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Chairs’ Message 
Welcome to the annual international conference of the Biometrics Special Interest Group 
(BIOSIG) of the Gesellschaft für Informatik (GI) e.V. 
 
GI BIOSIG was founded in 2002 as an experts’ group for the topics of biometric person 
identification/authentication and electronic signatures and its applications. For almost 
two decades the annual conference in strong partnership with the Competence Center for 
Applied Security Technology (CAST) established a very well known forum for bio-met-
rics and security professionals from industry, science, representatives of the national 
governmental bodies and European institutions who are working in these areas. 
 
The BIOSIG 2023 international conference is jointly organized by the Biometrics Spe-
cial Interest Group (BIOSIG) of the Gesellschaft für Informatik e.V., the Competence 
Center for Applied Security Technology e.V. (CAST), the German Federal Office for In-
formation Security (BSI), the European Association for Biometrics (EAB), the Tele-
TrusT Deutschland e.V. (TeleTrusT), the Norwegian Biometrics Laboratory (NBL), the 
National Research Center for Applied Cybersecurity (ATHENE), the Hochschule 
Ansbach (HAB), the Institution of Engineering and Technology Biometrics Journal (IET 
Biometrics), and the Fraunhofer Institute for Computer Graphics Research (IGD). This 
year’s international conference BIOSIG 2023 is once again technically co-sponsored by 
the Institute of Electrical and Electronics Engineers (IEEE) and is enriched with satellite 
workshops by the TeleTrust Biometric Working Group and the European Association for 
Biometrics. BIOSIG 2023 is held again in Darmstadt, Germany.  
 
The international program committee accepted full scientific papers (18 out of 61 sub-
missions) strongly according to the LNI guidelines (acceptance rate ~30%) within a sci-
entific double-blinded review process of at minimum five reviews per paper. All pa-pers 
were formally restricted for the digital proceedings up to 12 pages for regular re-search 
contributions including an oral presentation and up to 10 pages for further con-ference 
contributions.     
 
Furthermore, the program committee has created a program including selected contribu-
tions of strong interest (further conference contributions) for the outlined scope of this 
conference. All paper contributions for BIOSIG 2023 will be published additionally in 
the IEEE Xplore Digital Library.  
 
We would like to thank all authors for their contributions and the numerous reviewers 
for their work in the program committee. 
      
Darmstadt, 20th September 2023 
 
Naser Damer (Fraunhofer IGD), Marta Gomez-Barrero (Hochschule Ansbach), Kiran 
Raja (NTNU), Christian Rathgeb (Hochschule Darmstadt), Ana F. Sequeira (INESC 
TEC), Massimiliano Todisco (EURECOM), Andreas Uhl (University of Salzburg) 
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BIOSIG 2023 – Biometrics Special Interest Group 
“2023 International Conference of the Biometrics Special Interest Group”                                                       
20th -22nd September 2023 
 
Biometrics provides efficient and reliable solutions to recognize individuals. With in-
creasing number of identity theft and misuse incidents we do observe a significant fraud 
in e-commerce and thus growing interests on trustworthiness of person authentication.  
 
Nowadays we find biometric applications in areas like border control, national ID cards, 
e-banking, e-commerce, e-health etc. Large-scale applications such as the European Un-
ion Smart-Border Concept, the Visa Information System (VIS) and Unique Identifi-cat-
ion (UID) in India require high accuracy and reliability, interoperability, scalability and 
usability. Many of these are joint requirements also for forensic applications. 
 
Multimodal biometrics combined with fusion techniques can improve recognition per-
formance. Efficient searching or indexing methods can accelerate identification effi-
ciency. Additionally, quality of captured biometric samples can strongly influence the 
performance.  
 
Moreover, mobile biometrics is an emerging area and biometrics-based smartphones can 
support deployment and acceptance of biometric systems. However, concerns about se-
curity and privacy cannot be neglected. The relevant techniques in the area of presenta-
tion attack detection (liveness detection) and template protection are about to supplement 
biometric systems, in order to improve fake resistance, prevent potential attacks such as 
cross matching, identity theft etc. 
 
BIOSIG 2023 addresses these issues and will present innovations and best practices that 
can be transferred into future applications. Once again a platform for international ex-
perts’ discussions on biometrics research and the full range of security applications is of-
fered to you. 
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Towards Contactless Fingerprint Presentation Attack
Detection using Algorithms from the Contact-based Domain

Jannis Priesnitz1, Roberto Casula2, Christian Rathgeb1, Gian Luca Marcialis2, Christoph
Busch1

Abstract:

In this work, we investigate whether contact-based fingerprint Presentation Attack Detection (PAD)
methods can generalize to the contactless domain. To this end, we selected a state-of-the-art patch-
based fingerprint PAD algorithm which achieved high detection performance in the contact-based
domain and adapted it for contactless fingerprints. We train and test the method using three contact-
less fingerprint databases and evaluate its generalization capabilities using Leave-One-Out (LOO)
protocols. Further, we acquired a new PAD database and use it in a cross-database evaluation. The
adopted method shows low error rates in most scenarios and can generalize to unseen contactless
presentation attacks.

Keywords: Contactless fingerprint recognition, security, presentation attack detection, generaliz-
ability

1 Introduction

Presentation Attack Detection (PAD) is of utmost importance to ensure the operational
security of biometric systems. Like for many other biometric characteristics, various PAD
algorithms are proposed for fingerprint recognition systems. PAD methods are designed
to reliably detect artificial replicas, i.e. Presentation Attack Instruments (PAIs), which can
be made of various materials. Most common PAI species are made of gelatin, silicone,
different glues, playdoh or latex [SB14]. State-of-the-art methods mainly rely on machine
learning algorithms like Convolutional Neural Networks (CNNs). CNNs are known for
their good generalization capabilities to data which is not included in the training set.

Complementary to contact-based schemes, contactless fingerprint recognition has estab-
lished itself as a more comfortable alternative. Contactless fingerprint technologies enable
the recognition of individuals without any contact between a capture device surface and a
fingertip [Pr21b, YZH21]. Contactless capture devices typically have a higher user accep-
tance, especially when multiple users interact with one single device.

Like most biometric characteristics, contactless fingerprint recognition is vulnerable to
Presentation Attacks (PAs). Here, PAI species similar to contact-based setups can be used
1 da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Schöfferstraße 9, 64295

Darmstadt, Germany, firstname.lastname@h-da.de
2 PRA Lab, University of Cagliari, Via Marengo, 3, 09123 Cagliari, Italy, firstname.lastname@unica.it
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(a) bona fide (b) PA (wood glue) COLFISPOOF (c) PA (overlay) HDA

Fig. 1: Fingerprint images with pre-processed samples captured using a contactless capture device.
(a) bona fide, (b) low-quality PA, (c) high-quality PA.

to launch PAs [Ko23]. Additionally, printout attacks have a high potential since the color of
the PAI can be precisely adjusted to that of bona fide samples. Figure 1 shows a bona fide
sample and two types of PAs captured using a contactless capturing device. Since similar
PAIs can be exploited to attack contact-based as well as contactless capturing devices, it is
assumed that the same concepts can reliably detect PAs.

Contact-based fingerprint PAD is a well-studied research area. Comprehensive overviews
discuss relevant aspects of the research area [Ga23, Mi23, Ka21a]. PAD methods are ba-
sically categorized into two types: hardware-based methods employing specific sensors
for obtaining supplementary information and software-based methods which utilize fea-
tures extracted from the captured fingerprint images. For contact-based fingerprint recog-
nition, software-based methods are more popular because they are generally applicable and
more flexible to deploy. Various methods have been proposed to detect contact-based PAs.
Feature-based methods use either holistic features or local features [Gr15]. Holistic fea-
tures can be, e.g. global texture properties [AS06]. Local features, e.g. texture patches, can
be processed with hand-crafted feature extraction methods combined with basic machine
learning-based classifiers like Support Vector Machines (SVMs) or CNNs [Gr15, Go21].

In comparison to hand-crafted feature extraction approaches, CNNs generally require less
pre-processing and generalize better to unseen data [Ya17, Mi23, Af20]. For fingerprint
PAD, general purpose CNNs designed for object detection can be adapted to the binary
classification task [Ng18]. The data preparation for these CNNs is characterized by two
distinct approaches: one which considers the whole sample for PAD [Pa19, Ge20] and one
which considers patches extracted during the pre-processing [CJ19, Hu18, CCJ18]. These
patches can be randomly selected [PB17] or arranged around minutiae points [CCJ18].

Latest research suggests vision transformers for fingerprint PAD [Ra23]. This work com-
pares various proposed methods with Data-Efficient Image Transformers (DeiT) and re-
ports a significant improvement of detection performance in their experimental setup.

Contactless PAD methods are less comprehensively studied. Published works suggest an-
alyzing the reflection properties of different PAI species [SBB13], hand-crafted feature
extractors with a Support Vector Machine (SVM) [Ta16, Wa18] and CNN-based meth-
ods [Pu23]. Further, deep fusion strategies to combine deep representations obtained from
different color spaces are studied [MV22].

15
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The majority of contactless fingerprint capturing devices capture color images, which are
further processed into contrast-enhanced grayscale images, c.f. Figure 1. For this reason,
PAD methods could analyze color properties. However, it is assumed that color-based PAD
schemes are not generalizing well to unseen data. E.g. a PAD scheme which is trained on
PAIs which have a different color compared to the bona fide samples might learn the color
difference and, hence, fail on unseen PAIs which exhibit a color more similar to skin
color. Also, color-based PAD schemes might be biased to the skin color over-represented
in the training set. A study in skin color-based bias for contactless fingerprint recognition
supports this hypothesis [BND22]. Furthermore, obviously PAIs comprising a realistic
skin color can be assembled as shown in Figure 1 (c), which might easily fool color-based
PAD methods. For this reason, a PAD method which operates on pre-processed gray-scale
image is a vital alternative.

As can be seen from the related work, patch-based fingerprint PAD using CNNs represent
the state-of-the-art in this research area. Compared to others, this method also incorporates
several advantages for contactless fingerprint PAD. Compared to PAD schemes which an-
alyze the full image, no cropping or resizing is needed to present the sample to the PAD
algorithm. In contrast to methods which extract random patches from the image, only the
most relevant part around minutiae are extracted.

To the best of the author’s knowledge, no study has yet been conducted which benchmarks
PAD algorithms from the contact-based domain on contactless data. In this work, we eval-
uate if a contact-based fingerprint PAD algorithm can detect pre-processed contactless
fingerprint PAs. For this reason, we modify the SpoofBuster method proposed by Chugh
et al. [CCJ18] to the special requirements of contactless fingerprint PAD and evaluate its
suitability to detect contactless fingerprints. The SpoofBuster PAD algorithm represents a
state-of-the-art CNN-based contact-based fingerprint PAD method that extracts and clas-
sifies local features extracted from texture patches. We consider COLFISPOOF [Ko23]
as a publicly available contactless fingerprint PA database together with three bona fide
databases to re-train the adapted version of the SpoofBuster algorithm. To do so, we train
the method using a baseline and four LOO protocols proposed in [Ko23].

Further, we acquired a new PAD database, the UniCa-HDA PAD database, to test our
proposal on more challenging data. Here, we produce thin overlays which are precisely
adjusted to human skin color. To benchmark our proposal in a real-world scenario, we
conduct a training on COLFISPOOF combined with the bona fide databases and test on
the UniCa-HDA databases.

Our results show high detection accuracy. In our first experiment, the APCER at a BPCER
of 1.00% range between 0.00% and 0.33%. The algorithm is found to generalize well
to PAs unseen in during the training (6.75% APCER at a BPCER of 5.00%), which is
showcased in the newly acquired PA database.

The rest of the paper is structured as follows: Section 2 presents the considered PAD
methods. Section 3 describes the experimental setup. The results are discussed in Section
4. Finally, Section 5 concludes.
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Original
image

Pre-processed
image

Extracted
patches

MobileNet Spoofness
scores

Fig. 2: Overview on the proposed work¯ ow.

2 Patch-based Contactless Fingerprint PAD

Patch-based ®ngerprint PAD offers several advantages for contact-based ®ngerprints. Ex-
tracting patches around minutiae ensure that only patches that contain a ®ngerprint char-
acteristic are processed. This is also favorable for contactless samples in which regions of
low contrast could confuse the PAD method, c.f. Figure 1 (c). Further, minutiae provide
particular relevant area for PAD. E.g. ridge endings can be caused by borders of an overlay,
or bifurcations / islands could stem from air bubbles or dirt particles in silicone materials.
Figures 3a and 3c illustrate these properties for contactless PAIs. That is, this approach is
expected to also be bene®cial in the contactless domain.

Since, the extracted minutiae are not used for recognition rather than extracting regions of
interest from the ®ngerprint sample, any feature extractor independent of the recognition
accuracy is generally applicable. However, minutiae extractors which provide a minutia
quality assessment provide a proper option for reducing the number of extracted patches
to high-quality minutia. Hence, the MINDCT method [Wa07] which includes a minutia
quality assessment is considered in this work.

The number of extracted minutiae candidates is typically around 50, but varies due to many
factors like ®ngerprint quality, ®nger ID, capturing device ®delity or feature extractor ®-
delity. Chugh et al. [CJ19] propose two strategies to reduce the number of corresponding
patches. First, they cluster minutiae and extract patches around minutiae centers and sec-
ond, they use a feature extractor which provides a quality score for each extracted minu-
tiae. Here, the authors de®ne a static threshold to consider minutiae of high quality only.
We introduce a further patch reduction strategy for segmented contactless ®ngerprints by
analyzing the proportion of connected background pixels in an extracted patch. Minutiae
located at the border region of a ®ngerprint contain many background pixels and, thus,
contain a lower amount of information. For this reason, we compute the proportion of
background pixels and discard all patches which are above a pre-de®ned threshold.

The considered patch size is a crucial part of the algorithm. Small patches might contain
too little spatial information to achieve an accurate prediction, whereas an extraction of
too big patches lead to a large overlapping areas and, hence, redundant information. Fur-
thermore, the CNN might have challenges to disseminating the relevant information from

17
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(a) Attack presentation: COLFISPOOF (b) Bona fide: HDA

(c) Attack presentation: UniCa-HDA (d) Bona fide: ISPFDv1

Fig. 3: Example finger images of the used datasets. It should be noted that only samples of the
ISPFDv1 database are presented. Samples of the ISPFDv2 database look similar.

big patches. Another considerable option is to upscale the extract patches to emphasize
fine details. The original method proposes a so-called patch alignment. In this process, the
patches are extracted according to the rotation angle of the minutia and then rotated into an
upright position. This ensures that all patches contain a horizontally aligned ridge pattern,
which might be easier to process.

Any CNN-based method with a modified last fully connected layers to support binary
classifications is generally suited to distinguish between bona fide samples and PAs. Here,
sensitivity to fine-grained texture patterns is beneficial for an accurate classification. The
considered MobileNetv1 architecture outputs a Presentation Attack (PA) score in the range
[0.0, 1.0] for every patch. All PA scores are averaged to the final PAD result of the tested
sample.

In summary, the following main adaptations are applied to the original SpoofBuster method
by Chugh et al. [CJ19]:

• Patch angle and alignment: We do not implement a patch rotation based on the
minutiae angle, rather than extracting aligned patches. In our experiments, no im-
provement in terms of detection accuracy due to patch alignment was observed.

• Patch number reduction: To reduce the number of patches, we consider a com-
bination of minutiae quality and background thresholding. The minutiae quality
threshold excludes minutiae with a quality score below 0.25 (in a range [0, 1])
whereas the background threshold excludes patches with more than 10% white back-
ground pixels.
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Tab. 1: Number of bona fide and attack presentations for each database. It should be noted that the
UniCa-HDA database is only used for testing.

Database BF Samples PA Samples

COLFISPOOF – 7,200
HDA 1,069 –

ISPFDv1 4,029 –
ISPFDv2 16,175 –

UniCa-HDA 2,040 1,512

• Patch size: We use a patch size of 112×112 pixels instead of 96×96 pixels as in
the original approach from Chugh [CJ19]. This has two reasons: firstly, the acquired
contactless fingerprints are in our setup of larger size compared to contact-based
ones, so that the patch-size needs to be increased. Secondly, due to the lack of ro-
tation, we avoid protruding edges and, for this reason, it is possible to increase the
patch size.

All further settings such as the usage of MINDCT and the MobileNetv1 training parame-
ters remain the same as in the original SpoofBuster algorithm.

In summary, patch-based PAD schemes offer various options for optimizing and fine-
tuning with good potential for a general purpose fingerprint PAD methods. However, find-
ing proper settings which are suited best for the operational scenario can be a challenge.

3 Experimental Setup

We test the algorithm using the publicly available COLFISPOOF database and three bona
fide databases, both version of the IIITD SmartPhone Fingerphoto Database (ISPFD)
[Sa15, Ma20a] and the HDA data set [Pr22]. In addition, we conduct a test on the newly
captured UniCa-HDA database comprising bona fide samples and PAs. Here, the same
capturing setup like in the HDA database was used, but a different environmental scenario
was chosen. Along with the newly acquired bona fide samples, PAs were prepared and
captured. A thin overlay is produced using a Body Double material, which then is turned
inside out after the material has solidified. To make the PAI as realistic as possible, addi-
tional color was added to the PA material. This process makes the PAI appear as similar as
possible to the subject’s real skin color, c.f. Fig. 3 (c). The overlays are then captured in the
same setup as the bona fide fingerprints. Example images of every database are presented
in Figure 3 and an overview of the database properties is given in Table 1.

All samples are pre-processed in the same way, using the contactless fingerprint pre-
processing proposed in [Pr22]. The conducted pre-processing composed of a deep-learning-
based fingertip segmentation [Pr21a], gray-scale conversions, rotation, normalization and
contrast enhancement aligns with the state-of-the-art. It has proven to be suitable in a gen-
eral in several recognition workflows, e.g. [Ka21b, Ma20b].

19



Contactless Fingerprint Presentation Attack Detection

Tab. 2: APCERs for a fixed BPCER of 1.00% and D-EERs for using COLFISPOOF together with
different bona fide databases.

HDA ISPFDv1 ISPFDv2
APCER D-EER APCER D-EER APCER D-EER

Baseline 5.28 1.86 0.03 0.64 0.83 0.92
LOO colored silicone 0.17 0.32 0.08 0.68 0.00 0.39

LOO default color 2.41 1.85 0.00 0.54 0.00 0.43
LOO printout 14.50 2.49 0.33 0.68 3.92 2.42

LOO transparent 15.6 3.75 0.00 0.64 0.40 0.60
Average LOO 8.17 2.10 0.10 0.64 1.08 0.86
Std dev LOO ± 8.01 ± 1.43 ± 0.16 ± 0.07 ± 1.90 ± 1.06

For our evaluation, we use six protocols. The baseline scenario randomly splits the samples
of the bona fide and PAs into training (30%), validation (20%), and test (50%) partitions.
These non-overlapping partitions ensure that PAD algorithms are tested on samples which
are not considered during training and validation and, thus, guarantee a fair evaluation.
Four more advanced LOO protocols we do not split samples of each PAI rather than groups
of PAIs in subject disjoint training, validation and test sets. This method evaluates the gen-
eralization capabilities to PAIs which have not been seen during the training. For more de-
tailed information, the reader is referred to the original COLFISPOOF protocol [Ko23]. A
further protocol benchmarks the generalization capabilities to new high-quality PAs. Here,
we train and validate on the entire COLFISPOOF database in combination with one of the
bona fide databases (60% train, 40% validation) and test on the UniCa-HDA database. This
highlights the generalization capabilities in two ways: first the generalization to a new type
of PA and second the generalization from PAs contained in the COLFISPOOF database
to those from a newly captured database. This is particularly interesting, since the PAs in
the COLFISPOOF database were generated based on synthetic ridge line patterns while in
the newly captured database, PAs are generated from real fingerprints. This experiment is
referred to as cross-database experiment.

We use the Attack Presentation Classification Error Rate (APCER) vs. Bona fide Attack
Presentation Classification Error Rate (BPCER) metric standardized in ISO/IEC 30107-
3 [IS23] and the Detection Equal Error Rate (D-EER) metric to report the results of our
experiments. To make our work comparable to others, we fix the BPCER at an operation
point of 1% for the baseline as well as the LOO experiments and 5% for the cross-database
test and report the corresponding APCER.

4 Results

Table 2 gives an overview of APCERs at a BPCER of 1% and D-EERs for the baseline
and LOO experiments, whereas Figure 4 (a – c) shows the corresponding DET plots. The
results show that the selected contact-based fingerprint PAD algorithm with the incorpo-
rated adaptations is able to detect contactless fingerprint PAs. For the best performing
ISPFDv1 database, the obtained APCERs are between 0.00% and 0.33%. Except printout
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(a) HDA & COLFISPOOF (b) ISPFDv1 & COLFISPOOF

(c) ISPFDv2 & COLFISPOOF (d) UniCa-HDA

Fig. 4: DET curves obtained on the considered databases using the baseline and LOO protocols (a ±
c) and the cross-database test (d).

attacks, the method is also accurately detects PAs when trained and tested on the ISPFDv2
database. The HDA database performs worse, which is most likely caused be the low num-
ber of training data.

From the LOO experiments it might be concluded that some materials are easier to detect,
e.g. colored silicone, whereas others are harder, e.g. printouts. Printouts have the worst
detection accuracy, which might be caused by the high contrast and clear ridge pattern
and should be investigated further. Nevertheless, the selected method has in general a high
generalization capability to unseen PAIs.

21



Contactless Fingerprint Presentation Attack Detection

Tab. 3: Cross-database PAD: APCERs for a fixed BPCER of 5.00% and D-EERs for training on
COLFISPOOF together with different bona fide databases, e.g. HDA, ISPFDv1, ISPFDv2, and tested
on UniCa-HDA.

Training Test APCER D-EER

HDA & COLFISPOOF UniCa-HDA 6.75 5.99
ISPFDv1 & COLFISPOOF UniCa-HDA 56.15 19.42
ISPFDv2 & COLFISPOOF UniCa-HDA 45.63 16.65

This finding is also supported by the cross-database experiment, which is presented in Ta-
ble 3 and Figure 4 (d). Here we see that the algorithm generalizes to a certain extent to
completely unseen PAIs and a new capturing environment. In this experiment, we achieved
a D-EER of 5.99% and an APCER of 6.75% at a BPCER of 5.00% for the HDA database.
These results indicate that the algorithm generalizes well to completely unseen PAI materi-
als, real fingerprint characteristics (from synthetic ones) and a new capturing environment.
However, it should be noted that the algorithm cannot generalize to bona fide samples
captured using a different capturing setup as can be seen from Table 3. As can be seen,
training on one of the ISPFD databases and testing on the UniCa-HDA setup leads to poor
results.

5 Conclusion

In this work, we have investigated the possibilities of adapting a state-of-the-art PAD
mechanism for contact-based fingerprints to the contactless domain. We showed that the
SpoofBuster method can be adapted to a contactless scenario by a parameter refinement
and a training on contactless databases. Extensive tests showcase the effectiveness and
performance of the methods. The cross-database experiments show high generalization
capabilities to new capturing setups, but also highlighted its limitations.

Our results indicate that the considered method is well-suited also to detect PAs in the
contactless domain. Most notably, the algorithm detects PAIs which are unseen during
the training with high confidence. Furthermore, the experiments on the newly acquired
UniCa-HDA database show good potential for generalizing from synthetic PAs to PAs
from real subjects. However, more experiments and bigger databases are required to assess
the overall system performance.

Future work could be focused on extending the presented approach to a PAD method that
works for both, contactless and contact-based fingerprints. If one PAD algorithm can be
used for samples from various capture devices maintenance, effort could be reduced.
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On the Impact of Tattoos on Hand Recognition

Lázaro J. González-Soler1, Kacper M. Zyla2, Christian Rathgeb1, Daniel Fischer1

Abstract: From Native Americans, who used tattoos as a way of seducing the opposite sex, to
prisoners in the last century, who were identified by tattooed numbers, tattoos have been used for
many years for a variety of purposes. Nowadays, tattoos express affiliation or beliefs and can there-
fore serve as complementary information to identify individuals. To support forensic investigations,
hand-based biometrics have emerged as a promising technology to recognise individuals. As several
statistics have reported an increase in the use of tattoos on hands, in this paper, we investigate the
impact of tattoos on the performance of state-of-the-art hand recognition systems. To this end, we
first propose a method for generating semi-synthetic tattooed hands. A benchmark is then performed
for tattooed and non-tattooed hands. Experimental results computed on a freely available database
showed that, although in some cases the use of tattoos assists hand recognition, the observed trend
is a deterioration of recognition accuracy, indicating the sensitivity of hand recognition systems to
tattoos.

