Reusing Information in Multi-Goal Reachability Analyses *

Dirk Beyer!, Andreas Holzer?, Michael Tautschnig®, Helmut Veith?

! University of Passau 2 Vienna University of Technology
Software Systems Institut fiir Informationssysteme 184/4
Innstrasse 33 Favoritenstrafle 9-11
D-94032 Passau, Germany A-1040 Vienna, Austria

3 School of Electronic Engineering and Computer Science
Queen Mary University of London
Mile End Road
London E1 4NS, UK

Abstract: It is known that model checkers can generate test inputs as witnesses for
reachability specifications (or, equivalently, as counterexamples for safety proper-
ties). While this use of model checkers for testing yields a theoretically sound test-
generation procedure, it scales poorly for computing complex test suites for large sets
of test goals, because each test goal requires an expensive run of the model checker.
We represent test goals as automata and exploit relations between automata in order
to reuse existing reachability information for the analysis of subsequent test goals.
Exploiting the sharing of sub-automata in a series of reachability queries, we achieve
considerable performance improvements over the standard approach. We show the
practical use of our multi-goal reachability analysis in a predicate-abstraction-based
test-input generator for the test-specification language FQL.

Overview

We consider the problem of performing many reachability queries on a program that is
given as source code. Querying a model checker repeatedly for path-sensitive reachability
information [BCH™04b] has many interesting applications, e.g., to decompose verification
tasks, but most prominently to generate test cases from counterexample paths [BCH™04a,
HSTVO08]. If, for example, we want to achieve basic-block coverage, we will for each ba-
sic block b try to construct a path through the program that witnesses a program execution
that reaches b. In our approach, we describe test-coverage criteria using the coverage-
specification language FQL [HSTV08, HSTV09, HSTV10, HTSV10, Hol13], which pro-
vides a concise specification of complex coverage criteria. We translate an FQL coverage
criterion into a (possibly huge) set of test goals. Each such test goal is represented as
a finite automaton, called test-goal automaton, and specifies a reachability query. The
model-checking engine then takes a test-goal automaton to restrict the state-space search
to the specified paths (for which test cases are desired). Test-goal automata often have
identical parts which let us reuse analysis results across several queries. We developed an

*This is a summary of [BHTV13]. This work was supported by the Canadian NSERC grant RGPIN 341819-
07, by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF), by
the Vienna Science and Technology Fund (WWTF) grant PROSEED, and by the EPSRC project EP/H017585/1.

97



approach that exploits the automaton structure of reachability queries to efficiently reuse
reachability results when solving multiple queries. Given two test-goal automata A and
A’, we introduce the notion of similarity of A and A’ modulo a set X of transitions, where
X is a subset of the transitions of A’. We then identify potentially shared behavior between
A and A’ via a simulation-modulo-X relation H between the states of A and A’. If two
states s and s’ are related via H, then each sequence of A’-transitions starting in s” and
not including a transition from X corresponds to an equivalent sequence of A-transitions
starting in s. This allows us to reason about feasibility of program executions that are
covered by A’ based on the reachability results for A as long as we investigate transition
sequences shared by both automata [BHTV13].

Because it is generally undecidable whether a test goal is satisfiable on an arbitrary given
program, we use an overapproximating reachability analyses, more specifically, a CEGAR-
based predicate abstraction [BKW10], to approximate the set of executions of a program
until we either (i) have found a partial program execution that is described by a word in
the language of the test-goal or (ii) we have shown that there is no such execution. The
test-goal automaton guides the reachability analysis, i.e., the analysis tracks program and
automaton states simultaneously and stops exploring the state space if there is no possi-
ble transition in the program state space or no possible next automaton transition. Based
on the excluded transitions X, we reuse parts of the already analyzed state space (those
parts which do not involve these transitions) or continue state-space exploration along the
transitions in X. We implemented our approach in the test-input generator CPA/TIGER!.

References

[BCH"04a] D.Beyer, A.J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating Tests
from Counterexamples. In Proc. ICSE, pages 326-335. IEEE, 2004.

[BCH'04b] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The BLAST
Query Language for Software Verification. In Proc. SAS, LNCS 3148, pages 2-18.
Springer, 2004.

[BHTV13] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. Information Reuse for Multi-goal
Reachability Analyses. In Proc. ESOP, pages 472-491, 2013.

[BKW10] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate Abstraction with Adjustable-
block Encoding. In Proc. FMCAD, pages 189-198. FMCAD Inc, 2010.

[Hol13] A. Holzer. Query-Based Test-Case Generation. PhD thesis, TU Vienna, 2013.

[HSTVOS8] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. FSHELL: Systematic Test Case
Generation for Dynamic Analysis and Measurement. In Proc. CAV, pages 209-213.
Springer, 2008.

[HSTV09] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. Query-Driven Program Testing.
In Proc. VMCAI pages 151-166. Springer, 2009.

[HSTV10] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did You Specify Your Test
Suite. In Proc. ASE, pages 407-416. ACM, 2010.

[HTSV10] A. Holzer, M. Tautschnig, C. Schallhart, and H. Veith. An Introduction to Test Speci-
fication in FQL. In Proc. HVC, pages 9-22. Springer, 2010.

"http://forsyte.at/software/cpatiger/

98



