
Towards Static Modular Software Verification

Marcus Mews, Steffen Helke

Department of Software Engineering

Technische Universität Berlin

Ernst-Reuter-Platz 7

10587 Berlin

{mews, helke}@cs.tu-berlin.de

Abstract: The paper presents our first work in progress results of an approach to
verify the correct use of software libraries in target projects. Therefor the project’s
source code is analyzed and checked against the library’s behavior specification, called
interface grammar. This grammar is formalized using annotated state diagrams, and
the verification analysis is based on static control flow, data flow and alias analyses.
The paper illustrates the presented approach using a small-sized Java library example.
In the end, we give a brief outlook to necessary enhancements.

1 Introduction

When developing software, in many cases software engineers include and reuse software

libraries. But reusing third party’s libraries necessitates a thorough understanding of the

software library. Without proper care, misused libraries can lead to errors and exceptions

at runtime, and can thus endanger the safety of the developed software. Hence the question

arises, whether the included software libraries are utilized correctly and how to get prove.

In our context, utilizing a software library means nothing else but calling a library’s inter-

face methods. Usually, most software libraries provide a documentation including e. g. its

methods, which are intended to be called in a specific order. This grammar is part of the

interface specification and its violation can cause the library and/or its caller to fail.

We address the issue of wrong calling orders of library methods and present a static source

code analysis for modular software verification. Inputs to this analysis are the interface

grammar and the complete source code which utilizes the library. In this paper, we use

state machines to specify the interface grammar. As a result of the analysis, two succeeding

library calls are detected which may lead to a violation of the library’s specification at

runtime. Since the analysis relies on naturally imprecise control flow, data flow and alias

analyses, its results can contain false positives. Nevertheless, the presented analysis can

give sound evidence that a library is utilized correctly, if no errors are detected.

147



2 Static Software Utilization Verification

Our static modular software verification is presented in two steps: First, we show how
to derive possible misuses from the interface grammar. Then, we explain how we verify
whether the software source code contains any of these misuses. But before, have a look at
Java Listing 1: Our approach finds the two FileOutputStream misuses: accessing the same
file twice at the same time and omitting to close the second file stream.

1 public class FileOutputStream_Error {

2 public static void main(String[] args) throws IOException {

3 File file = new File("c:/line.txt");

4 FileOutputStream fos1 = new FileOutputStream(file);

5 FileOutputStream fos2 = new FileOutputStream(file);

6 fos2.write("Hallo Welt".getBytes());

7 fos1.close();

8 } }

Listing 1: This compiling code contains two library misuses (one throwing a runtime exception)

2.1 Step 1: Find Error Paths

Misusing a software library means that the library’s interface methods are called in a wrong

order, or the library is not shut down appropriately before the program terminates. We

call a sequence of succeeding interface events (method calls or program start/termination)

leading to an error state an error path. In this section, we outline how to derive an error

path from the interface grammar.

off acc

new

close()

write()

off

(a) Original interface specification LFOS

off acc

new

close()

errwrite(),
close()

end,
new

write()

noex

end

start

(b) Extended specification LFOSX

Figure 1: Reduced interface grammar of the Java FileOutputStream library

We use state machines to specify the interface grammar: L = (QL,ΣL,ΔL, q0L , FL)
(Fig. 1). QL contains all states, ΣL contains all input symbols and ΔL ⊆ QL ×ΣL ×QL

contains all transitions. ΔL maps from a start state and an input symbol (dom(ΔL) ⊆
QL × ΣL) to a target state in QL. ΣL is the set of qualified interface constructor and

method names (abbreviated in Fig. 1). q0L is the initial state and FL contains all finite

states. We simplify the task and derive error paths with length of two, only. Therefor, we

restrict L so that all transitions with the same input symbols lead to the same state:

(q1, σ1, q
′

1), (q2, σ2, q
′

2) ∈ ΔL

(σ1 = σ2) ⇒ (q′1 = q′2)

148



Next, we derive a second state machine LX = (QX ,ΣX ,ΔX , q0X , FX) based on L
(Fig. 1(b)). The purpose of LX is to enrich L with information about the program start

and terminate events, and an error state and its attached transitions. Therefor, in exchange

for start and finite state markings we add a no execution state qnoex, the input symbols

σstart, σend, and transitions Δnoex to and from qnoex. We also add an error state qerr and

transitions Δerr from every state to qerr: If a state lacks an outgoing transition that fires

on an input symbol σi, a new transition to qerr is added. The state machine LX remains

deterministic and ΔX still has only one target state for every tuple in its domain. The

initial state now is q0X = qnoex, and the and the finite states are FX = {qnoex, qerr}.