Keywords: Hand recognition, hand tattoos, semi-synthetic tattoos, forensics.

1 Introduction

The use of tattoos has experienced broad popularity over the years. According to a report
by the National Institute of Standards and Technology (NIST) (Tatt-C) [NG15], one-fifth
of US adults have at least one tattoo, ranking the US population as the third most tattooed
in the world, after Italy and Sweden. These numbers are constantly growing as it has been
shown by a research survey conducted in 20193 that also revealed that 34% of tattoos
within the US population are on the hands or wrists. Tattooed hands are a useful indicator
to identify individuals who are members of a gang or criminal organisation, thus being an
important field of interest for forensic investigators [MJJ12].

The anatomy and appearance of the hand define an emerging biometric characteristic.
Due to the broad development and great success of deep neural networks (DNNs) tradi-
tional handcrafted approaches have been recently replaced. DNNs are based on powerful
architectures that are able to learn highly discriminative features from hand images. In
2019, Afifi [Af19] proposed a public database of hand images together with a convolu-
tional neural network (CNN) for gender classification and subject identification. Follow-
ing the above idea, more recent CNN-based techniques have exploited either attention
mechanisms [Ba22a, Ba22b] or Vision-Transformers [Eb22] to improve upon the baseline
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identification performance reported in [Af19]. These techniques have achieved high recog-
nition performance in closed-set identification scenarios where the subject identity being
searched for is known to be found within the enrolled references.

To the best of our knowledge, the evaluation of the impact of tattoos on hand recognition
has not been addressed so far. In this work, we evaluate how the use of tattoos in the dorsal
area of the hand affects the identification performance of state-of-the-art hand recognition
systems. Given the lack of public databases including tattooed hands, an algorithm to
synthetically blend tattoos on the dorsum of the hand is additionally proposed.

The remainder of this article is organised as follows: Sect. 2 provides work related to
hand recognition. In Sect. 3, an overview of the proposed pipeline for blending tattoos
on the dorsum of the hand is introduced. The experimental setup including a summary
of the database used, together with the evaluated systems is presented in Sect. 4. The
experimental results are discussed in Sect 5. Conclusions are finally drawn in Sect. 6.

2 Related Work

Recently, the use of the hand in forensic investigations has gained interest in detecting both
wanted criminals and missing victims. The latest hand recognition systems map whole
hand images acquired in the visible spectrum into a latent representation using DNNs.
Afifi [Af19] introduced an annotation-rich hand database (referred to in the scientific lit-
erature as 11K Hands) consisting of 11,076 high-quality hand images of 190 subjects.
Utilising this database, Afifi proposed a dual-stream CNN-based algorithm whose recog-
nition performance values (i.e., Identification Rate (IRs) ranging from 94% to 97% for the
palmar and dorsal area, respectively) provided a first benchmark for future forensic inves-
tigations. Following the above idea, Baisa et al. [Ba22a] recently proposed a dual-stream
CNN approach based on attention mechanisms that learns both global and local features of
the hand image. The experimental results reported an IR at Rank-1 of around 95% on 11K
Hands [Af19]. Baisa et al. [Ba22b] extended the above architecture by including an ex-
tra stream and incorporating both channel and spatial attention modules. An improvement
in terms of recognition performance of around 3 percentage points (i.e., IR = 98.05%)
was attained on the right palm images compared to the results obtained in [Ba22a], (i.e.,
IR = 95.83%). In the same study, other CNNs were evaluated for hand recognition, e.g.,
ABD-Net [Ch19] and RGA-Net [Zh20b], resulting in similar recognition performance to
the system in [Ba22a]. Finally, Ebrahimian et al. [Eb22] evaluated the feasibility of using
Vision Transformers for hand recognition, resulting in an IR of 99.4% on a small set con-
sisting of 30% of the images in 11K Hands. Despite the results obtained by the techniques
described above, there is still a lack of evaluations including images of tattooed hands.

3 Generation of Tattooed Hands

Inspired by the approach in [GSRF23] which shows the feasibility of using semi-synthetic
tattoos for the segmentation of real tattoos, a generation method for blending realistic
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Fig. 1: Overview of the tattoo blending pipeline.

tattoos on the dorsal area of the hand is proposed. Fig. 1 shows a general overview which
consists of three main steps:

i) Detection of the 20 hand landmarks using Google’s MediaPipe algorithm [Zh20a].

ii) Selection of a suitable area based on a subset of the landmark coordinates (i.e., 0, 1,
5, 9, 13, 17) which define the hand’s dorsal area.

iii) Blending the tattoo onto the corresponding image at the selected area.

To correctly place the tattoo template on the hand image, a suitable area is selected af-
ter detecting the hand landmarks with Google’s MediaPipe. In contrast to the approach
in [GSRF23], which computes the tattoo position based on the segmentation map of the
input image, the proposed method finds the dorsal area defined by a subset of landmark
coordinates (i.e., the white region in Fig. 1). Then, a skin coordinate x′ = (x,y) is randomly
selected where the rectangle formed by the edges of the area, with x′ as the top-left corner,
is at least half the size of the tattoo. This way, tattoo visibility is ensured in the generated
image. The tattoo is then placed at the position x′ and blended on the hand image by multi-
plying the tattoo layer with the hand image. In a previous step, the tattoo template at hand
is randomly resized to a factor calculated over the size of the white region. Areas of the
tattoo which end up outside the skin are cut out. The final image is made more realistic by
adjusting the tattoo colour, applying a Gaussian blur and reducing its opacity. To generate
the images, the tattoo templates proposed in [Ib22] were used.
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Fig. 2: Examples of 11K Hands images (first row) and their respective tattooed hands (second row).

4 Experimental Setup

The goal of the experimental evaluation is twofold: i) investigate the impact of the use
of tattooed hands on the recognition performance of current hand recognition systems for
the closed-set scenario (i.e., the same subjects participate in both enrolment and biometric
transactions) and ii) analyse the extent to which blending tattoos in the dorsal area of
the hand increases false match rates in an open-set scenario (i.e., searched subjects are
potentially not enrolled in the gallery). To reach our goals, we define four experimental
protocols: i) non-tattooed reference and probe in a closed-set scenario, ii) non-tattooed
reference and tattooed probe in a closed-set scenario, iii) tattooed reference and probe in
a closed-set scenario, and iv) non-tattooed reference and tattooed probe in an open-set
scenario.

4.1 Databases

The 11K Hands [Af19] database is an extensive collection of over 11 thousand images
of hands collected in 2019. The samples in this database come from subjects of different
ethnicities and ages ranging from 18 to 75 years. It contains the dorsal and palmar side
images of the hands of 190 subjects on a white background (see Fig. 2, first row). For the
evaluation, the database is partitioned as in [Ba22a] and images of hands with accessories
are excluded to avoid bias to external variables. Therefore, the right and left dorsal subsets
comprise 143 and 146 identities, respectively. For each case, half of the identities are
used for training the algorithms and the remaining ones are employed to compute the
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identification performance, i.e., 72:71 for the right dorsal and 73:73 for the left dorsal,
respectively.

To evaluate the impact of using tattoos on hand recognition performance, 10 tattooed ver-
sions of each hand image of the respective evaluation subset are generated using the pro-
posed method described in Sect. 3, resulting in 21,030 generated images, i.e., 10,420 for
right dorsal and 10,610 for left dorsal (see Fig. 2, second row). It is worth noting that not
all images used as biometric transactions in the dorsal evaluation were processed, due to
a failure in the detection of their landmarks. In the final evaluation of the tattoos, 33 out
of 71 identities are considered for the right dorsal and 32 out of 73 identities for the left
dorsal.

4.2 Implementation Details

In the evaluation, state-of-the-art hand-based recognition systems are employed, i.e., MBA-
Net [Ba22b], ABD-Net[Ch19], and RGA-Net [Zh20b]. All algorithms are implemented
in PyTorch [Pa19] and trained utilising an NVidia A100 Tensor Core GPU with 40GB
DRAM. For the training and testing of the systems, the parameters indicated in the cor-
responding publications were considered. The image size was set to 256 × 256 pixels for
ABD-Net [Ch19] and RGA-Net [Zh20b] and 356 × 356 for MBA-Net [Ba22b]. In addi-
tion, the networks were initialised with their pre-trained weights in ImageNet [De09] and
optimised on 70 epochs using the Adam optimiser. As indicated in [Zh20b], the RGA-
Net architecture was trained for 600 epochs. In each case, the best-performing weights are
selected from a subset of the training set.

5 Results and Discussion

As mentioned in Sect. 3, the use of tattoos on the hand has recently gained popularity.
In this section, the results of the impact of the use of tattooed hands on the recognition
performance of the systems evaluated for closed-set (Sect. 5.1) and open-set (Sect. 5.2)
scenarios respectively are presented.

5.1 Closed-set Scenario

Fig. 3 shows the identification rates for non-tattooed (row 1), tattooed only on the probe
(row 2), and tattooed on both reference and probe (row 3) hands for left and right dorsal
hand images. To compute IRs at different rank values, we split the database into 10 disjoint
sets of enrolment and biometric transactions, each time randomly selecting one sample per
subject for enrolment and the remaining samples for identification transactions. Then the
mean and standard deviation (std) are reported. For biometric transactions of tattooed hand
images, we enrolled either a non-tattooed (row 2) or tattooed (row 3) reference from the
same probe subject. To simulate a real scenario, reference and probe hand images were
generated using the same tattoo template in the latter case (row 3).
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(a) Non-tattooed left dorsal on reference and probe. (b) Non-tattooed right dorsal on reference and probe.

(c) Tattooed left dorsal on the probe. (d) Tattooed right dorsal on the probe.

(e) Tattooed left dorsal on reference and probe. (f) Tattooed right dorsal on reference and probe.

Fig. 3: CMC curves reported by the evaluated systems on non-tattooed (3a,3b), tattooed only on
probe (3c,3d), and tattooed on reference and probe (3e,3f) images from 11K Hands.

Note that, similar IRs across different rank values are achieved for right and left dorsal
subsets. While MBA-Net reports, on average, the best IR at Rank-1 for non-tattooed right
dorsal images, i.e., IRs ≥ 98%, ABD-Net yields the best IRs for the respective left dorsal
subset at the same rank. Those approaches (i.e., MBA-Net and ABD-Net) also achieve
an IR ≥ 99.9% in the Rank-5, indicating that the searched identities of transactions are
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retrieved by the system with almost 100% success in the top 5 positions of the candidate
list. From a forensic point of view, high IRs for Ranks higher than 1 are still interesting,
as the number of possible suspects is reduced. Regarding RGA-Net, lower performance in
terms of IRs can be observed, i.e., an IR around 86% is obtained at Rank-1.

Comparing the results in Fig. 3a and 3b, all networks report on average a performance
deterioration for tattooed hands, see Fig. 3c and 3d: the IRs decrease down to 97% and
92% in Rank-1 for right and left dorsal sets for the best-performing approaches (i.e., MBA-
Net and ABD-Net). Furthermore, the std values increase regarding the ones depicted for
non-tattooed hands. This deterioration in recognition performance is due to the fact that
the features calculated by both architectures describe mainly textural details. Therefore,
they are prone to fail on tattooed hands. In contrast to MBA-Net and ABD-Net, RGA-
Net obtains on average similar results for tattooed and non-tattooed hands, i.e., IRs in
around 87% and 88% for right and left dorsal images, respectively. However, compared
to the other methods, this technique obtains the worst std values for subjects with tattooed
hands.

Finally, note that the biometric performance yielded by the networks when both reference
and biometric transactions contain tattooed hands (see Fig. 3e and 3f) is similar to that of
non-tattooed hands in Fig. 3a and 3b. Observe that the use of tattoos can positively assist
hand recognition in most cases: an improvement in the IR values for the left dorsal can
be perceived compared to the baseline (e.g., 89% vs. 87.50% at Rank-1 for RGA-Net).
Note also that the results reported for the left dorsal differ from those for the right dorsal.
This is because the tattoo templates were randomly selected by subject and hand; the same
subject could therefore have different tattoos on the left and right hand. A direct result of
these observations is focused on the use of images of tattooed hands to train the algorithms.
Thus, the performance shown in Fig. 3c and 3d can be significantly improved.

5.2 Open-set Scenario

The identification performance of the available hand-based methods is also reported in
Fig. 4 for an open-set scenario. To compute mated and non-mated comparisons, we per-
form a 10-fold cross-validation evaluation. Thus, each time, the subjects belonging to the
validation fold at hand are employed for computing the non-mated comparisons, while the
remaining subjects from the other subsets are used for the mated comparisons. For the
assessment of the impact of the tattoos, the non-tattooed subjects in the validation fold in
question are replaced by the same subjects with tattooed hands.

Similar to the results in Fig. 3, MBA-Net achieves the best performance (dark blue thick
lines), resulting in a FNIR = 12.03% and 10.00% for a high-security threshold, i.e., FPIR
= 0.1% on the right and left dorsal, respectively: 1 out of 1000 non-mated transactions is
accepted, while at most 12 out of 100 mated transactions are rejected by the recognition
system. Note that ABD-Net yields better performance than MBA-Net on the left dorsal
for the closed-set scenario (see Fig. 3a). However, the latter outperforms the ABD-Net
in the open-set scenario for small FPIR values, i.e., high-security thresholds. It can be
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(a) Left dorsal

(b) Right dorsal

Fig. 4: DET curves for left and right dorsal images.

also observed that the use of tattooed hands signi®cantly affects the performance of the
architectures: FNIR values at a FPIR=0.1% are above 60% and 80% respectively for right
and left dorsal, indicating the sensitivity of the current hand recognition systems to tattooed
hands. Finally, we note that RGA-Net is less sensible to tattooed hands than the other
approaches. This is due to some attention mechanisms which leverage both texture and
shape properties.

6 Conclusions

In this work, we evaluated the impact of tattoos on the biometric performance of hand
recognition systems. To do that, an approach which synthetically blends tattoo templates
on real hand images, from the 11K Hands database, is proposed. In essence, this syn-
thetic generator ®rst computes the reference points of the input hand image to draw a

33



On the Impact of Tattoos on Hand Recognition

random position where to place the tattoo. Using the 11K Hands database, which contains
around 11,000 images, 10 tattooed samples per image were generated. A benchmark of the
most competitive hand recognition systems was then established. Experimental results on
a closed-set scenario showed, on average, a decrease in the performance of the schemes,
as well as a high standard deviation indicating their sensitivity to these tattooed hands. In
addition, a most challenging evaluation on an open-set setup reported a significant per-
formance deterioration for high-security thresholds: FNIR values increased from roughly
10% to over 60% for an FPIR = 0.1% when the tattooed hands were presented to the sys-
tems as non-mated transactions. One solution that emerges from this work is the use of
the proposed method as a data augmentation strategy to generate tattooed hands that can
be considered as training data for recognition systems. In this way, the performance of
hand recognition systems against tattooed hands can also be improved. In addition, further
research may also propose inpainting techniques to remove tattoos from hands.
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A RISE-based explainability method for genuine and 
impostor face verification 

Naima Bousnina1, João Ascenso2, Paulo Lobato Correia2, Fernando Pereira2 

Abstract: Heat Map (HM)-based explainable Face Verification (FV) has the goal to visually 
interpret the decision-making of black-box FV models. Despite the impressive results, state-of-the-
art FV explainability methods based on HMs mainly address genuine verification by generating 
visual explanations that reveal the similar face regions which most contributed for acceptance 
decisions. However, the similar face regions may not be the unique critical regions for the model 
decision, notably when rejection decisions are performed. To address this issue, this paper 
proposes a more complete FV explainability method, providing meaningful HM-based 
explanations for both genuine and impostor verification and associated acceptance and rejection 
decisions. The proposed method adapts the RISE algorithm for FV to generate Similarity Heat 
Maps (S-HMs) and Dissimilarity Heat Maps (D-HMs) which offer reliable explanations to all 
types of FV decisions. Qualitative and quantitative experimental results show the effectiveness of 
the proposed FV explainability method beyond state-of-the-art benchmarks. 

Keywords: Face verification explainability, Genuines and impostors, Explainability heat maps 

1 Introduction 

The field of Face Verification (FV) has demonstrated remarkable performance advances 
since the adoption of deep learning technology. However, alongside their impressive 
performance, FV models remain black-box tools with complex and unintuitive decision-
making processes. Therefore, it became critical to understand and explain their decision-
making to further improve their performance and make this technology more acceptable 
by the society at large.  

The idea underlying FV explainability is to develop reliable methods that offer insights 
into why two face images have/have not been matched. Various explainability methods 
have been proposed to create post-hoc explanations for black-box FV models which are 
explanations created while not interfering with the model working process itself. 
Generally, post-hoc explainability methods may be grouped into model-agnostic and 
model-specific methods [Moln19]. While the former can be plugged into any FV model 
to explain its behavior, the latter are designed for a single or a specific type of FV 
models. Both categories may generate different types of explainability outputs, notably 
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face features relevance and saliency/heat maps (HMs). 

Several available works [Mery22] [MeMo22] have explored the approach of explaining 
FV decisions with post-hoc and model-agnostic explainability methods using HMs. 
Those works typically define FV explainability as a way to highlight similar face regions 
which the FV model believes contribute the most for acceptance decisions when genuine 
face pairs are processed. However, explaining a FV decision does not simply mean 
highlighting the critical similar face regions in the probe-gallery pair. In fact, dissimilar 
face regions are also critical to offer good explanations, notably when rejection decisions 
are performed. In this context, it is beneficial from an explainability point of view that an 
HM-based FV explainability method creates two types of HMs to explain the various 
possible FV decisions, notably Similarity Heat Maps (S-HMs) to highlight the similar 
face regions when the FV model believes the probe-gallery pair belongs to the same 
individual, and Dissimilarity Heat Maps (D-HMs) to highlight the dissimilar face regions 
when the FV model believes the probe-gallery pair belongs to different individuals. 

In this context, this paper proposes a post-hoc and model-agnostic RISE-based FV 
explainability method (FV-RISE) to explain the decision-making of any FV model using 
HMs, thus without accessing or modifying the inner architecture of the FV model; a key 
novelty of the proposed method is that it addresses both genuine and impostor 
verification attempts, as well as acceptance and rejection decisions. The proposal is 
based on the Randomized Input Sampling for Explanation (RISE) tool, originally 
designed to estimate the pixels’ importance in the context of object classification tasks, 
by applying random masks to the input image and using the output class probabilities as 
weights to compute a HM as a weighted sum of the masks. The choice of the RISE tool 
is motivated by the adoption of the pixel-wise perturbation-based approach, with the 
potential to generate more spatially accurate explainability heat maps. In the proposed 
FV-RISE, the created FV explanation depends on the decision, notably whether an 
acceptance or rejection verification decision is made. The decision-making is explained 
using a single HM according to the type of decision, notably the S-HM is used when a 
True/False Acceptance decision is performed, while the D-HM is used when a 
True/False Rejection decision is performed. The experimental results not only show that 
FV-RISE is able to offer reliable explanations for all four possible FV cases (genuine/ 
impostor and acceptance/rejection), but it also offers better FV explanations for the cases 
that state-of-the-art methods are able to explain.   

The remainder of this paper is organized as follows. A brief review of the stat-of-the-art 
on HM-based FV explainability is provided in Section 2. Section 3 proposes the novel 
FV-RISE explainability method. Section 4 reports and analyses the obtained 
experimental results. Finally, Section 5 concludes the paper and discusses the potential 
directions for future work. 
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2 Related work 

Recently, HM-based explainability methods have been largely used to explain the 
decision-making of black-box FV models. Generally, these methods may be classified 
into two categories. The first category requires access to the intrinsic architecture or the 
model gradient information [YTLS19] [ZhYC21] [CaBy18]. For example, Yin et al. 
[YTLS19] proposed a spatial activation diversity loss to learn more structured face 
features to encourage filters to capture more discriminative visual cues and push the 
interpretable representations to be more discriminative. [ZhYC21] introduced a novel 
explainability method for deep metric learning and their applications, e.g. face 
recognition, person re-id, image retrieval, etc. The key idea of this method is to use a 
point-to-point activation response technique to decompose the HM, targeting to uncover 
the relationship between each activated region between the probe and gallery pair. 
[CaBy18] explored the use of network attention and contrastive network attention for 
visualizing discriminative features for face recognition; this work demonstrated through 
the hiding game technique that excitation backpropagation best identifies the face 
regions contributing to a correct recognition. 

The second category generates the HMs by performing random perturbations, e.g. noise, 
occlusion, etc., on the input/probe images and measures the perturbations’ impact on the 
FV model performance [MeMo22] [Mery22] [KTHR23]. For example, Mery and Morris 
[MeMo22] proposed the so-called AVeraGe (AVG) explainability method which 
consists of six sub-methods to generate six different similarity HMs. Four of these HMs 
are generated by removing and aggregating relevant face regions and measuring the 
individual contributions of these regions as well as in collaboration, while the other two 
HMs are combinations of the first four HMs. [Mery22] proposed the so-called MinPlus 
method which consists of six sub-methods to generate six similarity HMs using a similar 
removal and aggregation idea as in [MeMo22]. Both AVG and MinPlus methods differ 
in three main characteristics, notably: i) the way the first four HMs are generated; ii) the 
way the first four HMs are combined; and iii) in contrast to AVG designed for FV only, 
MinPlus may be applied to any face analysis task. The experimental results 
demonstrated that MinPlus generates better HMs and showed promising results when 
compared with state-of-the-art explainability methods. Knoche et al. [KTHR23] 
followed Mery’s [MeMo22] strategy to design three explainability methods, each 
generating a different HM, highlighting similar and dissimilar face regions contributing 
to the FV decision. While these three explainability methods generate HMs highlighting 
only the higher degree similarities areas using one single color, the proposed FV-RISE 
method generates similarity and dissimilarity HMs highlighting areas with varying 
degrees of similarity/dissimilarity using a color code ranging from blue to red. 

3 Proposed FV-RISE explainability method 

The key idea behind the proposed FV-RISE method is to generate S-HMs and D-HMs to 
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explain the FV decisions according to the type of decision performed, notably 
acceptance or rejection, for both genuine and impostor verification attempts. More 
precisely, S-HMs and D-HMs are used to explain the acceptance and rejection cases, 
respectively, regardless of true or false FV decisions being performed. The FV-RISE 
method is inspired by the random-masking approach used by RISE [PeDS18] to explain 
object classification, with the novelty that FV-RISE applies that approach to the FV task. 
Fig. 1 shows the overall architecture of the proposed FV-RISE method which main 
modules are explained in the next subsections.  

 

Fig. 1: FV-RISE explainability method overall architecture. 

3.1 Reference similarity score and similarity scores for masked images 

As shown in the grey area in Fig. 1, the FV-RISE process starts by feeding the probe and 
gallery images (PI, GI) into the Face Features Extractor to obtain their face features, fP 
and fG. Then, the reference similarity score (Ref_SS) for the FV decision is computed for 
the selected similarity metric. 

As a second step (see the pink area in Fig. 1), the RISE masking technique [PeDS18] is 
adopted to randomly generate N masks, Mi, i ∈ {1, 2, … N}, with values between 0 and 1. 
In summary the mask generation process is performed through three key steps, notably: 

1. Generation of N binary masks with w×h resolution smaller than the W×H probe 
image resolution. The percentages of 0 and 1 values in each generated mask is 
defined by setting the mask pixels to 0 with a probability p and to 1 with a 
probability (1-p). 

2. Up sampling the generated masks to a resolution of (w+1)CW×(h+1)CH using 
bilinear interpolation, where CW×CH = (W/w)×(H/h). 
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3. Cropping each up sampled mask to a W×H resolution. The start of the cropping is 
set with uniformly random mask pixels’ locations going from (0,0) up to (CW, CH) 
to get masks with W×H resolution with values between 0 and 1. 

