel Xeon Scalable 6140 18 Core 2,3 Ghz
processors and 192 GB memory. Parallel computation was not used to avoid measurement

6 https://commons.apache.org/proper/commons-text/

7 https://github.com/apache/commons-text/pull/87

8 http://openjdk.java.net/projects/code-tools/jmh/

9 https://wiki.dbpedia.org/downloads-2016-10
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errors. The measurement code, execution scripts, analysis scripts and result files are publicly
available10.

4.2 Results

We used the Welch’s t-test (unequal variances t-test) to compare the measurements, as we can
not assume equal variance. First, we compared the three executions with equal configuration
and of the same implementation. In 309 of 6570 cases (naive 6, Dresler 246, our 57) we
found significant differences. Therefore, we hereinafter use the median values of the three
corresponding execution. Then, we compared the corresponding measurements of different
implementations. The overlap parameter caused only slightly differences between the
comparison results. Therefore, we omit separate results. Tab. 1 shows the comparison results
of the measurements of different implementations with equal configuration except the overlap
parameter. Every triangle in the table represents the comparison results of 60 measurements
for the column implementation and 60 measurements for the row implementation. The
triangles point at the implementation with higher mean throughput. Comparisons above
the diagonal involved unprepared measurements, comparisons under the diagonal involved
prepared measurements. Bracketed comparisons were not significant. For example, for the
naive approach and our approach and the parameters 1 term, 10 queries, threshold 0.91,
and with preparation the mean throughput of the naive approach was insignificantly higher
represented by (M). Fig. 1 shows the mean measurement for the implementations with 106

terms, depending on the number of queries, the threshold, and the preparation. All axes are
log scaled.

The results presented in Tab. 1 prove that our approach significantly improves the computation
efficiency of the bounded Jaro-Winkler similarity with 100 to 106 prepared terms, threshold
≥ 0.91, and up to 103 queries, compared to the approach by Dresler et al. and the naive
approach. Therefore, we accept the hypothesis. Our measurements were limited to 106 terms
and 105 queries. This limitation fits to the addressed use case. The test dataset size and
the time consumed by the measurement are further limiting factors. Due to the limitation,
we can not provide valid results on the comparison of the approaches for larger string sets.
However, the results presented in Tab. 1 indicate that the usage of our approach will improve
computation efficiency for 100 or more terms in case of small query sets. Moreover, they
indicate that the usage of our approach will improve the efficiency of computations with 10
up to 103 queries even if the terminology is unprepared. These limits will become worse by
reduction of the thresholds. Due to the measurements visualized in Fig. 1d and Fig. 1f we
expect that the approach by Dresler et al. will outperform our approach for larger query sets.
However, this is not the use case our approach was developed for. We aim to support the
search for similar strings of one or a few strings in a large set of string.

10 https://github.com/fusion-jena/JaroWinklerSimilarityEvaluation or DOI: 10.5281/zenodo.2269909
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5 Conclusions
We presented a new approach for the efficient computation of the bounded Jaro-Winkler
similarity. This approach has been evaluated by comparing it with the naive approach and
the approach by Dreßler et al. [DN17]. Our results prove a significant improvement of the
efficiency in computation of the bounded Jaro-Winkler similarity for querying of similar
strings compared to these earlier approaches. In future work, we aim to also compare our
approach with the approach by Wang et al. [WQW17], depending on the availability of
the implementation or a comprehensive description of the approach. Further, we provide a
ready to use Java implementation of our approach for easy application and adaptation into
other languages. We are convinced, that this work opens up new application fields of the
Jaro-Winkler similarity.
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(a) Threshold 0.91, unprepared
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(b) Threshold 0.91, prepared
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(c) Threshold 0.95, unprepared
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(d) Threshold 0.95, prepared
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(e) Threshold 0.99, unprepared
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(f) Threshold 0.99, prepared

Fig. 1: Mean of measurements with 106 terms and full, half or zero coverage.
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