QX =̂ QL ∪ {qerr, qnoex}, ΣX =̂ ΣL ∪ {σstart, σend}, ΔX =̂ ΔL ∪Δnoex ∪Δerr

Δnoex =̂ {(qnoex, σstart, q0L)} ∪ {(qf , σend, qnoex) | qf ∈ FL}

Δerr =̂ {(qi, σi, qerr) | qi ∈ QL ∧ σi ∈ (ΣL ∪ {σend}) ∧ (qi, σi) (∈ dom(ΔL ∪Δnoex)}

At last, we calculate error paths using LX . As a benefit of the state machine restriction

mentioned above, we can reduce complexity and length of the error paths. An error path

p ∈ P is a list of succeeding interface events, and in our case defined as P ⊆ ΣX × ΣX ,

containing only two events in a row. PFOS shows all error paths of the Java File Stream

library of LFOSX
, and PListing shows the two error paths that can be found in Listing 1.

P =̂ {(σi, σj) | δm, δn ∈ ΔX ∧ δm = (qi, σj , qerr) ∧ δn = (qk, σi, qi)}

PFOS =̂ {(σstart, σwrite()), (σstart, σclose()), (σclose(), σwrite()), (σclose(), σclose())}

∪{(σnew(), σnew()), (σnew(), σend), (σwrite(), σnew()), (σwrite(), σend)}

PListing =̂ {(σnew(), σnew()), (σwrite(), σend)}

2.2 Step 2: Check Project

With the error paths at hand, we analyse the program and detect possible library misuses.

The library interface methods can be either static or bound to receiver objects. Since we

support multiple library instances, library misuses have to be checked for every library

instance and its aliases. Thus, aliasing and control flow problems are tackled now.

2.2.1 Alias Analysis

The flow insensitive may alias analysis respects the following assignments: ordinary vari-

able assignments, parameter assignments of method calls, assignments from return state-

ments to method declarations, and from method declaration to all possibly bound method

calls. The analysis uses symbols s ∈ S for variables and methods calls/declarations. We

refer to every kind of assignment from symbol s1 to s2 with the fact notation assignedd(s1,
s2). We then specify transitive assignments with assigned(s1, s2), and define that two

symbols sx and sy do alias when they both have an assignment symbol o in common.

assigned(s1, s2) =̂ ∃si ∈ S | assignedd(s1, s2) ∨ (assignedd(s1, si) ∧ assigned(si, s2))

alias(sx, sy) =̂ ∃o ∈ S | assigned(sx, o) ∧ assigned(sy, o)

149



2.2.2 Control Flow Analyses

The goal of the control flow analysis is to find two directly succeeding interface events nx
and ny in the source code. This means that other library events nB may not be fired in

between those two events. More precisely: There exists at least one control flow path from

nx to ny so that no other nB is in between. In this subsection, we first describe how we

abstract from the source code, and then give a specification of our control flow analysis.

We transform the source code to a data structure G = (M,B,N,E,C, n0, FM , FP ) with

M as methods, N as nodes, n0 ∈ N as the program start node, and FP ⊂ N as the

program terminal nodes. E ⊆ N × N is a relation that represents edges from one node

to other nodes, and C ⊆ N × M is a relation that maps method calls from nodes to

methods and respects polymorphism by mapping each node to all possible called methods.

B ⊆M ×N is a function that maps every method to its first node, and FM ⊆M ×N is a

relation that maps every method to all its exit nodes. Additionally, MLE ⊂ M references

all methods that invoke library events like methods of the analyzed library or methods that

exit the program. In other words,G contains ordinary control flow graphs for every method

of the program, and all Java statements/expressions are abstracted to nodes. Further, the

following rules apply: (1) We begin at the first node of every method; (2) every node points

to its predecessor(s) (except the last node in a method); (3) every method call node relates

additionally to all possibly bound methods (C); (4) every switch condition statement

node points to all of its conditional bodies and the next mandatory node if no default body

was declared; and (5) every if condition statement points either to its two conditional

bodies, or to its single conditional body and to the next mandatory node. To free G from

loops, (6) there are no edges that point to previous nodes. Further, (7) the bodies of loop

statements are copied once so that the loop statement node points to both, the original loop

body b and a copy bb which is a concatenated version of two times b. Unrolling loop bodies

to bb suffices since the error paths only have a length of two. Additionally, (8) conditional

loops point to the next mandatory node, since they are not necessarily executed.