The generated masks are basically used to pixel-wise perturb random regions of the face 
and measure the impact of masking randomized regions on the FV model’s performance. 
Each of the generated N masks is pixel-wise multiplied by the probe image, PI, to 
produce N masked probe images PIi, i ∈ {1, 2, … N}. Each of the generated masked 
probe images is fed into the Face Features Extractor to capture its corresponding face 
features, fi, i ∈ {1, 2, … N}. Finally, the similarity scores Si, i ∈ {1, 2, … N} are computed 
between the unmasked gallery image GI and each of the masked probe images PIi, i ∈ 
{1, 2, … N}. The similarity score computed between each masked probe image and the 
gallery image reveals the importance of the masked face region, when compared to the 
reference similarity score Ref_SS, for the FV decision. 

3.2 S-HM and D-HM generation 

Once the similarity scores Si, i ∈ {1, 2, … N} are obtained, a set of steps are performed to 
generate S-HM and D-HM (see the green block in Fig. 1), notably: i) the similarity 
scores Si, i ∈ {1, 2, … N} are sequentially compared with the reference similarity score 
Ref_SS. If Si is smaller than Ref_SS, the masked face region is considered important for 
an acceptance decision, meaning that it corresponds to a similar face region in the probe-
gallery pair; otherwise, it is considered non-important for an acceptance decision, 
meaning that it is a dissimilar face region in the probe-gallery pair. Using this 
comparison, the N generated masks are categorized into masks for similar regions and 
masks for dissimilar regions. ii) The absolute difference between Ref_SS and each Si is 
computed as the similarity weight for the corresponding mask; the higher this similarity 
weight, the more confident is the FV model on its decision, thus changing the HM 
pixels’ color from blue colors to red ones. iii) The weighted sum of the masks multiplied 
by the corresponding similarity weights is computed for similar and dissimilar face 
regions. Finally, the generated S-HM and D-HM are superimposed over the original 
probe image luminance to generate the so-called Facial S-HMs (FS-HM) and Facial D-
HMs (FD-HM), respectively, which allow a better visualization of the FV model 
decision HM explanation. 

The FV decision is explained using one single HM (S-HM or D-HM), depending on the 
type of decision. More precisely, the S-HM is used to explain True Acceptance 
(genuine) or False Acceptance (impostor) decisions, since it highlights the face regions 
contributing most for a FV positive decision (high verification similarity), while D-HM 
is used to explain True Rejection (impostor) or False Rejection (genuine) decisions, 
since it highlights the face regions contributing most for a FV negative decision (low 
verification similarity). 
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4 Experimental assessment 

This section reports the quantitative and qualitative performance assessment for the 
proposed FV-RISE explainability method, whenever possible in comparison with state-
of-the-art explainability benchmarks.  

4.1 Datasets and benchmarks 

The example test face images used in this paper are selected from three face recognition 
datasets, notably LFW [RMBL08], CPLFW [ZhDe18], and Webface-Occ [HWWJ21], in 
order to assess the behavior of the FV model in differently challenging scenarios, such as 
partial face occlusion and head pose variation. In addition, a subset of the LFW 
[RMBL08] dataset with 1000 matching pairs of images is used for the quantitative 
explainability performance. 

The proposed FV-RISE explainability method is compared with four explainability 
benchmarks from the literature, notably LIME [RiSG16], AVG [MeMo22], Grad-CAM 
[SCDV17] and MinPlus [Mery22].  

For the LIME, AVG, and MinPlus benchmarks, the software implementations available 
in the Google Colab material [Mery23] used in [Mery22] were adopted, whereas for 
Grad-CAM, the software implementation version available in the GitHub project 
[Zile23] of the [ZhYC21] ‘official’ implementation was adopted, providing the adapted 
Grad-Cam approach for face verification task. 

4.2 Experimental set-up 

While the proposed explainability method is agnostic to the FV model and similarity 
metric, the experiments are performed using the ArcFace face recognition model trained 
with the MS1MV2 dataset built with images from the MS1M dataset [GZHH16]. 
Additionally, the cosine similarity is used as similarity metric.  

The face areas in the images from the selected face recognition datasets are detected 
using the RetinaFace face detector [DGVK20] and cropped using the facial area 
coordinates provided by the RetinaFace detector. In addition, to satisfy the image 
resolution constraint imposed by ArcFace face verification model, the cropped face 
images are resized to a spatial resolution of W×H=112×112 pixels. 

In the masks’ generation stage, the number of generated masks is set to N=10000 to 
obtain more accurate similarity and dissimilarity heat maps. In addition, the conducted 
experiments demonstrated that an appropriate probability value is p = 0.1. Furthermore, 
the masks are initially generated with a resolution of w×h=5×5 before bilinear 
interpolation. 
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4.3 Qualitative explainability performance 

This section presents qualitative explainability results for four types of FV decisions, 
notably depending on whether a genuine or impostor face is processed, and an 
acceptance or rejection FV decision is made.  

1. Genuine case: True Acceptances and False Rejections 

Fig. 2 shows the HMs generated using the proposed FV-RISE method for the genuine 
pair examples, notably (F)S-HMs for True Acceptance decisions (left) and (F)D-HMs 
for False Rejection decisions (right). Regarding the True Acceptance decisions (left), it 
can be observed that the S-HMs duly highlight the face regions that the FV model 
believes to be similar in the probe-gallery pair, and thus have contributed to a True 
Acceptance decision. For example, in the second row (left), the FV model finds that the 
mouth, nose and eyes regions are similar enough to classify the probe-gallery pair as the 
same individual. 

For the False Rejection decisions (right), it can be observed that the D-HMs highlight the 
face regions that the FV model finds to be dissimilar in the probe-gallery pair, and made 
it fail to identify the pair as the same individual. For example, in the first row (right), the 
FV model finds that mostly all the face regions – except the subject right eye region – 
are dissimilar, and thus have contributed to a False Rejection (particularly, his left face 
side, which is missing information in the gallery image). 

 

Fig. 2: HM explanations (red rectangle) for genuine pairs: True Acceptance (left) and False 
Rejections (right) face verification decision examples. 

2. Impostors case: True Rejections and False Acceptances  

Fig. 3 shows the HMs generated using the FV-RISE method for the impostor pair 
examples, notably (F)D-HMs for the True Rejection decisions (left) and (F)S-HMs for 
False Acceptance decisions (right). Regarding the True Rejection decisions (left), it can 
be observed that the D-HMs highlight the face regions that the FV model finds dissimilar 
in the probe-gallery pair, which leads to correctly classify the pair as different 
individuals. For example, in the first row (left), the FV model finds that the eyes and the 
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mouth regions are dissimilar enough in the probe-gallery pair to correctly make a 
rejection decision. 

Regarding the False Acceptance decision (right), it can be observed that the S-HMs 
highlight the face regions that the FV model finds similar in the probe-gallery pair to 
mistakenly classify the pair as being from the same individual. For example, the FV 
model finds that the nose and eyes regions (resp. the nose region) are similar enough for 
the first-row pair (resp. second-row pair) to falsely make an acceptance decision. 

 
Fig. 3: HM explanations (red rectangle) for impostor pairs: True Rejections (left) and False 

Acceptance (right) face verification decision examples. 

Fig. 4 shows a comparison of the FV-RISE method with four explainability benchmarks. 
Since the explainability benchmarks do not produce D-HMs, the comparison is 
performed with S-HMs only. Fig. 4 shows that the proposed FV-RISE method 
outperforms the considered explainability benchmarks by generating more accurate S-
HMs, notably by focusing on the important face regions in a more compact way even 
when occluded gallery images are processed, which better explain the FV decisions. 
While the AVG and MinPlus methods also succeed in providing good explanations, their 
S-HMs highlight a larger part of the face making them less precise. In addition, the 
comparison with the LIME and Grad-Cam methods adapted for FV demonstrates that 
both benchmarks generate less meaningful explainability heat maps. 

 
Fig. 4: (F)S-HMs comparison for five FV explainability methods including four benchmarks. 
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4.4 Quantitative explainability performance 

This section reports the quantitative explainability performance assessment for the FV-
RISE method, notably in comparison with the four considered benchmarks, using the 
Recall metric when the faces are manipulated through the so-called deletion and 
insertion processes proposed in [PeDS18] and adapted for the FV task. 

Since the benchmarks do not produce D-HMs, and thus cannot deal with impostors’ 
cases, a fair comparison requires that the comparison is performed using only the S-
HMs. This motivates the selection of the Recall metric which is computed as the ratio 
between the number of True Acceptances and the sum of the number of True 
Acceptances with the number of False Rejections. The deletion and insertion processes 
manipulate the probe image by sequentially deleting or inserting the most important 
pixels in the probe image and measuring the impact on the FV model’s performance. 
Specifically, the deletion process starts with the original probe image and successively 
masks/removes a growing percentage of pixels with the highest S-HM importance in the 
original probe image; the similarity score for the new probe-gallery pair is computed for 
each percentage of important pixels removed. On the other hand, the insertion process 
starts with a black image, and successively inserts a growing percentage of pixels with 
the highest S-HM importance in the starting black image; the similarity score for the new 
probe-gallery pair is computed for each percentage of important pixels inserted. 

The intuition behind this performance assessment method is that the S-HM reliably 
highlights the most important face regions with an importance score for the FV decision 
with the selected FV model. In this context, the faster the Recall drops/rises for the 
deletion and insertion metrics, respectively, the more accurate are the S-HMs in terms of 
explainability power. 

For the experiments reported in this subsection, the deletion and insertion processes are 
conducted on a subset of the LFW dataset with 1000 genuine pairs and the Recall for the 
FV model is measured for the whole subset for each percentage of pixels deleted or 
inserted. Fig. 5 shows the Recall for FV-RISE and four benchmarks, notably for the 
deletion and insertion processes on the left and right, respectively. The analysis of the 
Recall curve on the left shows that the FV model’s Recall decreases more rapidly for 
FV-RISE than for the benchmarks while removing the most important pixels; in the 
same direction, the analysis of the Recall curve on the right shows that the FV model’s 
Recall increases more rapidally for the FV-RISE than for the benchmarks while inserting 
the most important pixels. Both behaviors allow concluding that the proposed FV-RISE 
method generates the most accurate explainability S-HMs for the used LFW subset. It 
can also be observed that MinPlus shows a good performance among the four considered 
state-of-the-art explainability benchmarks. 

44



 
      Naima Bousnina, João Ascenso, Paulo Lobato Correia, Fernando Pereira  

 

Fig. 5: Recall versus percentage of manipulated pixels: deleted (left) and inserted pixels (right). 

5 Conclusions and future work 

This paper adapts the RISE algorithm to propose a novel FV explainability method 
which is able to explain any type of FV decision. More specifically, the proposed FV-
RISE method generates S-HMs and D-HMs to explain the True/False Acceptance and 
True/False Rejection decisions, respectively. The experimental results show that the 
proposed method generates qualitatively reliable FV decision explanations for any FV 
case; moreover, it is quantitatively shown that the FV-RISE S-HMs-based explanations 
are more accurate when compared with relevant state-of-the-art explainability 
benchmarks.  

A potential future direction would be to evaluate and compare the proposed FV-RISE 
method performance with multiple FV models and similarity metrics. Additionally, the 
proposed FV-RISE method can be adapted to also explain face identification decisions. 

Acknowledgements 

This work has been partially supported by the European CHIST-ERA program via the 
French National Research Agency (ANR) within the XAIface project (grant agreement 
CHIST-ERA-19-XAI-011) and FCT/MEC under the project UID/50008/2020. 

 

 

 

 

45



 
A RISE-based explainability method for genuine and impostor face verification       

References 

[CaBy18]  Castanon, G.; Byrne, J.: Visualizing and Quantifying Discriminative Features for 
Face Recognition. In: IEEE International Conference on Automatic Face & Gesture 
Recognition, Xi'an, China, 2018. 

[DGVK20]  Deng, J. et.al.: RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild. 
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 
WA, USA, 2020. 

[GZHH16]  Guo, Y. et.al.: MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face 
Recognition. In: Leibe, B.; Matas, J.; Sebe, N.; Welling, M. (Hrsg.): Computer 
Vision – ECCV 2016, Lecture Notes in Computer Science. Bd. 9907. Cham: 
Springer International Publishing, Amsterdam, The Netherlands, 2016. 

[HWWJ21]  Huang, B. et.al.: When Face Recognition Meets Occlusion: A New Benchmark. In: 
IEEE International Conference on Acoustics, Speech and Signal Processing. 
Toronto, ON, Canada, 2021. 

[KTHR23]  Knoche, M. et.al.: Explainable Model-Agnostic Similarity and Confidence in Face 
Verification. In: IEEE/CVF Winter Conference on Applications of Computer 
Vision Workshops. Waikoloa, HI, USA, 2023. 

[MeMo22]  Mery, D.; Morris, B.: On Black-Box Explanation for Face Verification. In: 
IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, 
USA, 2022. 

[Mery22]  Mery, D.: True Black-Box Explanation in Facial Analysis. In: IEEE/CVF 
Conference on Computer Vision and Pattern Recognition Workshops. New 
Orleans, LA, USA, 2022. 

[Mery23]  Mery D., MinPlus XAI Facial Analysis, 
https://colab.research.google.com/drive/1AL2aEEyZOWJTyTaspFQcry_1g0E4b4x
5?usp=sharing, Stand: 19.08.2023. 

[Moln19]  Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box 
Models Explainable. 2end Edition, Independently Published, 2019. 

[PeDS18]  Petsiuk, D.; Das, A.; Saenko, K.: RISE: Randomized Input Sampling for 
Explanation of Black-box Models. arXiv:1806.07421v3 (2018). 

[RiSG16]  Ribeiro, M. et.al.: Why Should I Trust You?: Explaining the Predictions of Any 
Classifier. arXiv:1602.04938v3 (2016). 

[RMBL08]  Huang, G. B. et.al.: Labeled Faces in the Wild: A Database for Studying Face 
Recognition in Unconstrained Environments. In: Workshop on Faces in’Real-
Life’Images: Detection, Alignment, and Recognition. Marseille, France, 2008.  

46



 
      Naima Bousnina, João Ascenso, Paulo Lobato Correia, Fernando Pereira  

[SCDV17]  Selvaraju, R. R. et.al.: Grad-CAM: Visual Explanations from Deep Networks via 
Gradient-Based Localization. In: IEEE International Conference on Computer 
Vision. Venice, Italy, 2017. 

[YTLS19]  Yin, B. et.al.: Towards Interpretable Face Recognition. In: IEEE/CVF International 
Conference on Computer Vision. Seoul, South Korea, 2019. 

[ZhDe18]  Zheng, T.; Deng, W.: Cross-pose LFW: A Database for Studying Cross-pose Face 
Recognition in Unconstrained Environments. Beijing University of Posts and 
Telecommunications, Technical Report, 2018. 

[ZhYC21]  Zhu, S.; Yang, T.; Chen, C.: Visual Explanation for Deep Metric Learning. In: 
IEEE Transactions on Image Processing, vol. 30, S. 7593-7607, 2019. 

[Zile23]  Zilence J., Visual Explanation for Deep Metric Learning Official Implementation, 
https://github.com/Jeff-Zilence/Explain_Metric_Learning, Stand: 19.08.2023. 

 

47



N. Damer, M. Gomez-Barrero, K. Raja, C. Rathgeb, A. Sequeira,
M. Todisco, and A. Uhl (Eds.): BIOSIG 2023,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023

Unified Face Image Quality Score based on ISO/IEC
Quality Components

Praveen Kumar Chandaliya, Kiran Raja, Raghavendra Ramachandra, Christoph Busch 1

Abstract: Face image quality assessment is crucial in the face enrolment process to obtain high-
quality face images in the reference database. Neglecting quality control will adversely impact the
accuracy and efficiency of face recognition systems, resulting in an image captured with poor per-
ceptual quality. In this work, we present a holistic combination of 21 component quality measures
proposed in “ISO/IEC CD 29794-5” and identify the varying nature of different measures across
different datasets. The variance is seen across both capture-related and subject-related measures,
which can be tedious for validating each component metric by a human observer when judging the
quality of the enrolment image. Motivated by this observation, we propose an efficient method of
combining quality components into one unified score using a simple supervised learning approach.
The proposed approach for predicting face recognition performance based on the obtained unified
face image quality assessment (FIQA) score was comprehensively evaluated using three datasets
representing diverse quality factors. We extensively evaluate the proposed approach using the Error-
vs-Discard Characteristic (EDC) and show its applicability using five different FRS. The evaluation
indicates promising results of the proposed approach combining multiple component scores into a
unified score for broader application in face image enrolment in FRS.

Keywords: Biometrics, ISO/IEC face quality components, Face recognition system, Face image
quality assessment.

1 Introduction

Owing to their convenience, unobtrusiveness, and enhanced performance, Face Recogni-
tion Systems (FRS) have become widely adopted in recent years for applications such as
forensic investigations and border controls. As these systems have become a cornerstone
element in our security infrastructure, their reliability is very important. The performance
of facial recognition systems depends on the quality of the images presented to them.
Reference face images of higher quality are expected to support better recognition perfor-
mance, and poor-quality images can degrade the performance of these systems on all tasks.
Assessing quality itself remains a challenge [Me22, CAN23]. Several studies in the exist-
ing literature have considered dealing with low-quality images and developing robust FRS
to account for low quality [CY23]. While this is a positive aspect of technology advance-
ment, enrolment systems need high-quality images for different use cases. For instance, a
high-quality face image is needed in the passport application process, which a human ex-
pert (e.g., passport issuing officer) can also use to verify the identity and confirm the pre-set
quality standards. Furthermore, a low-quality face image can lead to incorrect decisions
1 Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
{praveen.k.chandaliya, kiran.raja, raghavendra.ramachandra, christoph.busch}@ntnu.no
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owing to perceptible face regions (occlusion or bad illumination) [Sc22, CSN20]. ISO/IEC

Existing - ISO/IEC CD 29794-5 Our Contributions
Fig. 1: Contributions of this work in unifyed the ISO/IEC CD 29794-5 quality components

29794-5:2023 [IS23] is intended to standardise face image quality measures and there-
fore categorizes factor-specific measures as subject-related or capture-related. ISO/IEC
29794-5:2023 [IS23] proposes independent quality components to assess different aspects
of a face image such as Brightness (BR), Constrast (CO), Defocus (DF), Dynamic Range
(DR), Illumination Uniformity (IU), Under-exposure (UE), Over-exposure (OE), Sharp-
ness (SH), Kurtosis (KU), Skewness (SK), Inter eye distance (IED), Single face subject
(SFS), Mouth closed (MCF), Eyes open (EOS), Horizontal left shift face (HLF), Horizon-
tal right shift face (HRF), Vertical down shift face (DSF), Vertical upward shift face (USF),
Pitch angle (PA), Roll angle (RA), Yaw angle (YA). However, recent deep learning sys-
tems provide a holistic quality measure for face images. Thus, developing a unified quality
score for ISO/IEC CD 29794-5 makes it possible for operational systems to obtain one
score (e.g., similar to NFIQ for fingerprints [Ta21] or to compare it against a unified score
of DL-based systems. In this work, we combined the quality components of ISO/IEC CD
29794-5 to a single quality score using well-tested machine learning techniques (MLT)
such as Random Forest (RF), Decision Tree (DT), and XGBoost (XB). We demonstrated
that RF, DT, and XGBoost can be used to obtain a unified score for different databases,
FRS, and FIQA measures. We assert the validity of the idea by evaluating it on three dif-
ferent public face datasets such as Labeled Faces in the Wild (LFW) [Hu07], XQLFW
[KHR21], and color FERET [Ph98] to cover different kind of use cases. The contributions
of this work are summarized as follows:

• a new approach towards a unified face image quality score using ISO/IEC 29794-5
that include 10 capture-related measures and 11 subject-related measures as shown
in Figure 1.

• an extensive evaluation of the proposed method for obtaining a unified score as a
predictor for the FRS performance using the Error-vs-Discard Characteristic (EDC).

• the evaluation is demonstrated on three diverse datasets with various quality factors
using state-of-the-art supervised and unsupervised FIQA and diverse FRS.

In the rest of the paper, we present a set of related works in Section 2. Section 3 presents
a detailed method description. Section 4 presents an experimental setup and evaluation.
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Section 5 presented the results. Section 6 discusses the limitations of this work. In the final
Section 7, the conclusion is discussed.

2 Related Work

While there exist a number of works for estimating the quality of face images, in this
section, we present the most relevant works related to our work. A recent survey of this
comprehensive picture can be found in [Sc22]. A set of standards has been proposed to
ensure face image quality by constraining capture requirements, such as ISO/IEC 39794-5
[IS19] and ICAO 9303 [In21]. Assessment of face images quality is typically divided into
capture-related measures that are affected by external circumstances caused by the capture
device (such as brightness, illumination, and motion blur) and subject-related measures
(such as facial expression, pose, and occluded facial parts) [Sc22].

FIQA approaches that include supervised learning algorithms based on human or artifi-
cially constructed quality labels have become increasingly popular because of their perfor-
mance [BVS13, ZZL17, KGV20, RM14, Wa17]. The utilized algorithms include cumu-
lative distribution with an SVM-based approach [BVS13], Spearman and Kendall rank-
order correlation coefficient-based learning [ZZL17], Gaussian function-based de-focus,
and motion blur intensity [KGV20]. Wasnik et al.[Wa17] examined FIQA in the context of
smartphone-based FR, evaluating eight FIQAs specifications and proposed a vertical edge
density FIQA for lighting and pose symmetry.

However, human perception may not always correlate with the details sought by the FRS
and utility values derived from comparison scores. They rely on an error-prone labeling
approach and require large-scale training datasets. SER-FIQ [Te20] is an unsupervised
learning-based method that measures the face recognition model-specific quality by com-
paring the output embeddings of several randomly chosen sub-networks without requiring
any ground truth quality score training labels. Supervised learning-based MagFace ap-
proach from Meng et al.[Me21] integrates FIQA within the FRS. This approach works
by extending ArcFace [De19] training loss, changing the angular margin to a magnitude-
aware angular margin, and adding magnitude regularization. Another supervised learning-
based CR-FIQA is a recent face image quality assessment method introduced by Boutros et
al.[Bo23], which estimates the quality of a facial image by predicting its relative classifia-
bility. The classifiability of an image is measured based on the location of the feature repre-
sentation in the angular space with respect to its class center and the nearest negative-class
center. However, these methods incur additional computational costs or network blocks,
which complicates their use in conventional face systems. So far, research on FIQA has di-
rectly utilized the FRS model during FIQA model inference without FIQA model training
on ground truth quality scores. On the other hand, hybrid FRS/FIQA approaches simul-
taneously train FRS and FIQA as part of a single integrated framework, generating both
face recognition and quality assessment output during inference.
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2.1 ISO/IEC 29794-5 and Uni® ed FIQA Score

While holistic FIQA scores are based on DL methods, ISO/IEC 29794-5 and its reference
implementation OFIQ will typically be used in operational settings for various purposes,
such as enrolment into national ID databases. Further, looking into each qaulity component
can be tedious, and obtaining a baseline score decreases the labor involved in rejecting
an image or in understanding the component on which the captured subject has to act.
Thus, there is a need to combine the component measures into a uni®ed score, making
it compatible with DL-based FIQA without explicit ground truth annotation. A possible
solution is to use the quality score provided by DL systems as the ground truth to create
good and bad classes corresponding to the face quality vector obtained from different
component measures. Using the ground truth provided by the DL-based FIQA, a classi®er
can be trained to obtain a uni®ed score from the component measures.

Face
Images

Hiqh
Quality

Low
Quality

ISO/IEC CD 29794-5
Subject-related

....
Capture-related

Train
Classifier

Ground Truth
Annotation
for Quality

Unified
Quality
From
FRS
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Vector
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Predict Unified
FIQA Score Using
Trained Classifier
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and pAUC

Training FIQA Classifier Unified Quality Predict Utility for Face Image

ISO/IEC
Algorithms

Fig. 2: Proposed approach for overall quality assessment.

3 Proposed Method

We propose an approach parallel to NFIQ2.0 to estimate the quality of face images. Fig 2
shows the steps in calculating the overall quality score for an input face image using 21
face image quality components for ISO/IEC 29794-5:2023. The ®rst step is uncontrolled
face detection using an InsightFace-based RetinaFace [De20]. In the second step, align-
ment, cropping, and resizing were performed using InsightFace-based ArcFace [De19].
The aligned image is further used to obtain 21 quality measures from ISO/IEC CD 29794-
5, and can be represented as Fqc = { f1, f2 . . . f21} for all independent components. Each
native quality measure is further normalized to a uniform range of 0 to 100 where a low
value represents poor quality and a high value represents better image quality. However,
the estimated component measures cannot individually indicate the quality or utility of a
face image. Therefore, we used an auxiliary FRS that can estimate face quality. The ob-
tained quality score from a DL-based system was further binned as good quality and bad
quality for ground truth annotation in training a supervised classi®er. For the sake of sim-
plicity, we consider a hard threshold of normalized quality score of 70 to decide as good
quality or bad quality. In particular, we used the FIQA algorithms CR-FIQA, MagFace,
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and SER-FIQ independently and all of them can provide a unified score. The Fqc consist-
ing of 21 component measures was then estimated for the test set to establish the utility
of the face image using the trained classifier. The utility was further measured using EDC
and pAUC for various FRS such as FaceNet, ArcFace, PFE, MagFace, and ElasticFace.

4 Experimental setup and Performance Evaluation Metrics

We analyzed the performance of our proposed fusion method using three state-of-the-art
FIQA models: CR-FIQA [Bo23] which adds regression networks to the recognition mod-
els for learning identity quality; MagFace [Me21] which associates the magnitude of face
embeddings with face quality; and SER-FIQ [Te20] which employs several sub-networks
of a recognition model to generate quality scores. We utilized pretrained models to extract
embeddings for our analysis [Bo23, Me21, Te20]. Further, we conduct all our face-quality
assessment experiments on LFW [Hu07], XQLFW [KHR21], and color FERET [Ph98]
publicly available datasets that represent varying quality and diversity to study the gener-
alization of the proposed approach.

4.1 Evaluation metrics

To evaluate the face quality assessment algorithm performance, we employ the “Error ver-
sus Discard Characteristic” (EDC) standardized by ISO/IEC 29794-13 and the consequent
partial Area Under the Curve (pAUC) values are reported [Sc23]. Furthermore, the EDC
curves are plotted at a fixed FMR 0.1% as recommended for border control operations
by Frontex 4. EDC curves measure the performance of a given FRS when the percentage
of the lowest-quality face images is discarded. Because discarding a large portion of all
images is not a practical application scenario, we are typically interested in lower discard
rates. Therefore, we report the partial area under the curve (pAUC) of the EDC at a discard
rate of 20% for an FNMR of 0.05 starting error [Sc23].

5 Experiments and Results

In the following section, we present the results of our experiments conducted to investi-
gate: (i) The performance of the implemented 21 ISO/IEC 29794-5 capture and subject-
related measures was evaluated using three datasets: LFW, XQLFW, and color FERET.
(ii) Performance analysis between CR-FIQA, MagFace, and SR-FIQ techniques and the
impact of ArcFace, FaceNet, PFE, MagFace, and ElasticFace FRS models with the pro-
posed FIQA quality measure fusion approach on three datasets. The evaluation of FIQA
algorithms depends on face verification error rates. To evaluate the generalization of the
methods, we investigate how well the quality components are generalising for five differ-
ent state-of-the-art FRS to report the verification performance at different discard fractions
3 https://www.iso.org/standard/79519.html
4 Best practice technical guidelines for automated border control (abc) systems
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(a) LFW (b) XQLFW (c) color FERET

Fig. 3: EDC and pAUC score at 0.2 discard rate on different datasets result of ISO capture quality
components.

to inspect the generalizability of FIQA over FRS. We choose FaceNet [SKP15] based on
softmax loss, Probabilistic Face Embeddings (PFE) [SJ19] based on Gaussian distribution,
ArcFace[De19]. In addition, we also analyzed MagFace [Me21] and ElasticFace [Bo22]
as both are based on adaptive angular marginal loss. For each of the ®ve FRS, the im-
ages were prepossessed, as described in the corresponding reference. The embedding was
extracted from the last layer of each model, and cosine similarity was used to generate
comparison scores for face veri®cation experiments.

5.1 ISO/IEC CD 29794-5 Quality Measures

First, we report the performance of each of the 21 ISO/IEC 29794-5 quality measures,
which include both capture- and subject-related measures using EDC curves and pAUC,
as shown in Fig 3 (capture related) and Fig 4 (subject related) for the LFW, XQLFW, and
color FERET datasets, respectively. We make the following observations by analyzing the
independent component measures.

5.2 Capture related measures

· For LFW in Fig 3a Skewness (SK) and Kurtosis (KU) FNMR decreases slowly and
drops around the 50% discard rate. Brightness (BR), Contrast (CO), Illumination
Uniformity (IU), Dynamic Range (DR), and Sharpness (SH) demonstrate the same
behavior where the error rate constantly increases, which shows that on the LFW
dataset a non-correlation to utility. The error rates for Under-exposure (UE), Over-
exposure (OE), and Defocus (DF) have a steady decrease showing correlation to the
measure as a utility indicator.

· For XQLFW We can observe that the FNMR for DF, OE, and UE decrease steadily
indicating the utility as shown in Fig 3b. The error rates of BR, IU, Kurtosis KU,
and CO have the similar characteristic and remain constant regardless of the discard
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rate indicating no correlation to utility from these measures for XQLFW. SK, SH
and DR demonstrate the same behaviour where the error rate increases slowly and
drops around the 60% discard rate.

· In Fig 3c, we can see for colorFERET that the FNMR of BR, CO, DF, DR, IU, UE,
OE, KU, SK brightness and variance show the same behavior and they decrease
quite steadily as the discard rate increases indicating a good correlation as a utility
predictor on color FERET dataset. However, the FNMR for SH increased after 20%
discard rate, indicating no correlation for utility on the color FERET dataset.

(a) LFW (b) XQLFW (c) color FERET

Fig. 4: EDC and pAUC score at 0.2 discard rate on different datasets result of ISO subject quality
components.

5.3 Subject related measures

The EDC plots for subject-related measures are provided in Fig 4 for LFW, XQLFW, and
color FERET dataset, respectively. We make the following observations as noted below:

· For LFW we can observe the FNMR values for Vertical Down Shift Face (DSF) and
Mouth Closed (MCF) remain constant after a slight drop at the beginning indicating
a weak correlation to utility. The error rate remains relatively unchanged for Inter
eye distance (IED), Vertical upward shift face (USF), Yaw angle (YA), and Pitch
angle (PA) before a steady increase after a discard ratio of 20% indicating no strong
correlation with utility. However, the FNMR for Roll angle (RA), Single face subject
(SFS), Horizontal right shift face (HRF), and Eyes open (EOS) components steadily
decrease indicating a strong relationship between utility and FNMR in the case of
LFW dataset.

· For the XQLFW dataset we can further observe the FNMR for MCF, YA, and DSF
increase steadily as the proportion of discarded images increase indicating no strong
correlation with utility for XQLFW dataset as shown in Fig 4b. However, a moderate
correlation can be observed for IED upto 30% discard and no signi®cant relation be-
yond. In addition, RA, DSF, USF, SFS, MCF, EOS, the error rate decreases sharply,
demonstrating a strong correlation between quality components and utility.
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Fig. 5: Performance evaluation of ArcFace, FaceNet, and PFE (left to right) on CRFIQA, MagFace
and SERFIQ (top to bottom): EDC and pAUC scores at 0.2, 0.3, and 0.4 discard rates on colorferet
dataset.
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• Fig 4c shows that the FNMR of the RA, HRF, USF, MCF, SFS, EOS, and IED have
similar characteristic upto 40% discard rate before an increase indicating no corre-
lation to utility for color FERET dataset. YA, PA, EOS, HLF, and DSF components
on the other hand decrease the FNMR with increased discard ration suggesting a
strong correlation of these component measures with utility.

5.4 Results on Unified Score based on Quality Components

As noted previously, we observe varying impact of component quality measures on dif-
ferent datasets. We therefore present the results of our proposed approach of unifying the
component scores to one unified score as shown in Fig 5 for ColorFeret dataset 5. Fig 5
illustrates the EDC curves obtained using three different FRS using three different FIQA.
Based on the obtained results, we make the following observations:

• On a general note, we observe that the proposed approach of unifying scores using
Decision Tree (DT) and Random Forest (RF) decreases the FNMR with increasing
discard ratio. All evaluated supervised methods appear highly effective as a sharp
decline in the FNMR can be seen with increasing reject rates with CR-FIQA method
performing best across different FRS.

• We further observe ArcFace provides a consistent and low average pAUC score on
the color FERET dataset across different FIQA while FaceNet follows a similar
trend but relatively lower in performance as compared to ArcFace as FRS.

• While we note the pAUC value of the proposed approach as 0.0088 at 20% discard
rate, certain quality measures outperform quality ground truth estimated using CR-
FIQA when used with ArcFace the ColorFERET dataset.

• While ArcFace and FaceNet perform well on ColorFERET dataset, PFE FRS tends
to perform relatively poorly indicating the need for further investigations.

6 Limitations of our work

Our approach generally scales well on estimating unified score from component quality
measures. However, we note that newer FRS architectures such as MagFace and Elastic-
CosFace do not contribute in decreasing the FNMR with an increased discard ratio de-
manding further investigations (See Fig 6 in the supplementary material). In similar lines,
Commercial-Off-The-Shelf (COTS) FRS have not been studied in this work. Further, cer-
tain inconsistencies in the trend can be observed LFW and XQLFW datasets (illustrated in
the supplementary section) as compared to ColorFERET dataset. The inconsistencies can
lead to highly inaccurate predictions of quality and this will be investigated in the future
works.

5 Due to the page constraints, we illustrate the result of LFW and XQLFW datasets in the supplementary section.
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Fig. 6: Limitation of our approach on CRFIQA, MagFace and SERFIQ (left to right) on ElasticFace
and MagFace (top to bottom): EDC and pAUC scores at 0.2, 0.3, and 0.4 discard rates on colorferet
dataset

7 Conclusion

While the quality components proposed in ISO/IEC CD 29794-5 can measure different
quality aspects, it is tedious for a human observer to analyze different values. We pre-
sented an ef®cient method for an uni®ed FIQA score using 21 different component mea-
sures proposed in ISO/IEC CD 29794-5. The obtained score, can act as a predictor of FRS
performance. The experiments conducted on three different datasets using ®ve different
FRS indicate a promising method as it can be observed performance using EDC. How-
ever, the invariance of the proposed approach to some recent deep-learning-based FRS
architectures remains an open research question and will be studied in future works.
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Assessing the Human Ability to Recognize Synthetic Speech
in Ordinary Conversation

Daniel Prudký1, Anton Firc2, Kamil Malinka3

Abstract: This work assesses the human ability to recognize synthetic speech (deepfake). This paper
describes an experiment in which we communicated with respondents using voice messages. We pre-
sented the respondents with a cover story about testing the user-friendliness of voice messages while
secretly sending them a pre-prepared deepfake recording during the conversation. We examined their
reactions, knowledge of deepfakes, or how many could correctly identify which message was deep-
fake. The results show that none of the respondents reacted in any way to the fraudulent deepfake
message, and only one retrospectively admitted to noticing something specific. On the other hand, a
voicemail message that contained a deepfake was correctly identified by 83.9% of respondents after
revealing the nature of the experiment. Thus, the results show that although the deepfake recording
was clearly identifiable among others, no one reacted to it. In summary, we show that the human
ability to recognize voice deepfakes is not at a level we can trust. It is very difficult for people to
distinguish between real and fake voices, especially if they do not expect them.

Keywords: deepfake, synthetic speech, artificial intelligence, cybersecurity, deepfake detection

1 Introduction

Mirsky and Lee [ML21] define a deepfake simply as a ”Believable media generated by
a deep neural network.” A more extensive definition says it is media created by artifi-
cial intelligence (AI), specifically using deep neural networks through deep learning (DL)
methods. In their production, artificial intelligence merges combines, replaces, or overlays
features of the media to create new fake representations of things that never happened. This
media can be practically unnoticeable from authentic ones. Deepfake technology brings
many benefits, it can be used for entertainment, but it can also be used for revenge porn,
bullying, spreading fake news, political sabotage and more [FM22, FMH23, We19].

Nowadays, these fake media are reaching a stage where they are not even recognizable by
machines, let alone humans, who may not even be aware of the existence of such threats
in today’s digital world. Moreover, within audio, it is no longer just about English models.
Many multi-language tools for creating voice deepfakes are being developed, and they can
appear in almost any language.

There have been many attack scenarios in which deepfakes have been used. For example,
they could be attacks targeting specific individuals or institutions in the form of vishing
1 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic,

xprudk08@stud.fit.vut.cz
2 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic, ifirc@fit.vut.cz
3 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic, malinka@fit.vut.cz
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or widespread disinformation to spread propaganda, and so on. People should be able
to defend themselves against this spread of fraudulent information and media, and they
should know how to verify such things and how to deal with them. But we don’t know if
we will ever be able to do that.

A recently widespread method is vishing, derived from the two words defining it: voice and
phishing. It is a version of phishing in which identity theft is carried out using voice devices
such as the telephone, voice assistant, etc. Its use is described by Firc et al. [FMH23]. The
authors point out that one such attack happened in 2019 when a fraudster using deepfakes
created a transaction of almost $250,000. The CEO of an energy company thought he was
talking to his boss on the phone, and when the caller asked him for an urgent transfer of
this money, the victim did not hesitate and sent the money, believing he was completing
a task from his boss. There are many cases like this today. The same article says that
vishing was reported by 69% of companies in 2021, a big increase from 2020, when 54%
of companies reported it. Spoofing is also very often associated with this scam, giving the
scam much more credibility. For example, the fraudster can call the victim from the real
phone number of the person they are playing. Spoofing can also be used with the phone
number of a bank, the police, etc. In this way, the attackers try to exert authority on the
victim, who is then more likely to disclose the required information in fear.

Therefore, this work aims to assess the human ability to recognize synthetic speech. There
have been several attempts to assess whether people can distinguish a deepfake from a
real one. However, these experiments first introduced participants to the deepfake problem
before exposing them to deepfakes. Their results are quite variable and vary mainly de-
pending on the methodology. For example, voice deepfakes have been tested in a survey
by Müller et al. [MPW22], who report that the accuracy of identifying a deepfake and a
genuine recording is 80%. In contrast, our approach first exposes the respondents to deep-
fakes and then asks if they noticed anything unusual or if they can identify the deepfake
set among other sets.

The whole experiment is hidden behind a cover story of testing the usability of voice mes-
saging. Respondents play the game Two Truths One Lie. They receive 5 voice messages
from the narrator, each containing three facts about a selected country. One of these facts is
incorrect, and the respondent’s task is to identify the incorrect fact and report it back (using
the voice message). This setup simulates communication using voice messages only. One
of these sets was pre-prepared as a deepfake recording of the narrator’s voice. At the end
of the experiment, each respondent was sent a questionnaire asking about their knowledge
of and attitude towards deepfakes, if they observed anything unusual during the conver-
sation, and ultimately revealed the true nature of the experiment and asked if they could
now identify the deepfake set. The work described in this paper results from a previously
completed bachelor‘s thesis [Pr23].
The main contributions might be stated as follows:

• We assess the human ability to recognize deepfakes in the Czech language.

• We show that people cannot distinguish real and deepfake speech in common con-
versation.
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2 Related work

The research that deals with detecting voice deepfakes by humans is described in the sci-
entific article by Müller et al. [MPW22]. The authors focused on the ratio of the success
rate of deepfakes detection by humans and artificial intelligence. The experiment com-
pared human and machine detection capabilities, using a game-based challenge in which
the respondent always played a recording and then determined whether it was fake or real.
They made the same decision with machine learning models. For the experiment, the au-
thors used the ASVspoof 2019 dataset, created for the ASVspoof 2019 Challenge, which
aims to test Automatic Speaker Verification (ASV) systems resistant to spoofing attacks.
Through the experiment, the authors found that the human ability to recognize deepfake
and real recordings reaches 80%. Further, the experiment found that recordings created
using TTS fooled humans much more than voice-conversion or waveform concatenation
systems. The authors believe it could be because it used GAN as the waveform generator.
Other interesting results are that native speakers handled recognition better than non-native
speakers. At the same time, the level of IT experience did not affect performance, and peo-
ple’s ability to recognize deepfakes decreases with age. It is also interesting to note that
people learned very quickly, and as the article says, after the first ten rounds, the suc-
cess rate improved from 67% to 80%, but promptly stabilised at those levels and did not
improve.

Other works focus mainly on deepfakes in the form of images and videos. The success
rate of respondents in these experiments varies depending on the methodology and dataset
used in the experiment itself. For experiments with deepfake images, success rates for
better deepfakes and deepfakes with poorer image quality range roughly between 58-70%,
while for poorer deepfakes, respondents have been close to the 90% success rate [Gr21,
Go23, Ro19]. In terms of videos, success rates again depended on the quality, and for
better quality and harder-to-detect deepfakes, the success rate dropped to the 20% mark,
while for lower quality fakes, the success rate reached over 80% [KM20, Gr22, Ta21]. A
paper by Tahir et al. [Ta21] describes the training of people in identifying deepfakes, and
through a more sophisticated analysis of people’s behaviour in identifying deepfakes and
other parameters, they were able to develop training procedures that increased the success
rate of the trained group by 33%. On average, we’re talking about a deepfakes detection
success rate of roughly 60-65%, depending on multiple factors.

In all former experiments, the participants knew they were exposed to deepfakes and,
therefore, might have targeted it. This is where our research differs very fundamentally
from others. Another significant difference is the execution in the Czech language.

3 Experiment

The design of the experiment is inspired by Matyáš et al. [Ma08], who propose using
a cover story. Moreover, unlike other works, respondents do not know they must reveal
deepfakes. Thus, our goal is to create a realistic attack scenario in which we change a real
voice, which respondents know and do not consider suspicious, to a deepfake and try to
see if they notice this change.
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The experiment was conducted in the Czech Republic; therefore, all communication was
in the Czech language. This is also related to producing deepfake voices in the Czech
language. While most models and tools are suited for the English language, we show the
feasibility of other languages that require individual approaches to training and using the
speech synthesis models.

3.1 Research questions

For the whole experiment, we have identified three main research questions:

RQ1: Are humans able to identify deepfake recording during casual conversation?
We are interested in whether people notice during the interview that they have received a
computer-generated recording and how they react to it.
RQ2: Are humans able to detect a deepfake recording among genuine ones?
We want to determine whether people can retrospectively identify which of the messages
in a conversation was a deepfake recording.
RQ3: What is people’s awareness of deepfake technology?
Given that victim knowledge of deepfakes is critical to detecting these scams, we are
interested in how many had heard of the technology or were actively interested in it and
what is their experience with deepfakes.

3.2 Experiment execution

To synthesize the deepfake set, we use YourTTS [Ca22] in the voice conversion setting.
This decision was motivated mainly by the easy access to the tool via a demo on Google
Colab and the fact that we possess a version with a trained model in the Czech language.
After synthesis, we improved the quality of this set using post-processing. We removed the
noise added during creation and smoothed out the frayed phonemes by cutting out the part
of the recording where the phonemes resonated. We also adjusted the pitch of the voice.
The test run revealed a significant difference in background noise between real (directly
spoken) and deepfake (played by speakers) utterances. To diminish this difference and
force the participants to focus on the spoken content instead of the background noise, we
played brown noise as the background for all the real utterances.

Next, we performed a quality assessment of the synthesized set. We used an evaluation
inspired by the Mean Opinion Score (MOS) subjective listening test method described by
Loizou [Lo11]. We played the recording to 12 experts working with deepfakes regularly.
Therefore, we expect their knowledge about deepfake recordings’ qualities. Each expert
rated the quality on a scale of 1 (poor) to 5 (excellent). The final mean score was 3.0;
therefore, the recording qualitatively corresponds to the rating ”Fair”.

As previously mentioned, the experiment was hidden behind a cover story. Participants
were presented with simple facts about countries in the form of the Two Truths One Lie
game. All communication took place within the WhatsApp chat, using voice messages.
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Each conversation starts with a brief introduction presenting the pre-prepared cover story,
explaining the rules of the experiment, explaining the rules of the game and reminding
the respondents that whenever they encounter anything unordinary, they should report it.
This is important for our experiment because we need them to report any concerns (mainly
about the deepfake set). It is also important for us to get them used to the narrator’s voice
and to listen to it. We then gradually send them voice messages containing the sets of
facts for the game. The respondents listen to these sets and reply with voice messages as
well. This way, we send five sets (voice messages), including one pre-prepared deepfake
set. If any respondent raises any suspicion or questions about the deepfake set, we refer
them directly to the questionnaire. Otherwise, after completing all five sets, we send the
respondent a link to the final questionnaire to complete. This questionnaire first collects
information about the attitude and knowledge of deepfakes and whether the respondent
noticed anything unusual during the experiment (detected the deepfake set). Finally, the
questionnaire discloses the true nature of the experiment and that one of the sets is a
deepfake and asks the respondents to identify it. When creating the questionnaire, it was
important to determine the correct sequence of questions so that the questions could not
influence those yet to follow.

4 Results

During the experiment, we collected 31 responses. In terms of gender, 71% of respondents
were male and 29% were female. The age of the respondents ranges from 18 to 46, but
80% of the values are less or equal to 23, and the average age is about 22.39 years. In
focus on the field of work, IT has the highest representation, with 41.9% of respondents.
The next common field is education with 19.4%, law and healthcare with 6.5%, and other
fields like machinery, marketing, military, art, etc.

All of the research questions have been answered:

RQ1: Are humans able to identify deepfake recording during casual conversation?
No one reacted to the deepfake at all during the conversation. One respondent even asked
to repeat this set, yet he continued and answered the question as the others did without
noticing.

Only one respondent mentioned anything specific about deepfakes before being revealed
the true nature of the experiment. This gives us a deepfake detection success rate of 3.2%.
13 respondents mentioned a lower quality of this recording; however, we cannot consider
this as successful identification of the deepfake set.

Finally, a third of the respondents told us after the experiment or in their text responses
in the questionnaire that the possibility of a fraudulent recording did not occur to them
during the interview, and they focused primarily on the content and the correct answer,
stating that they considered the lower quality to be normal. These results are summarized
in Tab. 1.
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Reaction during conversation
Reacted 0%
Described unnatural things from the conversation
Poorer audio quality 41.9%
Deepfake sign 3.2%

Tab. 1: RQ1 summary.

RQ2: Are humans able to detect a deepfake recording among genuine ones?
After revealing that one of the sets is a deepfake, 83.9% of all respondents correctly iden-
tified this set. Respondents who marked the deepfake set, along with it other options, are
not counted as successful. Counting these responses as successful would result in 96.8%
respondents identifying the deepfake set.

54.8% of respondents justify selecting the deepfake set because it was different to oth-
ers. The second most-stated reason was the lower quality compared to real recordings, as
mentioned by 29% of respondents. Finally, the third most-stated reason is the presence of
typical deepfake artefacts, mentioned by 22.6% of respondents. Some respondents gave a
combination of stated reasons. These results are summarized in Tab. 2.

Identify deepfake set
Marked 96.8%
Correctly identify 83.9%
Justification for identification
Different from the others 54.8%
Lower quality than others 29%
Deepfake sign 22.6%

Tab. 2: RQ2 summary.

RQ3: What is people’s awareness of deepfake technology?
Respondents had a choice of three options, 16.1% of respondents answered, ”I’ve never
heard of deepfakes”, 64.5% answered, ”I’ve heard of deepfakes before”, and 19.4% an-
swered, ”I’m actively interested in deepfakes”. Where they heard about deepfakes is vari-
able but can still be classified into several groups. More than a quarter of people (25.8%)
said that they heard about deepfakes on social media, mainly in some informative videos,
articles, etc. One respondent said to encounter deepfake videos of politicians on TikTok.
Consistently, 19.4% of people wrote that they heard about them on the internet, nothing
more specific, or that they heard about them and did not specify where, or tried to create
them themselves, which were mainly people in the IT environment. In summary, 83.9% of
the participants have at least heard of deepfakes, mainly from social media and informative
videos.