Additionally, the methods start and end (representing the symbols σstart and σend of

L) are added to M . As a predecessor we insert a new first node that calls the method

start ∈ M . And complementary, we add after every node that can be the last node of a

regular program execution, a new succeeding last node that calls the method end ∈M .

n
x

n
f

n
y

(a) direct

n
f

n
x

n
y

(b) indirect

Node in N

Node in N
xy
between n

x
and n

y

Node in N
fx
between n

f
and n

x

Edge from n
1
to n

2
: succ(n

1
, n

2
)

Method call from n
1
to the first

body node n
2
: call(n

1
, n

2
)

(c) Legend

Figure 2: There are two error path types from node nx to ny

150



Fig. 2 depicts two control flow structures that could be specified in G. In the following,

we call nodes connected by edges of G succeeding nodes. If a node calls a method, we

say that the control flow path descends. Note that the control flow path between nx and

ny in Fig. 2(a) is directly constructable by succeeding or descending to the next nodes. In

contrast, the control flow path in Fig. 2(b) first needs to return to the previous call site nf
from where it can reach ny (and even nx) directly. Two nodes (nx, ny) can be connected

by arbitrary control flow paths. Each control flow path has a set of nodesNxy that contains

all nodes in between.

With error tuples like (σwrite(), σend) ∈ P from Sec. 2.1 we call the code analysis method

PathLib(σwrite(), σend). To ensure that there are no library events between nx and ny ,

we detect on one path all nodes Nxy in between (using Path(nx, Nxy, ny)) and demand

that they do not invoke library events (using noLib(Nxy)). In the case PathLib(σa, σb) ∧
(σa, σb) ∈ P is true, we successfully detected a possible error path in the source code.

PathLib(nx, ny) =̂ ∃Nxy ⊆ N | Path(nx, Nxy, ny) ∧ noLib(Nxy)

Path(nx, Nxy, ny) =̂ ∃nf ∈ N, ∃Nfx, Nfy ⊆ N |

AllPathsDesc(nf , Nfx, nx) ∧ PathDesc(nf , Nfy, ny) ∧Nxy = Nfy \ (Nfx ∪ {nx})

PathDesc(nx, NB , ny) =̂ PathSucc(nx, NB , ny)∨̇PathCall(nx, NB , ny)

PathSucc(nx, NB , ny) =̂ nx (∈ dom(C) ∧ ((succ(nx, ny) ∧NB = ∅)

∨(∃ni ∈ N, ∃NB∗ ⊆ N | succ(nx, ni)∧PathDesc(ni, NB∗, ny)∧NB = {ni} ∪NB∗))

PathCall(nx, NB , ny) =̂ (call(nx, ny) ∧NB = ∅) ∨ (

∃nt, ni, nj ∈ N, ∃m ∈ M, ∃(nx,m) ∈ C, ∃(m,nt) ∈ FM , ∃NB∗, NB∗∗ ⊆ N |

(call(nx, ni) ∧ PathDesc(ni, NB∗, ny) ∧NB = {ni} ∪NB∗)∨

(call(nx, ni) ∧ PathDesc(ni, NB∗, nt) ∧ ((succ(nx, ny) ∧NB = {ni, nt} ∪NB∗)

∨(succ(nx, nj) ∧ PathDesc(nj , NB∗∗, ny) ∧NB = {ni, nj , nt} ∪NB∗ ∪NB∗∗))))

noLib(NB) =̂ ∀ni ∈ NB | (ni,m) ∈ C ∧m ∈ (M \MLE)

call(n1, n2) =̂ ∃m ∈ M | (n1,m) ∈ C ∧ (m,n2) ∈ B

succ(n1, n2) =̂ (n1, n2) ∈ E

Descending the control flow path is easy using G, but ascending again is only possible if

one keeps track with the call sites: Only if the call sites in a generic path are known, the

next node after a return node can be determined. To keep track with call sites, the analysis

specifies a generic path from nx to ny based on two descending paths. Both of them start

at the same node nf that precedes nx and ny , and that is located at a higher level in the

call graph hierarchy. Since the control flow graphs may be forked at a node nf (as shown

in Fig. 2(b)), we call nf fork node. The nodes n ∈ Nxy can then be specified using the

difference of two descending path node sets: The minuend is the set of nodesNfy between

the nf and ny (Fig. 2: grey/dark nodes and nx); and the subtrahend is the set of nodesNfx

between nf and nx, including nx (Fig. 2: dark nodes and nx). But Nfx and Nfy are of

different kind: While both of them contain nodes between nf and nx or ny , respectively,

Nfx contains the nodes of all paths between nf and nx (specified in AllPathsDesc). In

151



contrast, Nfy only contains the nodes of one single path between nf and ny (specified in

PathDesc). In the formalization above, PathDesc is stated in detail, and AllPathsDesc

is omitted, but can be specified analogously.