Respondents were also asked before and after the experiment how confident they were that
they would detect voice deepfakes. They were asked to express this confidence on a scale
of 1 (not confident) to 5 (extremely confident). The mean before the experiment was 2.29,
and 2.94 after. A total of 51.6% of respondents increased this value, while 45.2% did not
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Heard of deepfakes
Heard of them 64.5%
Actively interested 19.4%
Never heard of them 16.1%
Where they heard about them
Social media 25.8%
Internet 19.4%
Not specify 19.4%
Create them themselves 19.4%
Never heard of them 16.1%

Tab. 3: RQ3 summary.

change it, and only 3.2% decreased it. Younger respondents mainly increased the value of
their certainty.

Additionally, after completing the experiment, 74.2% of the respondents said they were
surprised by the quality of today’s voice deepfake in the Czech language.

4.1 Limitations

The major problem of the experiment was the quality of the recordings because of the
artificial noise in the background. And although when we played the recordings back (on
iPhone 11), the noise was minimal, and we could understand everything without any prob-
lems, many people reached back saying that the quality of the recordings was really bad
mainly because of the noise. We suppose it depends on the device on which the respon-
dent listened to the recordings; some devices can reduce the noise, while others can’t. Poor
quality and noise was also the most common thing that respondents identified as odd about
the conversation. In total, 13 respondents mentioned the lowered quality.

4.2 Results discussion

Related work evaluating human ability often reports more than 60% success rate. The
success rate of deepfake detection in our scenario is 3.2%, which is quite different. It is
thus important to say that our approach is fundamentally different from the other works.
Considering the case where respondents did know they were presented with deepfakes, the
success rate of 83.9% is comparable to other research in this field.

These results give an interesting observation. During the conversation, no one responded
to deepfakes, but when directly asked to identify the deepfake set, almost every respon-
dent correctly identified it. Many respondents admitted to us that they didn’t notice any-
thing on the first listen. Still, when they listened a second time and focused on finding
the computer-generated voice, they were immediately sure which one it was. There may
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be several reasons for this, but we lean towards something similar to a psychological phe-
nomenon called The Monkey Business Illusion [SC10], which states that if people focus on
one thing, they are more prone to overlook another, in their opinion, less important things.
In our case, it was the answers to the questions and the sound quality. People focused on
the right answers and therefore ignored the difference in the voice recordings. However,
when we told them to focus on quality and find the deepfake, they detected it easily. These
results thus demonstrate how crucial role the knowledge of deepfakes plays in their correct
identification and that the education of the broad public on this topic is inevitable.

5 Conclusions

This work has shown that the human ability to recognize voice deepfakes is not at a level
we can trust. It is very difficult for people to distinguish between real and fake voices,
especially if they are not expecting them. The human ability to detect deepfakes is largely
influenced by the fact that people don’t think about the voice they are listening to, are used
to poor-quality audio conversations, and focus primarily on the content of the message.

It is evident that people without any knowledge of deepfakes cannot reliably identify deep-
fake recordings in conversation. Combined with the Czech language, we show this problem
is general and poses a significant threat to society. Moreover, after revealing the presence of
a deepfake set, most respondents could identify it. However, this identification was caused
by a difference in audio quality or muffled sound compared to the real sets. It is thus im-
portant to address these imperfections in future and assess what role the audio quality play
in the detection process.
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Synthetic Latent Fingerprint Generation Using Style
Transfer

Amol S. Joshi1, Ali Dabouei1, Nasser M. Nasrabadi2, Jeremy Dawson2

Abstract: Limited data availability is a challenging problem in the latent fingerprint domain. Syn-
thetically generated fingerprints are vital for training data-hungry neural network-based algorithms.
Conventional methods distort clean fingerprints to generate synthetic latent fingerprints. We propose
a simple and effective approach using style transfer and image blending to synthesize realistic latent
fingerprints. Our evaluation criteria and experiments demonstrate that the generated synthetic latent
fingerprints preserve the identity information from the input contact-based fingerprints while pos-
sessing similar characteristics as real latent fingerprints. Additionally, we show that the generated
fingerprints exhibit several qualities and styles, suggesting that the proposed method can generate
multiple samples from a single fingerprint.

Keywords: Latent fingerprints, Synthetic latent fingerprint generation, Style transfer.

1 Introduction

Fingerprints left on a surface unintentionally, also called latent fingerprints, play a vital
role as evidence in forensic investigations. Unfortunately, these fingerprints are not readily
viable for matching and recognition purposes. Due to the unconstrained environment at
a crime scene and the complex acquisition process of latent fingerprints, they are noto-
riously indispensable to pre-processing, such as segmentation, enhancement, and feature
extraction. Recent latent fingerprint pre-processing algorithms based on neural networks
[Ta17, NCJ18, Da18, LQ20, ZYH23] require larger datasets for training. However, the
collection of latent fingerprints is an expensive and cumbersome task. Table 1 summarizes
the latent fingerprint datasets widely used for training and evaluating latent enhancement
algorithms. The fingerprints in these datasets are deposited under controlled or uncon-
trolled conditions and lifted from various surfaces. NIST SD-302 dataset contains a large
number of latent fingerprints, but not all of them have mated fingerprints. Moreover, the
latent fingerprints in this dataset are substantially distinct from other datasets. Samples
from these datasets are provided in Figure 1. Combining these datasets for training pre-
processing algorithms may introduce a class imbalance. Further, it is essential to use real
latent fingerprints to evaluate these methods.

This scarcity of data leads to the need for the generation of synthetic latent fingerprints
that can be used to train the models so that real data can be utilized for a fair evaluation.
1 West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown,

West Virginia, USA, {asj00003, ad0046}@mix.wvu.edu
2 West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown,
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Tab. 1: Summary of released latent fingerprint datasets in the literature.

Dataset # of samples # of surfaces Availability
NIST SD-27 [GM00] 258 N/A No
NIST SD-302 [Fi19] 10000 30 Yes
IIITD [Sa11] 1016 2 Yes
IIITD SLF [SVS12] 720 1 Yes
MOLF [SVS15] 4400 1 Yes
MSLFD [Sa15] 551 8 Yes

With more synthetic images, these latent fingerprints need to possess certain characteris-
tics. It is crucial to have identity features such as meaningful ridge structure, fingerprint
shape, and minutiae points and noise features such as noisy backgrounds, surface, texture,
etc. Many latent fingerprint pre-processing algorithms resort to a naive approach of blend-
ing a sensor-collected fingerprint with a noisy background to mimic a latent fingerprint
[Da18, LQ20, HQL20]. Zhu et al. [ZYH23] extend the weighted combination approach
by applying plastic distortion [CMM01] on high-quality rolled fingerprints. This image-
blending approach preserves the identity but fails to generate realistic latent fingerprints.

Another method of generating synthetic fingerprints involves CycleGAN [Zh17], which
uses Generative Adversarial Networks(GAN) to transform images from one domain to an-
other. Authors in [ÖSA22, WJ23] trained CycleGAN to transform slap/rolled fingerprints
into latent fingerprints. However, these methods have limited style generation capacity.
Wyzykowski and Jain [WJ23] use multiple CycleGAN models to generate multiple styles.
This might be inconvenient if latent fingerprints with more styles and qualities are re-
quired. Nonetheless, these approaches generate pairs of latent and sensor-collected finger-
prints, which is ideal for training algorithms that use image-to-image translation for latent
fingerprint pre-processing.

Our goal is to generate multiple styles of latent fingerprints using a single model. When
lifted from surfaces like paper, cardboard, ceramic tiles, etc., latent fingerprints exhibit
different characteristics than those lifted from plastic and metallic surfaces. Additionally,
the interaction between the surface and the subject causes uneven ridge densities and ori-
entations. Therefore, the synthetic fingerprint generator must be trained to learn these vari-
ations for generating fingerprints of different styles. To this aim, we pose latent generation
as a style transfer task from latent fingerprints to sensor-collected fingerprints. The pri-
mary task is to transform the ridge patterns in sensor-collected fingerprints into the ridge
patterns in real latent fingerprints. This can be achieved by learning the distribution of la-
tent fingerprints and fusing the distribution parameters with the source fingerprints. We use
adaptive instance normalization [HB17] to infuse the learned parameters of the latent fin-
gerprint domain while reconstructing the fingerprints. Further, we blend these transformed
ridge patterns with noisy backgrounds to manifest a similar distribution to the real latent
fingerprints. For brevity, we will refer to sensor-collected fingerprints as fingerprints.

The generated latent fingerprints represent fingerprints lifted from different surfaces. Our
contributions are three-fold:
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NIST SD-27 NIST SD-302 IIITD IIITD SLF MOLF MSLFD

Fig. 1: Latent fingerprints from datasets listed in Table 1.

• We propose a simple and effective method that considers different surfaces and qual-
ities while generating synthetic latent fingerprints.

• Our proposed method is flexible to generate multiple styles of the same fingerprint
while preserving the underlying identity information.

• Our evaluation experiments demonstrate the similarities between synthetic and real
latent fingerprints.

The paper is organized as follows; first, we discuss related work in Section 2. The proposed
method is described in Section 3 followed by a discussion on experiments and results in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Many studies have been conducted to generate synthetic fingerprints. Before the advent of
neural networks, hand-crafted feature-based approaches were developed to generate fin-
gerprints. Capelli et al. [CMM02] used fingerprint shape, directional map, density map,
and ridge patterns to create a master fingerprint. Further, they apply distortion, noise, and
ridge variations to generate variants of the same master fingerprint. Zhao et al. [Zh12]
proposed an approach based on statistics of fingerprint features such as type, size, ridge
orientation, minutiae, and singular points. After generating a master print using the fea-
tures, they apply non-linear plastic distortion and rigid transformations to get variants of
the same fingerprint. Recent works typically use GANs to generate synthetic fingerprints
[Bo18, MA18, Ba21]. These methods focus on training GAN to learn the distribution of
real fingerprints and generate synthetic fingerprints that contain the necessary identity in-
formation.

Style transfer is a way to learn to map the style of an image onto the contents of another
image. Neural network-based style transfer is also explored in the image synthesis task
[Me20, Zh20, Ly23]. Men et al. [Me20] developed a person image synthesis algorithm
that encodes attributes such as pose, head, base, clothes, etc. The style code is then injected
into the AdaIN [HB17] features during decoding. Authors in [Zh20, Ly23] proposed region
adaptive normalization to control the style encoding in different image patches. This allows
more flexibility to generate images with fine details. Despite these works, to the best of
our knowledge, latent fingerprint synthesis has yet to be attempted with style transfer.

71



Amol S. Joshi, Ali Dabouei, Nasser M. Nasrabadi, and Jeremy Dawson

AdaAttN

AdaAttN

AdaAttN

Blending

Style Content

Stylized

Background

VG
G

VG
G

D
ecoder

Trained
Synthetic
Latent

No Training

Fig. 2: Architecture of the proposed method. The style transfer network is trained using real latent
fingerprints and is marked by the blue box, whereas the image blending does not involve training
and is represented in the magenta box.

3 Methodology

A widely adopted conventional approach to generating synthetic latent fingerprints applies
noise to good-quality fingerprints and blends them with noisy backgrounds. It uses the
equation below:

Ilatent = α × I f ingerprint +(1−α)× Inoise. (1)

However, in real-world scenarios, the latent fingerprints are lifted from multiple surfaces
under unforeseeable environments. Depending on the nature of the surface and the action
that caused the fingerprint to be left on the surface, the latent fingerprints exhibit different
styles. As a result, using the blending method naively with good-quality fingerprints may
not represent the distribution of real latent fingerprints.

We propose learning the noise and distortions in ridge patterns acquired from multiple
surfaces and transferring them to fingerprints to mimic the real latent fingerprints. To this
aim, we devise a simple and efficient approach involving style transfer and image blending.
Further, section 3.1 illustrates the style transfer network, and section 3.2 discusses image
blending. Figure 2 illustrates the network architecture.

3.1 Style Transfer

The style transfer module is responsible for extracting style from a latent fingerprint Fs and
fusing it with the content fingerprint Fc during the reconstruction phase. We use AdaAttN
[Li21] to learn the style of latent fingerprints and transform the fingerprint ridges to have
a similar style. The style transfer network uses an encoder E(.) to extract content and
style embeddings. The extracted embeddings are then passed to the AdaAttN block, which
adaptively transfers the style statistics to the content embeddings. The style transfer net-
work uses several layers of pre-trained VGG-19 [SZ14] model to obtain embeddings with
different spatial sizes and image characteristics. The AdaAttN block uses the attention
mechanism to compute the weighted mean and variance map. Then, adaptive normaliza-
tion proposed by Huang et al. [HB17] is used to obtain the stylized features. Finally, the
decoder reconstructs the stylized features to a synthetic latent fingerprint Fcs.

The decoding at the end of the style transfer network may produce a random texture pattern
to satisfy the objective function. Therefore, to preserve the identity information and the
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ridge structure of the fingerprints, we use another encoder V (.) trained to extract features
helpful in matching two fingerprints. The embeddings of the fingerprint Fc and the stylized
fingerprint Fcs enforce the identity constraint during training. We trained the style transfer
network using the following objective function:

L= λgLgs +λlLl f +λiLid , (2)

where Lgs is a global style loss computed between the mean and standard deviation of
embeddings of Fs and Fcs extracted using E(.). Ll f is a local feature loss that minimizes the
distance between features of E(Fcs), E(Fc), and E(Fs). Lastly, Lid is an identity constraint
between V (Fcs) and V (Fc). We use mean squared error to calculate the loss terms. We
empirically set a value of 1.0 for λi, whereas the default values of 3.0 for λg and 10.0 for
λl are used during training.

3.2 Image Blending

The output of the style transfer network is distorted ridge patterns that appear similar to
the ridge patterns in real latent fingerprints. However, we can profusely notice the noisy
backgrounds and textured patterns in real latent fingerprints. Therefore, we incorporate the
image blending from Eq. 1 to generate realistic latent fingerprints. We replace I f ingerprint by
the output of the style transfer network and consider several background images cropped
from real latent fingerprints as Inoise. During all the experiments, we set α between 0.3 to
0.8. This combination of style transfer network and image blending presents the flexibil-
ity to manipulate the style, quality, surface, and background of the generated fingerprints
without retraining the network. Further, the synthetic fingerprints and the corresponding
content fingerprints are spatially consistent. Therefore, the spatial features extracted from
the fingerprint can be used as a target while training a neural network for latent fingerprint
pre-processing. Later in section 4.3, we discuss the effect of blending noisy background
with the output of the style transfer network.

4 Experiments

In section 4.1, we discuss the datasets used and generated for the evaluation experiments.
Later, we describe the evaluation criteria and results in Section 4.1 and Section 4.2, re-
spectively.

4.1 Datasets

Training the style transfer network requires fingerprints as content images and latent fin-
gerprints as style images. Therefore, we combined fingerprints from MOLF and MSLFD
datasets totaling 12,444 for training and 600 for evaluation. For the style images, we
used 4,400 latent fingerprints from MOLF, which has fingerprints lifted from ceramic tile
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[SVS15]. Additionally, we included 170 latent ®ngerprints from two different surfaces
from the MSLFD dataset. Further, we create pairs of latent ®ngerprints and content ®nger-
prints such that they belong to the same ®nger of the same subject. This aids the identity
preservation constraint in the objective function. We use latent ®ngerprints from IIITD and
SLF datasets as the style images during evaluation experiments.

Once the style transfer network is trained, we generate 600 synthetic latent ®ngerprints.
Finally, we create two sets, Synthetic-1 and Synthetic-2, using backgrounds from different
surfaces and textures. The Synthetic-1 dataset represents latent ®ngerprints lifted from
plain surfaces such as ceramic tiles and cardboard. In contrast, the Synthetic-2 dataset
comprises latent ®ngerprints lifted from plastic and paper surfaces with printed text.

4.2 Evaluation Criteria

For evaluating a synthetic data generator, measuring the similarities between the synthetic
and real data is imperative. We use various aspects of ®ngerprints for comparing the char-
acteristics of real and generated latent ®ngerprints. First, we use quality distribution as a
metric to demonstrate the similarity. To this aim, we use NFIQ 2.0 [Ta21] to obtain the
quality scores of latent ®ngerprints. The second metric is the similarity between the data
distribution of real and synthetic ®ngerprints. We use t-Distributed Stochastic Neighbor
embeddings (t-SNE) [vdMH08] to showcase the distribution of multiple datasets to com-
pare with the synthetic ®ngerprints. t-SNE uses high-dimensional feature embeddings of
size 512 and reduces the dimensionality to generate two components to visualize the dis-
tribution.

Fig. 3: NFIQ 2.0 quality score distribution of multiple datasets. Solid and dashed lines represent
datasets with different surfaces and styles.

Further, we study minutiae points to analyze the realistic nature of synthetic ®ngerprints.
This analysis helps determine if the synthetic latent ®ngerprints have meaningful patterns
and genuine minutiae points. We use the Veri®nger SDK v10.0 [Ne] to extract minutiae
and perform matching experiments. Lastly, we analyze the matching score distribution of
genuine pairs consisting of synthetic latent and corresponding mated ®ngerprints. Due to
the noisy and distorted nature of latent ®ngerprints, the recognition accuracy is relatively
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low compared to fingerprint matching. Comparing the matching scores of mated pairs
helps estimate if the synthetic fingerprints are challenging enough for the matchers to
extract features.

4.3 Results

Determining the quality of latent fingerprints is crucial in matching and recognition sce-
narios. Due to the complex acquisition process of latent fingerprints, they often exhibit
poor quality scores. In Figure 3, we compare if the generated synthetic latent fingerprints
have a similar quality score distribution with the real data. The latent fingerprints in IIITD
and SLF datasets have a wide range of quality scores, whereas the NIST SD-27 dataset has
a smaller range due to the arbitrary texture patterns and highly distorted ridge patterns. The
plot suggests the closeness of quality levels among Synthetic-1, IIITD, and SLF datasets.
Similarly, curves for NIST SD-27 and Synthetic-2 datasets also match each other. Next,
we plot t-SNE to demonstrate the overlapping distribution of real and synthetic finger-
prints. Figure 4 provides the distribution for multiple datasets of various styles. Note that
in Figure 4(a), the data points for the Synthetic-1 dataset are congregated in two regions.
This behavior is due to the limited style references used to transform the ridge patterns
during synthetic generation. At the same time, the arbitrary noise patterns in the real latent
fingerprints make the distribution widespread. Regardless, both plots show evidence of
the embeddings of the synthetic and real latent fingerprints in the high-dimensional space
corresponding with datasets of respective styles. Further, this suggests that our proposed
method can generate realistic latent fingerprints with real latent fingerprint characteristics.

(a) Datasets with
plain background

(b) Datasets with
text in background

Component 1 Component 1

C
om

po
ne

nt
 2

Fig. 4: t-SNE distribution of multiple datasets. Plot (a) represents datasets with plain backgrounds
from surfaces like ceramic tiles and cards. Plot (b) represents latent fingerprints lifted from plastic
and paper with text in the background.

Despite similar quality and t-SNE distributions, the synthetic latent fingerprints should rep-
resent some identity. Ideally, a synthetic latent fingerprint should have the same identity
as the source fingerprint used as input to the style transfer network. Figure 5 demonstrates

75



Amol S. Joshi, Ali Dabouei, Nasser M. Nasrabadi, and Jeremy Dawson

the identity similarity between the synthetic latent and input fingerprint. It shows detected
and correctly matched minutiae, suggesting that the proposed method preserves critical
features such as the ridge structure and minutiae points. Further, the figure indicates the
ability of the proposed method to generate multiple synthetic samples from the same fin-
gerprint with varying quality and styles.

(c) 326(b) 199 (d) 767(a) 94

Fig. 5: Generated synthetic latent fingerprints of various styles and qualities. In each pair, the image
on the left is the latent fingerprint, and on the right is the corresponding input fingerprint. The number
mentioned at the bottom of each pair represents the matching score obtained using the Verifinger
SDK v10.0. See Section 4.3 for additional details.

To investigate the importance of the style transfer network and compare it with the naive
approach of image blending used in [Da18, LQ20, HQL20], we generated a set of synthetic
latent fingerprints without using the style transfer network. We applied speckle noise to the
fingerprints and blended them with noisy backgrounds. Then, we conducted a matching ex-
periment with genuine pairs from this dataset. In Table 2, we compare the mean, standard
deviation, and median of matching scores for genuine pairs of latent fingerprints gener-
ated by our method and the real latent fingerprint dataset. A significant difference between
the distribution parameters shows that a weighted combination of a distorted fingerprint
and noisy background is insufficient to model realistic latent fingerprints. The matcher can
easily recognize the fingerprint despite the background noise.

Tab. 2: The mean, standard deviation, and median of matching scores for genuine pairs belonging to
different latent fingerprint datasets. VeriFinger SDK v10.0 was used to obtain the matching scores.

Latent dataset Mean Standard deviation Median
W/o style transfer 609.3629 381.131 572.0
Ours 89.1046 101.1472 43.5
Real 63.5454 47.9998 54.0

5 Conclusion

We proposed a simple and effective approach to synthetic latent fingerprint generation.
We showed that the naive approximation of latent fingerprints inadequately represents real
latent fingerprints. We revised it and proposed an algorithm to generate realistic latent
fingerprints using a style transfer network to exploit the style features of real latent fin-
gerprints and transform the ridge structure to appear as a latent fingerprint. Further, the
stylized ridges are blended with noisy backgrounds for a better representation of real la-
tent fingerprints. Our evaluation with various metrics suggests that the proposed method
reliably generates latent fingerprints of various styles and qualities while preserving iden-
tity information.
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DEFT: A new distance-based feature set for keystroke
dynamics

Nuwan Kaluarachchi,1 Sevvandi Kandanaarachchi, 2 Kristen Moore,3 Arathi Arakala4

Abstract:

Keystroke dynamics is a behavioural biometric utilised for user identification and authentication. We
propose a new set of features based on the distance between keys on the keyboard, a concept that has
not been considered before in keystroke dynamics. We combine flight times, a popular metric, with
the distance between keys on the keyboard and call them as Distance Enhanced Flight Time features
(DEFT). This novel approach provides comprehensive insights into a person’s typing behaviour,
surpassing typing velocity alone. We build a DEFT model by combining DEFT features with other
previously used keystroke dynamic features. The DEFT model is designed to be device-agnostic,
allowing us to evaluate its effectiveness across three commonly used devices: desktop, mobile, and
tablet. The DEFT model outperforms the existing state-of-the-art methods when we evaluate its
effectiveness across two datasets. We obtain accuracy rates exceeding 99% and equal error rates below
10% on all three devices.

Keywords: Keystroke dynamics, Continuous authentication, Desktop, Mobile, Tablet, Multi-Device,
Feature optimisation, Key pair distances

1 Introduction

Keystroke dynamics refers to the systematic analysis of the pattern of key press and release
on a physical or virtual keyboard by an individual. The information distilled from the
typing patterns enables user identification and authentication. Thus, it has proven to be an
effective behavioural biometric modality. One notable advantage of keystroke dynamics is
its suitability for continuous authentication, as it involves an ongoing behaviour performed
by an individual throughout a typing session. This continuous nature makes it well-suited
for establishing and maintaining user authentication in various contexts.

Most keystroke dynamics studies in the last five years used temporal features (TEMP)
[KBH22, Ac21, Ya21b, Ya21a, Av21, Ki20, KK20, Ay19]. TEMP features compute uni-
graph (key hold time), digraph (flight times) and trigraph (presses of three consecutive
keys) attributes from typing behaviours. Alsultan et al. [AWW17] used non-conventional
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features (NC) such as average backspace and negative flight times over a user typing session.
Al-Saraireh and AlJa’afreh [ASA23] and Belman and Phoha [BP20a] used flight times of
commonly typed keypairs (CKP) as features. While either TEMP, NC, or CKP features have
been used individually in previous studies, their combined effect has not been explored.

Our study introduces a new set of features that considers the distance between key pairs
when considering flight times. We call these Distance Enhanced Flight Time (DEFT)
features. We combine DEFT with the previously studied TEMP, NC and CKP features
(DEFT Model) and investigate the performance of the combined feature for continuous
authentication. We show that using DEFT features significantly improves authentication
performance on desktop, mobile and tablet compared to existing approaches. In addition,
most studies only focus on free text. However, we frequently type usernames, passwords
and email addresses, which come under the fixed text category. So in this study, we present
our results with fixed and free text-typing datasets to incorporate the mixed nature of typing.
Furthermore, while most device authentication studies are limited to a single device, with a
handful of studies using two devices [BP20b], we demonstrate the broad applicability of
this new set of features on three commonly used devices: desktop, mobile and tablet.

2 Related Work

Over the last 5 years, various feature types and classifiers have been tested for user
identification and authentication with keystroke dynamics. While a detailed review of this
work is out of scope, we briefly review (see Table 1) some insights gained from this study
and explain how it has impacted our research. As seen from Table 1, most studies compute
features using flight times, hold times, words per minute and error rate. In contrast, Alsultan
et al. [AWW17] consider a novel set of features that capture the backspace, negative flight
times and shift key usage in a session. A key takeaway from Table 1 is that none of the
recent studies has combined these different types of features to construct an optimal set of
features for user identification and authentication.

We combine these different types of features, and additionally, we develop a new set of
features based on the physical distance between keyboard keys, which we call Distance
Enhanced Flight Time (DEFT) features. The intuition behind these features is that flight
and hold times depend on the distance between keys and the use of one or both hands. For
example, if we consider keys typed by a single hand, we expect a normal user to take more
time between two keys that are further apart, such as ’A’ and ’T’, compared to the time taken
for two keys that are closer such as ’A’ and ’S’. Subsequently, we employ feature selection
strategies to determine whether the DEFT features contribute to discriminating between
users.
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2022 [KBH22] X X
2022 [Ac21] X X

2021 [Ya21b] X X
2021 [Ya21a] X X
2021 [Av21] X X X
2020 [Ki20] X X
2020 [Lu20] X X

2020 [BP20a] X X
2020 [KK20] X X
2019 [Ay19] X X
2019 [Wu19] X X

2017 [AWW17] X X X X X X
2017 [MB17] X X

Tab. 1: Comparison of feature types used in recent keystroke dynamic studies. The majority of studies
used Temporal features, while only one study used only non-conventional features for keystroke
dynamics. None of the studies used a combination of all these feature types.

3 Methodology

3.1 Datasets

We use the publicly available SU-AIS BB-MAS (Syracuse University and Assured Infor-
mation Security Behavioral Biometrics Multi-device and multi-Activity data from Same
users) dataset [K.19] as our main dataset. This dataset plays a vital role in advancing the
field of biometrics, addressing the existing gap in collecting data from individuals across
multiple devices. The BB-MAS dataset captures multiple behavioural biometric modalities
from three different devices, including swiping, keystroke, and gait dynamics. The data was
collected over two months from 117 participants. However, missing data in the collection
process leaves us with only 116 users for each device. A comprehensive account of the
dataset and the data collection process can be found in [Be19].

We evaluate our newly introduced DEFT features using another well-known keystroke
dynamic dataset, the Buffalo dataset [SCU16], to validate its efficacy. This dataset consists of
keystroke data collected from 148 users using 4 different types of keyboards. The keystroke
patterns from 75 users were captured by their typing on the same type of keyboard in 3
distinct sessions. Keystroke patterns from the other 73 users were acquired by typing on
three keyboards in the 3 different sessions.
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3.2 Distance Enhanced Flight Times (DEFT) features

DEFT features are computed under the assumption that the distance between the keys affects
the ŕ ight time. The distance is computed using the spatial separation of the keys on the
keyboard (see Figure 1). For example, we expect the ŕ ight times between keys, such as
‘A,S’, ‘S,D’ and ‘W,E’, to be similar (generated from a single probability distribution) due
to the equal distance between the respective keys. The distance between the keys in each of
those 3 pairs is 1. We consider the average ŕ ight time for all such key pairs, i.e., the average
ŕ ight time (per user) across all distance 1 key pairs. Similarly, we calculate the average
ŕ ight time for distances 0, 2, and 3 key pairs. In this manner, the DEFT features augment
the ŕ ight times (TEMP features) by incorporating the distance between keys.

Fig. 1: Calculation of the distance between the key pairs on the keyboard. <A,S> is a distance 1
digraph while <T,H> is a distance 2 digraph and <N,L> is a distance 3 digraph. The longest distance
between a key pair is distance 9. The blue line separates the keyboard into left and right sides, which
helps identify keys typed by an individual’s left or right hand.

Figure 1 demonstrates the distances between some key pairs. The calculated key pair
distances range from zero to nine, with zero indicating the pressing of the same key and
nine denoting the longest distance between two keys, speciőcally, ‘Q’ and ‘P’. Generally,
people use both hands for typing; they use the left hand to type keys on the left and the
right hand for keys on the right. We separate the left and right sides of the keyboard as
demarcated by the blue line in Figure 1. If both keys of the digraph are on the left side, we
indicate it with LL. If both keys are on the right side, it is indicated with RR; if both digraph
keys span either side of the keyboard, we denote it by LR.

Next, we combine the distance between the keys with the ŕ ight times. In the study, we try to
identify the typing patterns of a single user for each hand. Therefore, using the standard
QWERTY őnger placement, we consider the maximum distance between keys typed by a
single hand to be three units. Consequently, ŕ ight times for distances ranging from zero to
three on both the left and right sides of the keyboard are selected for analysis. We focus on
LL and RR key pairs and disregard LR key pairs. We compute the average of each of the
four ŕ ight times, F1, F2, F3 and F4, as declared by Belman and Phoha in [BP20a, BP20b]
grouping by the distance between the keys for each hand. Thus, we have 32 ( 4 × 4 × 2)
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new features ranging from F1_distance_0_LL to F4_distance_3_RR. These are the DEFT
features, and they capture the average distance ŕ ight times per distance for a given user.

Unlike existing text-based features in the keystroke dynamics, which mainly revolve around
temporal variations, including instances of key press and release, temporal gaps, and the
frequency of such events, an aspect formerly unexplored involves the measurement of spatial
separation between pairs of keys. Addressing this gap, our study introduces a novel approach
by incorporating key pair distances in conjunction with the ŕ ight times of said key pairs.
This innovative amalgamation enhances the depth and breadth of our analysis, ushering in a
more comprehensive understanding of keystroke dynamics.

Fig. 2: The pairwise DEFT features of four different users for key pairs typed by the left hand on
desktop devices. The average ŕ ight 1 (F1) timing for the two users for distance 1 key pairs and distance
2 key pairs is shown in the left őgure, and the average ŕ ight 1 (F1) timing for two different users
for distance 2 key pairs and distance 3 key pairs is shown by the right őgure. The őgures imply the
validity of separating the ŕ ight times based on the key pair distances for user identiőcation. Each point
of a certain colour represents a user sample.

Figure 2 shows the pairwise distribution of three DEFT features for four different users.
The results for these two examples illustrate distinct user clusters, which illustrates that the
features (F1_distance_1_LL, F1_distance_2_LL and F1_distance_3_LL) are user dependent
and can help user identiőcation and authentication. As the distances between keys and ŕ ight
times can vary depending on the type and size of the device, such as desktop, mobile or
tablet, we adopt a solution that yields relative values for the distances. This is achieved by
normalising the distances through division by a single key size, ensuring that the derived
distances remain independent of the device being used. This device-agnostic approach can
accurately capture and compare the relative distances between keys, irrespective of device
type or screen size variations.
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4 Results and Discussion

4.1 Feature selection

We compute TEMP, NC, CKP and DEFT features for each user sample in the BBMAS
dataset, resulting in an expanded set of keystroke dynamic features. We found that the most
frequently typed key pairs in the dataset were ‘T,H’, ‘I,S’, ‘H,E’, ‘A,P’, ‘L,E’ and ‘C,O’.
When calculating the flight times for TEMP, CKP and DEFT features, we use a simple filter
to detect and remove the high or low time differences in keystroke dynamics. We eradicate
any instances of a time difference of more than five seconds. We assume these scenarios
happen by pauses, getting instructions during the data collection or recording issues. After
calculating the TEMP, NC, CKP and DEFT features, we get the average values of each
feature for each sample. To identify the most discriminative features from the expanded
feature set, we employ the Random Forest (RF) classifier, specifically tuned for multi-class
classification described by Ayotte [Ay19]. To conduct our analysis, we split the dataset
into a training set comprising 70% of the user samples and a testing set comprising the
remaining 30%Ṫhis process is carried out separately for desktop, mobile, and tablet devices.
This procedure identifies 37, 41, and 42 discriminative features for each device, respectively.
Table 2 shows the types and number of the shortlisted features for all three devices. Notably,
the table reveals that the DEFT features exhibit the highest occurrence rate among the
shortlisted features, accounting for more than 50% of the selected features in the case of
mobile and tablet devices. This finding demonstrates the effectiveness of the DEFT features
in capturing discriminative information necessary for keystroke authentication.

Feature Category Desktop Mobile Tablet
DEFT 17 25 23
CKP 9 8 10
TEMP 6 6 6
NC 5 2 3
Total 37 41 42

Tab. 2: The category breakdown of features with the highest discriminative characteristics selected
by the Random Forest classifier. More than 45% of the selected features on desktop and 50% of the
selected features on mobile and tablet are DEFT features, showing the dominance of DEFT features
in the feature list.

4.2 Authentication Framework

After selecting the discriminative features, we build a binary classifier for each user. A
user has about 50 samples from their keystroke data and 6000 samples from other users’
keystroke data. Each user’s sample is 100 keystrokes long and comprises a vector of the
features shortlisted by the feature selection stage. We use stratified five-fold cross-validation
with the Extreme Gradient Boost (XGB) classifier. Due to the extreme class imbalance of
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the mated compared to non-mated samples, we use the Synthetic Minority Oversampling
Technique (SMOTE) [Ch02] to oversample the genuine user’s class in each fold.

Fig. 3: The ROC curve representation of the authentication performance of different combinations of
keystroke features for different devices. In all three devices, the keystroke dynamic performance of the
models increased by adding the DEFT features.

First, we perform an ablation study to validate the discriminative power of our new DEFT
features. Figure 3 shows ROC (Receiver Operating Characteristics) curves for őve feature
combinations: NC, TEMP, TEMP + NC, TEMP + NC + CKP, TEMP + NC + CKP + DEFT.
The feature selection process, as described in Section 4.1, is only used for the TEMP + NC
+ CKP and TEMP + NC + CKP + DEFT combinations. The őnal curated set of features
after adding DEFT achieves the best performance for all devices. We work with this set of
features for the remainder of the paper, which we name the DEFT model.

Fig. 4: The ROC curve representation of the authentication performance of the DEFT model on
different desktop keyboard types in the Buffalo dataset. The proximity of the curves demonstrates
equivalent performance for the three keyboard types.

Next, we test if there is a variation in the performance of the DEFT model when the
keyboard type changes. In particular, we want to test if disparities in performance arise in the
distance-based features when confronted with different keyboard types. The ROC curves on
testing the three keyboard types: An HP wireless keyboard, a Microsoft ergonomic keyboard
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and an Apple wireless keyboard. The results are shown in Figure 4. This demonstrates that
the DEFT model remains notably consistent across different keyboard conőgurations.

We next compare our model with leading studies on desktop [AWW17, BP20a], mobile
[ASA23, BP20a] and tablet [BP20a]. Alsultan et al. [AWW17] collected NC features
using their own dataset of 30 users. Al-Saraireh and AlJa’afreh [ASA23] analysed CKP
features from 54 mobile data users of BBMAS. Belman and Phoha [BP20a] examined user
identiőcation across desktops, mobiles, and tablets using CKP features and context-based
multi-class classiőers on only 20 users of BBMAS. In order to compare [BP20a] with
our approach, we convert their multi-class classiőcation to a binary classiőcation problem
by selecting the highest-performing context-based classiőers. Although these results are
published, the experimental settings in each study are different, including training and
testing splits, sample sizes, and evaluation metrics. In our comparison, we use the same
experimental setting for all methods. Speciőcally, we consider all 116 users available in the
BBMAS dataset for three devices and all 75 users of the Buffalo dataset for desktops. We
plot ROC curves for each model by getting the average of each fold in the cross-validation
for all users for each device to get a complete picture of the studies under different thresholds.
Figure 5 shows the results, demonstrating that the DEFT model performs better than other
models for all three devices of BBMAS and desktop devices of the Buffalo dataset.

Fig. 5: Comparison of the authentication performance of the DEFT model against existing keystroke
dynamics models across 3 devices and 2 datasets. (a) The comparison of desktop models on BBMAS.
(b) The comparison of desktop models on the Buffalo dataset. (c) The comparison of mobile models
on BBMAS. (d)The comparison of tablet models on BBMAS. The DEFT model outperforms other
models for all three devices.

Table 3 summarises the results of our model and other compared state of art models using
the BBMAS on keystroke dynamics for the three devices under different performance
metrics. As implied by the table, our DEFT model has the highest accuracy, F1 score and
AUC-ROC. The model’s EER (Equal Error Rate) is 3.8% 6.6% and 9.8% for the desktop,
mobile and tablets.

To ensure the reproducibility of our research, we have made relevant code snippets 3

available online.
3 https://github.com/NuwanYasanga/DEFT
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Device Model Accuracy EER F1 AUC-ROC
Alsultan 95.5 (0.25) 10.9 (0.63) 52.1 (1.48) 95.6 (0.40)

Desktop Belman 97.9 (0.03) 15.1 (0.49) 60.9 (0.98) 92.9 (0.29)
DEFT 99.6 (0.02) 3.8 (0.42) 77.5 (1.1) 99.3 (0.07)
Jaafer 99.4 (0.02) 6.7 (0.64) 58.6 (1.2) 98.2 (0.24)

Mobile Belman 88.7 (0.24) 29.8 (0.77) 46.9 (0.29) 83.1 (0.87)
DEFT 99.4 (0.01) 6.6 (0.51) 65.6 (1.2) 98.4 (0.23)

Tablet Belman 96.0 (0.04) 40.4 (0.59) 47.5 (0.9) 86.4 (0.80)
DEFT 99.3 (0.02) 9.8 (0.65) 61.8 (1.1) 96.7 (0.42)

Tab. 3: Summary of the performance of the state-of-the-art keystroke models for the three devices
using the BBMAS dataset. All the models followed the same experimental setting with their own
features and classifiers. Our DEFT model performed better in all three devices for all performance
metrics. The table proves the validation of using DEFT features for keystroke dynamics. All values
are in percentages, and parenthesis values are the standard deviation

One limitation that arose in our analysis is a significant class imbalance issue within the
test datasets, where the imposter class significantly outnumbered the genuine user class by
a factor of over 100 in most cases. We don’t employ any oversampling or undersampling
techniques for the testing set, as we oversample the training dataset. It is important to
note that inherent biases towards the imposter class primarily drove low F1 scores. Due to
the scarcity of genuine user samples within the test set, even a slight deviation from the
expected behaviour of genuine users may lead to misclassification as an imposter sample.
This limitation is the ground truth in biometric models, with evaluation encompassing
the entirety of 116 users within the BBMAS dataset and the complete cohort of 75 users
in the Buffalo dataset. Importantly, this analysis is executed without the application of
any data filtration or modification to the test dataset, preserving its original structure and
characteristics intact.

The results presented in Table 3 and Figures 3, 5 indicate that the combined pool of features
(TEMP + NC+ CKP + DEFT) in the DEFT model is the most discriminative, resulting in
significant performance improvements in all three devices. These results highlight that the
DEFT features played a key role in capturing the keystroke dynamics for all three devices.

5 Conclusion

This paper introduces DEFT, a new set of distance-based features for keystroke dynamics.
By combining DEFT with existing features, we constructed a pool of features called a DEFT
model that achieved improved authentication performance for desktop, tablet and mobile
devices. Noting that DEFT features accounted for approximately 50% of the discriminative
feature set identified by a feature selection process, we demonstrated the utility and broad
applicability of DEFT features across devices and across datasets. Our comprehensive
analysis identified that spatial features play a significant role in user discrimination and can
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be effectively employed for continuous user authentication. In future research, we aim to
extend the application of DEFT features in cross-device authentication by applying deep
transfer learning techniques.
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Benchmarking fixed-length Fingerprint Representations
across different Embedding Sizes and Sensor Types

Tim Rohwedder1, Dailé Osorio-Roig2, Christian Rathgeb1, Christoph Busch1

Abstract: Traditional minutiae-based fingerprint representations consist of a variable-length set of
minutiae. This necessitates a more complex comparison causing the drawback of high computa-
tional cost in one-to-many comparison. Recently, deep neural networks have been proposed to ex-
tract fixed-length embeddings from fingerprints. In this paper, we explore to what extent fingerprint
texture information contained in such embeddings can be reduced in terms of dimension, while pre-
serving high biometric performance. This is of particular interest, since it would allow to reduce
the number of operations incurred at comparisons. We also study the impact in terms of recognition
performance of the fingerprint textural information for two sensor types, i.e. optical and capacitive.
Furthermore, the impact of rotation and translation of fingerprint images on the extraction of finger-
print embeddings is analysed. Experimental results conducted on a publicly available database reveal
an optimal embedding size of 512 feature elements for the texture-based embedding part of fixed-
length fingerprint representations. In addition, differences in performance between sensor types
can be perceived. The source code of all experiments presented in this paper is publicly available
at https://github.com/tim-rohwedder/fixed-length-fingerprint-extractors, so our
work can be fully reproduced.

Keywords: Fingerprint recognition, fixed-length representation, computational workload reduction,
deep templates.

1 Introduction

Fingerprint recognition has been indispensable for decades in law enforcement and bor-
der control and the technology has been extended to numerous commercial applications.
Recent market trends suggest that the popularity of fingerprint biometrics will increase
further in the coming years [Sk22], leading to broad deployment. This may further lead to
higher workloads coupled with long transaction times.

The most commonly used fingerprint representation is based on minutiae. It is accurate
and provides good interpretability of the ridge pattern of the fingerprint. Despite their pop-
ularity, minutiae-based representations lead to certain drawbacks, e.g. variable length in
terms of the number of minutiae and unordered feature vectors (i.e. representation). A
comparison of two minutiae sets commonly involves the determination of mated minutae
pairs. This procedure can turn out to be computationally expensive, resulting in a com-
plexity of O(n2) [Ma22, Chapter 4]. This computational complexity also limits the use of

1 Hochschule Darmstadt, Germany, tim.rohwedder@stud.h-da.de
2 dasec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany,
{daile.osorio-roig;christian.rathgeb;christoph.busch}@h-da.de
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minutiae-based fingerprint representations in combination with biometric template protec-
tion (BTP) schemes (e.g. homomorphic encryption [Ba23]) which results in a very high
workload. Furthermore, their usability and interoperability are limited in feature-level mul-
timodal fusion systems with other popular types of biometric characteristics (e.g. face and
iris) that use floating-point values in their representations (e.g. [Bo22a, Ba22, Bo22b]).

In recent years, biometric technologies have been combined with deep learning approaches
because of their capabilities to extract distinctive features, i.e. embeddings, that allow high
recognition performance [Li17, Wa18, WD21]. In particular, texture-based representation
has been of interest for many types of biometric characteristics. Extracted texture informa-
tion can easily be dimensionally reduced without sacrificing biometric performance (e.g.
search of the intrinsic dimensionality [GBJ19] for face templates). In contrast to minutiae-
based representations, the embeddings extracted by deep neural networks are usually of
fixed length and, thus, can be successfully combined with BTP schemes and other types
of biometric characteristics in a multimodal system.

Recently, the extraction of texture-based fixed-length fingerprint representations has been
proposed in different deep learning-based works [ECJ19, Gr22]. Engelsma et al. [ECJ19]
proposed a Deep Neural Network (DNN) called DeepPrint that learns both minutiae and
texture representations through multi-task learning. To evaluate the feasibility of the pro-
posed approach, several experiments on some publicly available databases, e.g. FVC 2004
DB1 A [Ma04], resulting in high recognition performance including scanned rolled fin-
gerprints in NIST SD4 [WW92] and NIST SD14 [Wa93] databases, were conducted by
the authors. Despite the results achieved, a proper evaluation of this system based on dif-
ferent types of capture devices remains missing; only optical sensors are assessed by the
authors. In addition, there is still a lack of comprehensive research on the extent to which
fingerprint texture representations can be dimensionally reduced without impairing recog-
nition performance. Motivated by the above fact, this work explores the trade-off between
dimensionality reduction and biometric performance for the competitive fixed-length rep-
resentation extractor DeepPrint for data from optical and capacitive sensors.

The remainder of this paper is organised as follows: Sect. 2 briefly introduces related
works. In Sect. 3, the considered method for extracting fixed-length fingerprint representa-
tion is explained in detail. Sect. 4 presents the experimental setup and the achieved results
are summarised in Sect. 5. Final remarks are outlined in Sect. 6.

2 Related work

The introduction of DNNs in biometrics in the last decade has led to the development of
powerful face recognition systems which have replaced previously deployed schemes (e.g.
[De19]). Those architectures allow to derive fixed-length representations which contain the
most significant facial traits representing the captured subject. In order to extend such sci-
entific works, few articles have studied the feasibility of learning fixed-length fingerprint
embeddings via DNNs [ECJ19, Gr22]. Engelsma et al. [ECJ19] proposed a scheme for
learning texture-based fixed-length fingerprint representations. Using the domain knowl-
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edge injection of the minutiae map, the DNN approach produces a texture-based embed-
ding of 192 components which reports competitive results in comparison with the one
yielded by traditional minutiae-based techniques. Following this idea, Takahashi et al.
[Ta20] included additional tasks on the multi-task learning framework proposed by En-
gelsma et al. [ECJ19]. Subsequently, Grosz and Jain [GJ22] introduced attention mecha-
nisms within the DNN based on re-alignment strategies on local embeddings that re®ned
the process of global embedding extraction. Afterwards, Grosz et al. [Gr22] showed that
the minutiae-based domain knowledge combined with vision transformers increased the
biometric performance of the work in [GJ22].

In general, previous approaches have focused on computing ®xed-length discriminative
representations from the ®ngerprint that achieve similar or superior biometric performance
compared to traditional minutiae-based systems. Fixed-length representations can be eas-
ily combined with BTP schemes or used in a multi-modal pipeline and can therefore be
deployed in privacy-protecting authentication systems. This may result in signi®cant dif-
ferences in terms of texture appearance. Therefore, ®xed-length representations must be
robust to these sensor type variations. However, so far, the robustness towards different
sensors has not yet been studied for ®xed-length ®ngerprint representations.

3 Deep ® xed-length ® ngerprint representation

3.1 Dimensionality reduction via DNN classi® ers

Generally, DNN classi®er architectures can be used for dimensionality reduction. In our
work, we consider the scenario of a classi®cation problem with a large number of classes1.
A DNN classi®er is used to predict the probability of each possible class in the training
dataset. As illustrated in Fig. 1, the architecture of such a network can typically be de-
composed into four components: input data, main network, last layer representation L, and
output Z, where L and Z are fully connected with a weight matrix W . While the main
network can inhibit a highly complex structure, it always ful®lls the task of reducing the

1 In our case, each class corresponds to a distinct ®nger.
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Fig. 1: Abstract representation of a typical DNN classi®er architecture.
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Tim Rohwedder and Dailé Osorio-Roig and Christian Rathgeb and Christoph Busch

Input

Cropped

N

N γ

Minutiae Map Injection

Inception v4
stem

Fixed-length
representation

ET(x)

EM(x)

+

Texture-branch

Minutiae-branch

...

Fig. 2: Conceptual overview of the DeepPrint architecture. It consists of two branches; the upper
branch ET (x) represents the fingerprint texture representation while the other one EM(x) is fed with
the minutiae maps (i.e. minutiae coordinates and angles) to learn a compact minutiae representation.
The final fixed-length representation comprises the concatenation of ET (x) and EM(x).

input data to the vector L. The probability weight of a class i is then defined by Zi = L⃗ ·W⃗i,
where W⃗i denotes the i-th row of W , indicating the intra-class and inter-class similarity for
the same and different classes. Thus, we can view L as a dimensionality-reduced repre-
sentation of the input data, which contains only the features most relevant for calculating
class similarity. The dimension N of this representation is determined by the number of
neurons in L.