The specification PathDesc always respects methods calls when determining next nodes.

If a node nx does not call a method, then PathDesc is based on PathSucc. Otherwise

– if nx calls a method – PathDesc is based on PathCall. With regard to all possible

locations of nx and ny in a descending control flow path, PathSucc and PathCall are

defined. PathSucc first considers the case that nx and ny follow each other directly and

hence have no nodes in between. The second case is that ny follows nx at some point later

in the control flow graph, and a recursive definition is used. Hence, the nodes in between

are the union of the directly succeeding node ni and all the following nodes in NB∗. In

style of PathSucc, PathCall is specified similarly.

The remainder of the specification above states a succession and a call relation. succ(n1, n2)
is true when the node n2 succeeds n1. call(n1, n2) is true when n1 calls a method and n2
is the first node of this method’s body.

2.3 Evaluation

For evaluation we implemented our approach using JTransformer [KHR07] as a meta pro-

gramming and analysis tool for Java. To verify the implementation we used a test suite

that tests every possible correct and incorrect library use of our example, and Java lan-

guage features like program calls, conditional blocks and loops. To evaluate performance

and scalability1, we extended the Soot framework’s analysis source code [VRHS+99] that

has a big connected call graph, using polymorphy etc. Table 1 indicates that the perfor-

mance does not depend on the code size but on the call graph size due to its depth and

numerous calls to the same methods.

Project Lines of Code Performance (sec.)

Single test case 22 0.004

Test suite (22 test cases) 959 0.312

Soot 12515 4874

Table 1: Scaling performance of the analysis

3 Conclusion

Like Ball et al. [BR02] and others before, we use an API grammar to specify correct

behavior. Our work also is related to the work of Hughes et al. [HB07], Tkachuk et al.

[TD03], and Jin [Jin07], but for verification we use static code analyses instead of model

checking or formal methods.

1Tested on an Intel i5 Processor, 4GB RAM; JTransformer’s fact building time not included.

152



Our implementation currently supports libraries that use static and instance methods, and

parameters. In addition, language features like polymorphy, condition and loop statements

are respected. On the downside, the implementation ignores threads and exception han-

dling, permits recursion and poorly scales to large programs. Nevertheless, our approach

as presented here is capable of analysing simple but essential libraries like file stream or

socket libraries based on static analyses, and identifies their misuses.

In the future, we will work on supporting error paths of length greater than two and extend

the interface grammar to provide additional features to express method parameter con-

straints or even dependencies of multiple library instances. Regarding the implementation,

we concentrate on switching to Soot as an analysis tool, and use collapsed call graphs and

more precise static code analyses that take object or control flow context information into

account [Mil05].

Acknowledgements

This work is carried out as part of the VirtuOS project. The VirtuOS project is financed

by TSB Technologiestiftung Berlin – Zukunftsfonds Berlin Co-financed by the European

Union – European fund for regional development.

References

[BR02] Thomas Ball and S K Rajamani. SLIC: A Specification Language for Interface Check-
ing (of C). Techn Report MSRTR2001, 21(MSR-TR-2001-21), 2002.

[HB07] Graham Hughes and Tevfik Bultan. Interface grammars for modular software model
checking. In Proceedings of the 2007 international symposium on Software testing
and analysis, ISSTA ’07, pages 39–49, New York, NY, USA, 2007. ACM.

[Jin07] Ying Jin. Formal Verification of Protocol Properties of Sequential Java Programs. In
Computer Software and Applications Conference, 2007. COMPSAC 2007. 31st Annual
International, volume 1, pages 475 –482, july 2007.

[KHR07] Günter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-based in-
frastructures for concern detection and extraction. In Proceedings of the 3rd workshop
on Linking aspect technology and evolution, LATE ’07, New York, USA, 2007. ACM.

[Mil05] Ana Milanova. Parameterized object sensitivity for points-to analysis for java. ACM
Trans. Softw. Eng. Methodol, 14:2005, 2005.

[TD03] Oksana Tkachuk and Matthew B. Dwyer. Adapting side effects analysis for modular
program model checking. In Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on Foun-
dations of software engineering, ESEC/FSE-11, pages 188–197, New York, NY, USA,
2003. ACM.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java Optimization Framework. In Proceedings of CASCON
1999, pages 125–135, 1999.

153