One should note, that the network only learns to extract representations of the classes
present in the training data. In order to generalize to classes not present in the training
dataset, the number of training classes must be sufficiently high and the unknown classes
must be fundamentally similar to the classes seen during training. For a fingerprint dataset
consisting of thousands of subjects, we can assume that this condition is fulfilled.

3.2 DeepPrint architecture

Fig. 2 shows the overview of the DNN-based scheme used in this paper for learning the
fixed-length fingerprint representation. As mentioned in Sect. 1, we selected and imple-
mented the competitive DeepPrint approach in [ECJ19]. This system consists of two main
branches. A cropped fingerprint image is initially processed by the stem of the Inception
v4 architecture (henceforth referred to as “stem”). Then the first branch ET (x), consist-
ing of the remaining Inception v4 layers, performs the primary learning task of predicting
a finger identity label. The second branch EM(x) also predicts the subject identity but it
has a side task of detecting minutiae locations and orientations via the use of an AutoEn-
coder [ECJ19]. Thus, we guide this branch of the network to extract representations influ-
enced by the fingerprint minutiae. In addition to these tasks, center loss [We16] is applied
to both branches. The parameters of the stem are shared between the minutiae detection
and representation learning branches. Finally, the embedding vectors computed by the two
branches are concatenated into the last layer before the output class probabilities. In the
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Fig. 3: Relation of different values of
N (dimensions of embeddings) with re-
spect to the biometric performance γ
and the number of operations O per-
formed at a single comparison. Con-
sider that 100% of O represents the to-
tal of operations done by a ®xed-length
representation containing e.g. N = 2,048
¯ oating points. In addition, γ can rep-
resent some measure of evaluation in a
biometric system (e.g. FMR at 0.1%).

original DeepPrint architecture, the size N of this layer, which provides the ®ngerprint rep-
resentation as explained in Sect. 3.1, was ®xed at 192 dimensions. To train the network,
we chose similar hyperparameters and loss functions as [ECJ19].

A drawback of our scheme is that the alignment step (prior to cropping the input data)
was not considered. However, we investigated the effect of rotation and translation (see
Fig. 6a and Fig. 6b) of the ®ngerprint image on ®xed-length representation for the two
concatenated branches on different types of sensors. Also, as part of this work, we exper-
imented with various embedding sizes, i.e. N = {32,64,128,256,512,1024,2048}, and
performed an ablation study of the complementary information provided by each branch.
Theoretically, it is expected that values of N have a signi®cant impact on the biometric
performance, while gaining workload (number of operations), as shown in Fig. 3.

4 Experimental setup

In this section, we describe the most relevant components in the training setup of the
®xed-length extractor (Sect. 4.1) and databases used, while Sect. 4.2 describes metrics and
protocols employed in the evaluation.

4.1 Training dataset

Although this work follows the architecture proposed by [ECJ19], there are some other
considerations such as the training database, and pre-processing steps that differ from
the original work. In order to conduct the experimental analyses of this paper, a syn-
thetic database for training the ®xed-length approach was created. Note that the original
database [YJ15] used in [ECJ19] for training is not public. For the construction of the
training database, synthetic ®ngerprint images together with the respective minutiae maps
were generated by the framework SFinGe [Ca04]. In particular, 40,000 samples stemming
from 4,000 unique ®ngers were generated. To improve the generalisation capability of
the network over real ®ngerprint images, 200 subjects from the MCYT database [Or03],
which are equivalent to 200·10 = 2,000 ®ngerprint instances, are selected and mixed into
the set of synthetic ®ngerprint images forming a total of 40,000 + 48,000 samples. The
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(a) Original sample (b) Data augmentation (c) Enhanced image

Fig. 4: Example of a synthetic fingerprint image generated by SFinGe with the respective pre-
processing steps.

Databases Sensors Training Testing
#Subjects #Samples #Subjects #Samples

Synthetic Optical 4,000 4,000×10 - -

MCYT [Or03]
Optical 200×10 2,000×12 130×10 1,300×12

Capacitive 200×10 2,000×12 130×10 1,300×12

Tab. 1: Summary of the training and testing sets employed in this work.

variability of the different types of sensors together with the synthetic images generated
is expected to contribute to a robust extraction of distinctive features. Note that, in our
experiments, each fingerprint is considered a different biometric instance and is therefore
assigned a different class in training time. The fingerprint images were cropped and resized
to 299×299 pixels as done in [ECJ19]. In addition, a data augmentation step based on the
rotation, shifting, and variation of the brightness and contrast was randomly introduced. To
enhance the image quality, a pre-processing step was considered based on Gabor wavelet
transformation [Ka10]. Fig. 4 visualises examples of this virtual database composed with
their corresponding pre-processing steps.

The remaining 130 different subjects from MCYT [Or03] resulting 1,300 identities are
used to evaluate the CNN-based approach. Tab. 1 summarises the characteristics of the
training and testing database.

4.2 Metrics and protocols

Biometric performance in the verification scenario was reported in accordance with the
metrics defined by ISO/IEC19795-1:2021 [IS21]. The Equal Error Rate (EER), which
represents the operating point at which False Match Rates (FMR) and False Non-Match
Rates (FNMR) equalise, is computed. In addition, the FNMR values for several security
thresholds, i.e. 0 ≤ FMR ≤ 40 are depicted as Detection Error Trade-off (DET) curves.
We also evaluate the identification rate for different rank values, i.e. Rank-N on a closed-
set identification scenario. Note that for the verification scenario, all possible comparisons
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Embedding Size (N) #Operations (O) Optical Capacitive
FNMR EER FNMR EER

32 63 5.36 1.19 10.60 2.42
64 127 5.37 1.26 10.49 2.38

128 255 3.51 1.00 7.91 2.14
256 511 3.04 0.94 8.19 2.31
512 1023 1.89 0.63 5.39 1.68
1024 2047 2.61 0.97 6.46 2.26
2048 4095 3.91 1.17 9.46 2.51

Tab. 2: Biometric performance (in %) for the verification scenario using the texture-based branch.
FNMR values are reported for a FMR at 0.1%. The best result is highlighted in bold.

for mated and non-mated comparisons are computed, while 10-fold cross-validation is per-
formed on the closed-set identification protocol. Furthermore, the computational workload
of a single comparison in relation to the embedding size (i.e. feature dimensions (N)) and
the number of operations (O) according to the cosine comparator are reported. Since the
computed embeddings are normalised, the cosine similarity function between two fixed-
length representations of size N performs N multiplications followed by N −1 additions,
resulting in N +(N −1) operations.

5 Results

Tab. 2 reports the biometric performance for different embedding sizes (N) as well as
their respective number of operations (O). Following the theoretical behaviour presented
in Fig. 3, we can observe that the biometric performance improves with N, resulting in the
best performance N = 512 (i.e. EER = 0.63% and EER = 1.68% for optical and capacitive
sensors, respectively). Note a slight degradation of performance for N > 512, indicating
the introduction of unreliable features at larger embeddings. Regarding the comparison
between the performance depicted by both sensors, we perceive a significant deterioration
in terms of EER and FNMR for the capacitive capture device. In particular, the algorithm
for optical sensor images yields a FNMR@FMR = 0.1% of 1.89% for N = 512, which is
approximately three times lower than the one achieved on capacitive sensor images at the
same security threshold (i.e. FNMR = 5.39%). These results demonstrate that the feature
representation computed by the DeepPrint system is affected by the sensor technology of
the fingerprint capture device. Therefore, further research to overcome this deficiency is
necessary.

5.1 Performance analysis

Fig. 5 depicts performance plots for N = 512 for different branches, i.e. minutiae, texture
and concatenation-based branches, for both verification and closed-set identification sce-
narios. In this context, each evaluated branch is trained on a fixed-length embedding of
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(a) Optical sensor (b) Capacitive sensor

(c) Optical sensor (d) Capacitive sensor

Fig. 5: DET curves for veri®cation (a)-(b) and identi®cation rate for different Rank values (c)-(d) on
optical and capacitive sensors.

512 ¯ oating points. Note that both texture and the concatenation schemes in Fig. 5a and
Fig. 5b achieve similar recognition performance, resulting in a similar FNMR below 2.0%
for optical sensor and FNMR = 5.0% for the capacitive sensor at a FMR = 0.1%. These
non-signi®cant differences over high-security thresholds (FMR≤0.01%) make the sole
use of embeddings computed by the texture-based branch suitable to be combined with
other approaches such as BTP and fusion schemes. It also avoids the detection of minu-
tiae points which might lead to undesired recognition performance. On the other hand, we
note, for the closed-set identi®cation scenario in Fig. 5c and Fig. 5d, a slight improvement
is obtained when the concatenation of minutiae and texture branches is performed. How-
ever, the differences between the identi®cation rates reported by the concatenation and the
texture-based branch is lower than 1.0% at Rank-1 in the optical and capacitive sensors.
We observe that the worst results are obtained with the minutiae-based branch, which re-
sults in a decrease of the identi®cation rate down to 93% and 90% at Rank-1 for the optical
and capacitive sensors, respectively. We believe that the non-considered alignment step in
the optimisation of minutiae maps in the ET (x) branch leads to this performance deteriora-
tion. Despite this negative observation, we con®rm that the concatenation of minutiae and
texture-based embeddings complements each other to improve both independent branches.
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(a) Optical sensor (b) Capacitive sensor

Fig. 6: Veri®cation performance of the 512-dimensional concatenated embeddings for different lev-
els of simulated rotation and translation. The value on the x-Axis is the maximum rotation r where
the input images were randomly rotated by a value sampled from the uniform distribution over
[−r,r]. Respectively, on the y-Axis we have the max. translation t, where each ®ngerprint image is
shifted by an amount of pixels sampled from [−t, t]2.

Finally, we note that similar to the results in Tab. 2, the evaluated system reports different
recognition performances depending on the sensor employed.

5.2 Robustness analysis

As mentioned in Sect. 3 the effect of the alignment of the ®ngerprint pose is explored in
Fig. 6a and Fig. 6b for the optical and capacitive sensors, respectively. To that end, increas-
ing levels of rotation and translation were applied to the testing set and then, ®ngerprint
embeddings were extracted. Here, the performance (FNMR) deteriorates disproportion-
ately as the magnitude of the rotation and translation increases. Interestingly, the rate of
deterioration appears to grow faster for rotation (x ≥ 30, y = 0) compared to translation
(x = 0, y ≥ 40) for both sensors. These facts con®rm the need for the alignment stage. De-
spite this, we believe that texture information contributes to some extent to reducing these
negative effects. Future work should investigate this effect on the independent branches,
including for minutiae map representations without texture information.

6 Conclusions

In this paper, we evaluated how dimensionality reduction for a state-of-the-art represen-
tation of ®xed-length ®ngerprints affects the overall recognition performance. To do so,
we analyse the degradation of biometric performance and computational workload in the
comparison stage of the DeepPrint approach. Experimental results computed on a publicly
available database empirically demonstrated that learned features with a dimension lower
or higher than 512 ¯ oating points led to a deterioration of biometric performance. Fur-
thermore, the differences in performance between the results obtained for the optical and

98
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capacitive sensor indicated the need for further research in this field. In spite of this draw-
back, we do confirm that this fixed-length representation enables its use in combination
with BTP schemes and multimodal schemes which is subject to our current research.
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Fairness and Privacy in Voice Biometrics: A Study of
Gender Influences Using wav2vec 2.0

Oubaı̈da Chouchane1, Michele Panariello1, Chiara Galdi1, Massimiliano Todisco1,
Nicholas Evans1

Abstract: This study investigates the impact of gender information on utility, privacy, and fairness
in voice biometric systems, guided by the General Data Protection Regulation (GDPR) mandates,
which underscore the need for minimizing the processing and storage of private and sensitive data,
and ensuring fairness in automated decision-making systems. We adopt an approach that involves
the fine-tuning of the wav2vec 2.0 model for speaker verification tasks, evaluating potential gender-
related privacy vulnerabilities in the process. Gender influences during the fine-tuning process were
employed to enhance fairness and privacy in order to emphasise or obscure gender information
within the speakers’ embeddings. Results from VoxCeleb datasets indicate our adversarial model in-
creases privacy against uninformed attacks, yet slightly diminishes speaker verification performance
compared to the non-adversarial model. However, the model’s efficacy reduces against informed
attacks. Analysis of system performance was conducted to identify potential gender biases, thus
highlighting the need for further research to understand and improve the delicate interplay between
utility, privacy and equity in voice biometric systems.

Keywords: Speaker verification, privacy preservation, fairness, gender concealment, wav2vec 2.0

1 Introduction

The voice is an appealing approach to biometric authentication. Its merits include ease
of use, contactless and natural interaction, efficiency, and application to authentication
at a distance, e.g. over the telephone. However, the voice is a rich source of personal
information and recordings of speech can be used to infer far more than just the speaker’s
identity, e.g. the speaker’s gender [Za21], ethnicity [HRC13], and health status [SLRR21].
The safeguarding of such extraneous personal information is nowadays essential; without
it, there is no guarantee that recordings of speech will not be used for purposes beyond
person authentication [SDAA19].

The General Data Protection Regulation (GDPR)2 calls for adequate protections for per-
sonal data, encompassing both sensitive biometric information like voice and personal
attributes such as gender3. In adherence to Art. 4(1) of the GDPR, personal data process-
ing must abide by principles of legality and fairness, managing data in line with reasonable
expectations and avoiding unjust harm. Any AI-driven data processing resulting in unfair
discrimination violates this principle.
1 EURECOM, France. {lastname [at] eurecom [.] fr}

2https://gdpr-info.eu/
3https://www.gdpreu.org/the-regulation/key-concepts/personal-data/
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As mandated by GDPR, this study particularly emphasizes privacy and fairness, focusing
on gender due to its demonstrated influence on speaker authentication services [HD22]
and the observed gender bias in voice assistant responses [Li19]. GDPR aims to protect
the rights and freedoms of individuals, including privacy and non-discrimination, with
regard to personal data processing. Concealing gender adheres to the principles of data
minimization and privacy by design, limiting the risk of misuse or unauthorized data ac-
cess.

In this research, we grapple with the triple challenge of utility, privacy, and fairness in
speaker verification systems. Starting with fine-tuning a pre-trained wav2vec 2.0 for speaker
verification tasks, we then evaluate potential vulnerabilities tied to gender privacy and the
fairness of Automatic Speaker Verification (ASV) performance across genders. Subse-
quently, we implement an adversarial technique during the fine-tuning process to conceal
gender information in the speaker embeddings, thereby enhancing user privacy. To con-
clude, we present a comprehensive analysis of the impact of gender information on the
utility, privacy, and fairness of the systems we propose.

2 Related work

Significant strides have been made in speaker verification, with efforts concentrated on en-
hancing user privacy. These strategies prioritize the protection of gender-specific data with-
out sacrificing system utility. Noé et al. [No20] suggested an Adversarial Auto-Encoder
(AAE) method to separate gender aspects from speaker embeddings while preserving
ASV performance. The approach uses an external gender classifier to analyze encoded
data. Later, they leveraged a normalizing flow to control gender information in a flexible
manner [No22]. In another study, Benaroya et al. [BOR21] developed a novel neural voice
conversion framework using multiple AEs to create separate linguistic and extra-linguistic
speech representations, allowing adjustments during the voice conversion process. Re-
cently, Chouchane et al. [Ch23] used an adversarial approach to hide gender details in
speaker embeddings while ensuring their effectiveness for speaker verification. They in-
corporated a Laplace mechanism layer, introducing noise to obscure gender information
and offering differential privacy during inference.

In terms of fairness, research reveals a distinct disparity in ASV system performance based
on gender, exposing gender bias [TD21]. Two primary strategies to mitigate this bias in-
clude pre-processing and in-processing. Pre-processing uses balanced datasets for train-
ing, as Fenu et al. [Fe20] demonstrated with gender, language, and age-balanced data. In
contrast, in-processing infuses fairness directly during training, as seen in Shen et al.’s
Group-Adapted Fusion Network (GFN) [Sh22] and Jin et al.’s adversarial re-weighting
(ARW) approach [Ji22]. Peri et al. [PSN23] recently proposed adversarial and multi-task
learning techniques for bias mitigation, highlighting a potential trade-off between system
utility and fairness.

Finally, shifting focus to system utility, a cornerstone in ASV performance, the wav2vec
2.0 [Ba20], a self-supervised framework for speech representation learning, enters the
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scene. The wav2vec 2.0 can be effectively adapted for speaker verification tasks [VVL22,
Fa20].

3 Automatic speaker verification, gender recognition and suppres-
sion using wav2vec 2.0

In this section, we outline our use of the wav2vec 2.0 model, a versatile speech feature
encoder that is pre-trained through self-supervision and can be adapted to specific tasks.
We fine-tuned wav2vec 2.0 for three distinct tasks: speaker recognition, and gender recog-
nition and suppression. Section 3.1 elaborates on the pre-training process, while Section
3.2 details our contributions to fine-tuning. Both procedures are graphically depicted in
Fig. 1.

3.1 Pre-training

Given a raw audio input signal x, wav2vec 2.0 produces a set of T feature vectors c1, . . . ,cT .
The model is split into a 1D-convolutional encoder and a Transformer module [Va17] two
main parts. First, the encoder maps the raw audio x to latent feature vectors z1, . . . ,zT . The
latent features are then fed into the Transformer module to produce output feature vectors
c1, . . . ,cT , and are also used to compute a set of quantised macro-codewords q1, . . . ,qT .
Each macro-codeword qt is the concatenation of G codewords qt,1, . . . ,qt,G selected from
G different codebooks Q1, . . . ,QG, each of size V , learned at training time. Each codeword
qt, j is sampled from Q j according to a V -fold categorical distribution. The distribution is
optimized during pre-training and computed as pt, j = GS(zt), where GS indicates a lin-
ear layer projecting zt to V dimensions followed by a straight-through Gumbel-softmax
estimator [JGP17].

During pre-training, the model attempts to simultaneously minimize a contrastive loss Lm
and a diversity loss Ld . To compute the former, some of the latent feature vectors z1, . . . ,zT
are randomly masked. Then, for each masked zt , the Transformer module attempts to com-
pute ct so that it is as similar as possible to the corresponding quantised macro-codeword
qt , and as dissimilar as possible from other “distractor” macro-codewords q̃ randomly
sampled from the rest of the batch. The quantised macro-codewords are computed with no
masking. The diversity loss Ld encourages the model to make uniform use of all the V
codewords in each codebook by maximizing the entropy of the average probability distri-
bution p̄g produced by all zt in a batch for each codebook g. The overall loss is:

L = − ∑
masked
steps t

log
exp(s(ct ,qt)/κ)

∑q̃ exp(s(ct , q̃)/κ)
︸ ︷︷ ︸

Lm

−α
1

GV

G

∑
g=1

H (p̄g)

︸ ︷︷ ︸
Ld

(1)

Where κ is a temperature coefficient, s is the cosine similarity, α is a weight hyperparam-
eter and H indicates entropy.
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Fig. 1: Graphical depiction of the proposed systems. Ms: ®ne-tuning the speaker identi®cation task.
Msg: ®ne-tuning gender and speaker identi®cation. Msga: similar to Msg, but the gender identi®cation
task is made adversarial.

3.2 Fine-tuning for speaker veri® cation and gender recognition

In this paper, we ®ne-tune wav2vec 2.0 for the downstream tasks of speaker veri®ca-
tion and gender recognition. In both cases, for each input utterance x, the output features
c1, . . . ,cT are averaged across time to obtain a 1-dimensional embedding c. In the case of
gender recognition, c is then passed through a linear layer fg which is trained by optimising
the cross-entropy loss Lg between the predicted logits and the true gender label for each
utterance (0 for male, 1 for female). For speaker veri®cation, c is passed through a differ-
ent linear layer fs of N output neurons, where N is the number of speakers in the training
dataset. The layer is then optimized to perform speaker identi®cation by minimizing the
additive angular margin (AAM) softmax loss Ls [Xi19]. At test time, the ®nal embedding
c is used as a trial or enrollment vector. Overall, the ®nal loss can be formulated as:

L = λLs +(1−λ )Lg (2)

where λ is a hyper-parameter between 0 and 1 that controls the weight of each loss com-
ponent. We experimented with three different model con®gurations: Model 1 (Ms) is ®ne-
tuned for speaker veri®cation, i.e. λ = 1; Model 2 (Msg) is ®ne-tuned for both tasks, i.e.
λ = 0.5; Model 3 (Msga) is optimised in a similar manner, though with a gradient reversal
layer [Ga16] gr to suppress gender information.

The optimization process becomes an adversarial game between fg, which attempts to
minimize Lg, and the backbone, which attempts to maximize it. Meanwhile, the Ls com-
ponent is optimized as usual.

4 Experimental setup

Described in this section are the databases used for all experimental work, the metrics used
for evaluation, and the ®ne-tuning procedure.
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4.1 Databases

We used the VoxCeleb1 and VoxCeleb2 speaker recognition databases [NCZ17, CNZ18].
VoxCeleb1 includes over 100,000 utterances from 1,251 celebrities, while VoxCeleb2 con-
tains over a million utterances from 6,112 speakers. Both datasets, compiled from YouTube
videos, are widely used for speaker recognition and voice-related machine-learning tasks.
Fine-tuning is performed using the VoxCeleb2 development set which contains data col-
lected from 5994 unique speakers of which 3682 are male and 2312 are female, corre-
sponding to an imbalance in favour of male speakers of 22.9%. To assess the performance
of our systems, we used the VoxCeleb1 test set, which consists of 40 unique speakers of
which 25 are male and 15 are female.

4.2 Metrics

A range of key metrics was selected, many of which are derived from the evaluation of
biometric classification systems, e.g. speaker verification and gender classification. The
following describes how they are used to jointly assess the utility, privacy, and fairness of
the models under scrutiny.

Utility is measured by assessing the performance for the task of automatic speaker veri-
fication (ASV) in terms of equal error rate (EER). EER is the operating point defined by
the detection threshold τ at which the false acceptance rate (FAR) and the false rejection
rate (FRR) are equal.

Privacy relates to the difficulty of an adversary to infer sensitive attributes. We use AUC
(area under the receiver operating characteristic curve) metric to gauge privacy. In contrast
to EER, AUC provides a comprehensive view, which is ideal for evaluating system security
across diverse threshold selections.

Fairness is aimed at ensuring that a system behaves equally with all subgroups of the
target population. Many approaches for measuring fairness have been proposed recently
and there is still no agreement on which is the most appropriate. We adopted two different
metrics with the aim of giving a more meaningful insight into the fairness of the models.

The first adopted approach aims at ensuring that the error rates for all demographic groups
fall within a small margin ε . However, for practical purposes, given a pair of demographic
groups D = d1,d2, we calculate A(τ) and B(τ), as:

A(τ) = max
(∣∣∣FARd1(τ)−FARd2(τ)

∣∣∣
)

(3)

B(τ) = max
(∣∣∣FRRd1(τ)−FRRd2(τ)

∣∣∣
)
. (4)

These represent the maximum absolute differences in FAR and FRR across all groups. In
a perfect system, both A(τ) and B(τ) would equal 0, reflecting identical error rates across
all groups.
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The Fairness Discrepancy Rate (FDR) [dFPM21] is defined as:

FDR(τ) = 1− (αA(τ)+(1−α)B(τ)) (5)

where the hyper-parameter α ∈ [0,1] determines the relative importance of false alarms.
FDR ranges between 0 and 1 and would equal 1 in the case of a perfectly fair system.
However, achieving perfect fairness is often unrealistic, leading to the introduction of ε
which allows for certain discrepancies. Though ε isn’t included in the FDR calculation,
it’s vital for defining an acceptable level of fairness and interpreting FDR results.
Given the absence of a universal ε and the complexities of biometrics, absolute fairness
often isn’t achievable. Thus, FDR and Area Under FDR (auFDR) are used to compare the
fairness of different biometric systems. The auFDR is calculated by integrating the FDR
over a specific threshold range τ , denoted as FARx. To fairly compare the auFDR between
different systems, the specific range of τ used must be reported, as the value of the auFDR
depends on this range. Like the FDR, the auFDR varies from 0 to 1, with higher values
denoting better fairness. In our experiments, we set the range to FARs below 0.1; FARs
above this value correspond to a system with little practical interest.

The second metric is the fairness activation discrepancy (FAD), which we use to investi-
gate fairness within the network. FAD is inspired by InsideBias [Se21], a fairness metric
developed originally for the study of face biometrics and which we adapt to our study of
voice biometrics. Notably, this adaptation of FAD for voice biometrics is a novel metric in
this context.

InsideBias is based upon the examination of neuron activations and the comparison of
model responses to demographic groups within distinct layers. In [Se21], the authors ob-
served that underrepresented groups corresponded to lower average activations. In the case
of voice biometrics, the output of each network layer can be viewed as a bi-dimensional
tensor of neurons over temporal frames:

A[l]
i j = Ψ[l](·) (6)

where i = 1, ...,N, j = 1, ...,M, Ai j is the activation of the ith neuron for the jth temporal
frame, Ψ[l] is the activation function at layer l, and N and M are the total number of neurons
and frames respectively. For each layer l we calculate the root mean square of Ai j over the
jth frame which serves to account for large positive or negative activations. Then, we take
the maximum along the ith feature dimension:

Λ[l] = max
i

√√√√
(

1
M ∑

j
A2

i j

)
(7)

The FAD is defined as the absolute difference between Λ for a pair of two distinct groups
and is given by FAD = |Λd1 −Λd2 |. Near-zero values of FAD indicate better fairness.
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4.3 Fine-tuning procedure

Ms, Msg and Msga models are fine-tuned as described in Section 3.2. An initial warm-up
is applied to the linear classification heads for the first 10k optimization steps, keeping
the wav2vec 2.0 backbone frozen. The entire model is then fine-tuned in an end-to-end
fashion for the remaining steps. We use the pre-trained model provided by Baevski et
al. [Ot19]4. Performance for the speaker identification task exceeded 95% accuracy for all
three models whereas the adversarial system delivered a gender recognition accuracy of
only 47%.

4.4 Gender privacy threat models

The ability of the systems to conceal the gender information contained in its embeddings is
measured by simulating the presence of a third party (an attacker) training a 2-layer fully-
connected neural network N to infer the speaker gender from utterance embeddings. We
consider two threat models. In the first one, the attacker is not aware that gender conceal-
ment has taken place (uninformed attack (uIA)) and therefore trains N on embeddings
that are not gender-protected (in this case, those produced by Ms and Msg). In the second
one, the attacker is aware that model Msga was used to protect the gender identity (in-
formed attack (IA)), has access to that model, and trains N on embeddings produced by
that same model. We expect this to result in a more effective attack.

5 Experimental results

We present results for each of the three models Ms, Msg, and Msga. Performance is assessed
in terms of utility, privacy, and fairness.

In terms of utility, the performance of model Ms is in line with state-of-the-art automatic
speaker verification systems, achieving an EER of 2.36% as shown in Table 1. The perfor-
mance of model Msg and Msga are slightly worse, 3.23% and 3.89% respectively, showing
that gender influence does not improve speaker recognition. Furthermore, an analysis of
the EER broken down by gender shows small differences in speaker recognition for the
two genders.

Fairness performances are shown at the bottom of the Table 1 in terms of the auFDR for
different values of α . All auFDR results are close to 1, indicating reasonable fairness for
each group. Fig. 2 depicts a plot of the FDR against the threshold for α = 0.5. Profiles
are shown for all three systems. The FDR is in all cases above 0.9, and the Ms system is
always the fairest for each τ . Again, gender influence does not improve fairness.

Privacy performances are presented in Table 2. AUC results for uninformed attacks (uIA)
are shown at the top. When training and testing are performed using embeddings gen-
erated using the same, unprotected models, the AUC is 97.09% and 98.07% for Ms and

4https://github.com/facebookresearch/fairseq/tree/main/examples/
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Models
Ms Msg Msga

EER(%)
Overall 2.36 3.23 3.89
Male 3.12 4.22 4.98

Female 3.05 4.21 5.26

auFDR α

0 0.98 0.97 0.96
0.25 0.97 0.97 0.95
0.5 0.97 0.96 0.94

0.75 0.96 0.95 0.92
1 0.95 0.94 0.91

Tab. 1: Performance analysis of the three models
for utility and fairness, including EER breakdown
by gender and auFDR across various α values (re-
fer to eq.5) for τ ranging from 0.1% to 10%.

Data Attack
Training Test AUC (%)

uIA

Ms Ms 97.09
Ms Msga 46.80
Msg Msg 98.07
Msg Msga 40.76

IA Msga Msga 96.27

Tab. 2: Assessment of gender con-
cealment effectiveness under dif-
ferent threat scenarios in terms of
AUC.

Msg models, respectively, demonstrating a lack of privacy protection. In contrast, when the
same uninformed attack is made on the gender-protected model Msga, the AUC drops to
46.80% and 40.76% respectively. This significant decrease indicates that the gender clas-
sifier predictions become nearly random, successfully concealing the gender information,
demonstrating effective protection of privacy.
Performances for the informed attack (IA) are shown in the last row of Table 2. When
embeddings are extracted with the Msga model, the AUC is much higher, at 96.27%. This
result underlines the difficulty of obfuscating gender information from embeddings. Fig. 3
reveals an explanation. It illustrates a projection by principal component analysis of the
embeddings generated by each of the three models. While the Msga model is adversely
trained with respect to gender cues, Fig. 3c shows that they persist. We see that, rather
than fully obfuscating gender cues, Msga only rotates the principal components hence why,
when trained on similarly-treated training data, gender can still be recognised.

Finally, an analysis of internal bias in terms of FAD has been performed at different net-
work layers considering male and female groups. This analysis aims to provide insights
into the comparative measures of fairness across three distinct models and how they dy-
namically propagate through the various layers. By examining the internal bias at each
layer, we can better understand the impact of model architecture and training data on fair-
ness outcomes. As illustrated in Fig. 4, 32 layers were selected in total from the wav2vec
2.0 model. These include 8 layers from the 1D-convolutional encoder and 24 intermediate
activation layers from the Transformer modules.
Fig. 4 shows the FAD values calculated at different layers. The first layers of the CNNs dis-
play similar fairness, likely due to their focus on low-level features. Contrastingly, Trans-
former layers, which handle high-level features, have wider fairness variations. Ms and
Msga show a complementary behavior as when one achieves high FAD, the other has lower
FAD, and vice versa. This could be because Ms was fine-tuned for speaker verification,
while Msga, with its gradient reversal layer, was trying to suppress gender information. As
layers progress, all models converge to FAD values, with Ms being the fairest at the end,
confirming what is observed in terms of auFDR.
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Fig. 2: FDR of different ASV systems for different decision thresholds for τ from 0.1% to 10%

Fig. 3: PCA visualizations of features from three models illustrating gender recognition capabilities.
Blue points correspond to males and red to females.

6 Conclusions and Future Directions

This research explored the influence of gender information while ®ne-tuning wav2vec
2.0 for speaker veri®cation. We proposed three models: Ms, Msg, and Msga, each with a
different focus: speaker recognition, speaker recognition with gender classi®cation, and
speaker recognition with gender obfuscation, respectively. Our experiments revealed that
Ms succeeds in speaker veri®cation (EER of 2.36%), while Msga, designed to hide gen-
der information, performed much worse (EER of 3.89%). Interestingly, improving gender
recognition in the Msg model did not lead to better speaker veri®cation performance (EER
of 3.23%). Privacy evaluations showed effective gender obfuscation against uninformed at-
tacks, but informed attackers could still extract gender information. Fairness evaluations,
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Fig. 4: Normalised Fairness Activation Discrepancy (FAD) of different systems at different wav2vec
2.0 module layers.

based on FDR, revealed that highlighting or hiding gender did not signi®cantly impact
the fairness of the systems. Furthermore, an analysis of FAD across model layers showed
more disparities within Transformer layers, but all systems eventually converged to FAD
values that match the auFDR assessment, with system Ms showing superior fairness. In
summary, while we achieved notable results in utility and privacy protection against unin-
formed attacks, future work includes strengthening gender obfuscation against informed
attacks and enhancing fairness across systems.
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Face Image De-identification
Based on Feature Embedding for Privacy Protection

Goki Hanawa, Koichi Ito, Takafumi Aoki 1

Abstract: With the expansion of social networking services, a large number of face images have
been disclosed on the Internet. Since face recognition makes it easy to collect face images of specific
persons, the collected face images can be used to attack face recognition systems, such as spoofing
attacks. Face image de-identification, which makes face recognition difficult without changing the
appearance of the face image, is necessary for disclosing face images safely on the Internet. In this
paper, we propose a face image de-identification method by embedding facial features of another
person into a face image. The proposed method uses a convolutional neural network to generate
a face image that can be recognized as that of another person while preserving the appearance of
the face image. Through a set of experiments using a public face image dataset, we demonstrate
that the proposed method preserves the appearance of face images and has high de-identification
performance against unknown face recognition models compared to conventional methods.

Keywords: De-identification, Face recognition, Privacy protection

1 Introduction

Face Recognition [LJ11] is a technology that identifies individuals using features such as
facial texture and the position of facial parts. In face recognition, a face image taken from
a distance using a standard RGB camera can be used for recognition. This technology is
low-cost since it does not require a dedicated sensor, and it is highly convenient since it is
non-contact and non-intrusive. Due to the above advantages, face recognition is used for
login authentication in smartphones and personal authentication at immigration control,
etc. On the other hand, there is a problem that face images can be easily collected. With
the increasing use of Social Networking Services (SNS), a large number of face images
have been available on the Internet. Malicious persons can not only collect a large number
of face images from the Internet, but also can use face recognition to collect face images of
specific persons. The collected face images can be used to attack face recognition systems,
such as spoofing attacks [Ma19].

De-identification, which makes face recognition difficult while preserving the appearance
of the face image, has been investigated to protect the privacy of SNS users and to al-
low them to safely disclose their face images. Major methods [Ya20, Ya21, Sh20] for
de-identifying face images employ Adversarial Examples (AEs) [GSS15]. AEs are im-
ages that have been perturbed to induce misclassification of the classification models. It is
known that the perturbation for generating AEs is strongly depending on the classification

1 Graduate School of Information Sciences, Tohoku University, Japan
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model used in training. Conventional methods exhibit high de-identification performance
for the face recognition model used to generate the perturbation in training. The problem
is that the de-identification performance degrades for unknown face recognition models.

In this paper, we propose a face image de-identification method using Convolutional Neu-
ral Network (CNN) to embed facial features of another person into a target face image,
making face recognition difficult while preserving the appearance of the face image. The
proposed method makes the features extracted from the target face image closer to the
other person, and thus enables de-identification independent of face recognition models.
By embedding features from non-real face images generated by StyleGAN2 [Ka20], the
features extracted from the target face image do not correspond to real persons, thus pro-
tecting the privacy of both the target face and the face to be embedded. Through a set of
experiments using the Labeled Faces in the Wild (LFW) dataset [Hu07], we compare the
image quality and de-identification performance of the de-identified images generated by
the proposed method with those of conventional methods, and demonstrate the effective-
ness of the proposed method.

2 Related Work

It is well known that the traditional methods of face image de-identification are blurring
and masking of face images [RAP16]. These methods make face images difficult to iden-
tify for both humans and authentication models. The problem is that the appearance of
the original face image is not preserved, limiting the applications of the de-identified face
images. When a person discloses his or her own face images on the Internet, such as in
SNS, it is important that the face images can be recognized by humans. Therefore, it is
necessary to develop a de-identification method that makes face recognition difficult while
preserving the appearance of the original face images.

Recently, several methods have been proposed to de-identify face images while preserv-
ing their appearance using deep learning. Major methods [Ya20, Ya21, Sh20] utilize AEs
[GSS15], which are images that are perturbed to induce misclassification in the classifi-
cation models. Face images can be de-identified by adding perturbations that make face
recognition difficult. Larger perturbations enhance the de-identification performance, al-
though they significantly change the appearance of the face images. On the other hand,
smaller perturbations preserve the appearance of the face images, although they do not
provide sufficient de-identification performance. Therefore, a balance between the appear-
ance of the de-identified image and the de-identification performance is important in face
image de-identification. Yang et al. proposed two types of face de-identification meth-
ods: Landmark-Guided Cutout (LGC) [Ya20] and the Targeted Identity-Protection Itera-
tive Method (TIP-IM) [Ya21]. LGC [Ya20] adds constraints based on facial landmarks to
the Fast Gradient Sign Method (FGSM) [GSS15], which can be applied to a variety of im-
ages, and specializes on de-identification of face images. The balance between appearance
and de-identification performance can be adjusted by the hyperparameter ε that controls
the magnitude of the perturbation. TIP-IM [Ya21] generates de-identified images based on
the Maximum Mean Discrepancy (MMD), which is the difference between the data distri-
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Fig. 1: Overview of the network architecture and loss functions in the proposed method.

bution of the set of original face images and the set of de-identified images. The balance
between appearance and de-identification performance can be adjusted by the weight γ of
the MMD-based loss function in addition to the ε . Shawn et al. propose Fawkes [Sh20],
which generates de-identified images by adding a minimal perturbation such that the fa-
cial features extracted from the original face image are significantly shifted in the feature
space. The balance between appearance and de-identification performance can be adjusted
through three modes3 that control the magnitude of the perturbation.

The perturbations added to AEs are highly depending on the face recognition model on
which the perturbation is generated. Although AEs are effective for the face recogni-
tion model on which the perturbation is generated, they may not exhibit sufficient de-
identification performance for unknown face recognition models. The facial recognition
model targeted by the attackers is basically unknown. Therefore, the face de-indentification
methods independent of face recognition models are necessary to enhance the practicality
of face image de-identification.

3 Face Image De-Identification Based on Feature Embedding

This section describes a de-identification method for face images by embedding facial
features of other persons into the face images. Face images de-identified by the proposed
method have high image quality since the face images are not perturbed like AEs. Fig. 1

3 https://github.com/Shawn-Shan/fawkes
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illustrates the overview of the proposed method. In the following, we describe the details
of the network architecture of the proposed method and the loss function used in training.

3.1 Network Architecture

The proposed method consists of an Extracting Network (EN) that extracts facial features
from face images and a Hiding Network (HN) that embeds facial features into a face image.
In the following, the face image to be de-identified is denoted as cover image C, the original
face image of the facial features to be embedded into C is denoted as embedding image
E, and the image where the features extracted from E are embedded into C is denoted as
de-identified image D. EN is a trained face recognition model that extracts facial features
fen(E) and fen(D) from an embedding image E and a de-identified image D, respectively.
Note that the same face recognition model fen must be used to extract fen(E) and fen(D)
in training, while a different face recognition model can be used for feature extraction in
test. HN generates de-identified image D by embedding facial features fen(E) into cover
image C to be de-identified. The proposed method employs U-Net [RFB15] as the network
architecture of HN. U-Net consists of an encoder and a decoder, and these are connected
by skip connections to suppress gradient vanishing. To further suppress gradient vanishing,
residual blocks used in ResNet [He16] are used in the encoder. The facial features fen(E)
are not directly embedded, but are replicated to the same size as cover image C before
embedding. First, a 512×1 face feature fen(E) is transformed into a 2D matrix of 256×2
and expanded to 256×256 by duplicating and merging 128 of them in the height direction.
Next, this 256×256 matrix is replicated and combined in the channel direction to expand
it to the same size as cover image C with 256×256×3. Then, the expanded facial features
fen(E) are concatenated with cover image C in the channel direction and input to HN.

3.2 Loss Functions

As mentioned above, the two ENs in Fig. 1 are trained face recognition models with fixed
weights. Therefore, only the HN need to be trained in the proposed method. We use the
following four loss functions to train HN.

(i) Reconstruction loss Lrec: Lrec is a loss function that reduces the pixel-wise difference
between cover image C and de-identified image D, and is defined by

Lrec = ||C −D||2. (1)

(ii) Perception loss Lperc [JAL16]: Cover image C and de-identified image D are input to
VGG-19 [SZ15] trained on ImageNet [De09] to obtain the features fvgg(C) and fvgg(D)
output from the final layer. Lperc is a loss function that reduces the difference of global
features by reducing the difference between fvgg(C) and fvgg(D), and is defined by

Lperc = || fvgg(C)− fvgg(D)||2. (2)
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(iii) Learned Perceptual Image Patch Similarity (LPIPS) loss Ll pips [Zh18]: Cover
image C and de-identified image D are input to VGG-16 [SZ15] trained on ImageNet
[De09] to obtain the features cl and dl (l = 1,2, . . . ,L) output from each layer, where
cl = f l

vgg(C), dl = f l
vgg(D), and L is the total number of layers in VGG-16. Ll pips is a

loss function that reduces the difference between local and global features by reducing the
difference between the weighted sum of cl and dl , and is defined by

Ll pips =
L

∑
l=1

1
HlW l

Hl

∑
i=1

W l

∑
j=1

||wl � (cl
i j −dl

i j)||2, (3)

where Hl and W l are the height and width of the feature map output from layer l, respec-
tively. wl indicates the weights of each channel for the features output from layer l, and �
indicates an operator for element-wise product.

(iv) De-identification loss Ldeid : Embedding image E and de-identified image D are input
to EN to obtain facial features fen(E) and fen(D), respectively. Ldeid is a loss function that
makes fen(D) extracted from D similar to fen(E) extracted from E by increasing the cosine
similarity between fen(E) and fen(D), and is defined by

Ldeid = 1− cos( fen(E), fen(D)), (4)

where cos( fen(E), fen(D)) indicates the cosine similarity between fen(E) and fen(D).

The total loss function L for training HN is defined by

L = λrecLrec +λpercLperc +λl pipsLl pips +λdeidLdeid , (5)

where λrec, λperc, λl pips, and λdeid are weights for Lrec, Lperc, Ll pips, and Ldeid , respec-
tively. De-identified image D that preserves the appearance of C is generated by using
Lrec, Lperc, and Ll pips. De-identified image D that makes the face recognition model
misidentify D as the person in E is generated by using Ldeid .

4 Experiments and Discussion

This section describes experiments to evaluate the performance of the proposed method
for face image de-identification.

4.1 Datasets

In the training of the proposed method, we use CelebFaces Attributes (CelebA)4, which
is a large-scale public face image dataset, and Generated Faces by StyleGAN2 (GFSG2)5,

4 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5 https://github.com/NVlabs/stylegan2 images/100k-generated-images/ffhq-1024x1024/stylegan2-

config-f-psi-0.5
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Fig. 2: Examples of face images in each dataset used in the experiments.

which is a synthetic face image dataset generated by StyleGAN2 [Ka20]. CelebA [Li15]
consists of 202,599 face images of 10,177 people. The randomly selected 199,599 images
are used for training, and the remaining 3,000 images are used for validation. GFSG2
consists of 5,000 synthetic face images, and all of them are used for training. We use
Labeled Faces in the Wild (LFW)6 to evaluate the performance of de-identified images.
LFW [Hu07] consists of 13,233 face images of 5,749 people. According to the evaluation
protocol recommended by LFW, we extract 3,000 pairs of face images of the same person
for evaluation. All the face images are resized to 256×256 pixels. Fig. 2 shows examples
of face images in CelebA, GFSG2, and LFW.

4.2 Experimental Condition

The proposed method trains HN so that de-identified image D is identified as the person
in embedding image E, resulting in a risk of privacy violation of the person in embedding
image E. If the performance of de-identification is not degraded by using a face image of
a fake person instead of a real person as embedding image E, the privacy can be protected.
Therefore, we evaluate the performance of de-identification using face images of real and
fake persons as embedding images E. We denote the proposed method (R) as using a face
image of a real person, and the proposed method (F) as using a face image of a fake person
in the experiments. In both methods, a face image in the CelebA dataset is used as cover
image C for training HN. In the training of the proposed method (R), a face image of a
real person randomly selected at each epoch from the CelebA dataset is used as embed-
ding image E. In the training of the proposed method (F), a face image of a fake person,
randomly selected at each epoch from the GFSG2 dataset, is used as embedding image E.
Adam [KB15] is used as the optimizer, and the learning rate is dynamically adjusted from
10−5 based on the loss on the validation data. Data augmentation that randomly flips cover
image C and embedding image E to the left and right, respectively, is introduced during
training of the proposed method.

To demonstrate the effectiveness of the proposed method, we compare its performance
with that of the de-identification methods using AEs: Landmark-Guided Cutout (LGC)
[Ya20], Targeted Identity-Protection Iterative Method (TIP-IM) [Ya21], and Fawkes [Sh20].
LGC uses ε = 3.2 as the hyperparameter that controls the magnitude of the perturbation.
TIP-IM uses ε = 12 as the hyperparameter that controls the magnitude of the perturba-

6 http://vis-www.cs.umass.edu/lfw/

118



Face Image De-identification Based on Feature Embedding for Privacy Protection

Tab. 1: Experimental results of face image de-identification methods, where “Original” indicates the
accuracy of original face recognition models.

Method PSNR [dB]↑ SSIM↑ LPIPS↓ ASR [%]↑
FaceNet CosFace Softmax

Original — — — 0.73 0.73 0.90
LGC [Ya20] 30.64 0.943 0.0682 43.23 46.76 62.76
TIP-IM [Ya21] 30.34 0.927 0.1560 56.70 56.53 62.36
Fawkes [Sh20] 35.03 0.980 0.0905 51.73 45.96 63.53
Proposed (R) 28.13 0.957 0.0553 73.43 61.86 81.20
Proposed (F) 28.53 0.959 0.0547 78.13 60.96 79.66

tion, and γ = 0 as the weights of MMD [Bo06] that is the loss function to control the
appearance. Fawkes sets the mode controlling the magnitude of the perturbation to high.

In training, we use the face recognition models trained with ArcFace [DGZ19] as EN.
In test, we evaluate the performance of de-identification against unknown face recognition
models: FaceNet [SKP15], CosFace [Wa18], and iResNet-50 [DGZ19] with softmax. Note
that face recognition model used in test is differ from EN because of black-box.

4.3 Evaluation Metrics

In the experiments, we evaluate the image quality of de-identified images and the perfor-
mance of de-identification in 1-to-1 matching (verification).

The image quality of the de-identified images is evaluated using Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity (SSIM) [Wa04], and LPIPS [Zh18]. PSNR evaluates im-
age quality based on Mean Squared Error (MSE) between images. SSIM [Wa04] evaluates
image quality based on the difference of pixels, contrast, and structure between images.
Higher PSNR and SSIM indicates higher image quality. LPIPS [Zh18] evaluates image
quality based on the difference of weighted sums of features output from each layer when
C and D are input to AlexNet [KSH12]. LPIPS provides an evaluation metric that is closer
to human perception than PSNR and SSIM. Lower LPIPS indicates higher image quality.

The performance of de-identification in 1-to-1 matching is evaluated by the Attack Success
Ratio (ASR). ASR indicates the ratio of pairs that are verified as impostor pairs among the
genuine pairs after de-identification. Higher ASR indicates better de-identification perfor-
mance. We de-identify the face image of one of the 3,000 genuine pairs selected from
LFW. Then, we verify the pairs after de-identification using face recognition models for
test, and calculate ASR based on the verification results. The proposed method (R) uses the
face image of a real person randomly selected from the face images in LFW as embedding
image E. The proposed method (F) uses the face image of a fake person in GFSG2, which
is not used for training, as embedding image E.
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Fig. 3: Examples of de-identified images generated by each method.

4.4 Comparison of Face Image De-identification Methods

We evaluate the performance of face image de-identification methods. Table 1 shows the
quality of the generated de-identified image D and its de-identification performance for un-
known face recognition models. Fig. 3 shows examples of the de-identified image D gen-
erated by each method. The proposed methods (R) and (F) exhibit higher de-identification
performance for all face recognition models than the conventional methods, and can gen-
erate de-identified images with higher image quality due to the lower LPIPS. The de-
identified images generated by the proposed method are less noisy and look natural, while
those generated by the conventional method are noisy and look unnatural. The proposed
method de-identifies a face image by locally applying the features of another person’s face
to the face image, and thus can achieve high de-identification performance against un-
known face recognition models, while preserving the appearance of the face image. The
de-identified images generated by the proposed methods (R) and (F) exhibit comparable
image quality and de-identification performance. By using a face image of a fake person
as the embedding image, it is possible to de-identify face images, taking into account the
privacy of the person in the embedding image.

5 Conclusion

In this paper, we proposed a face image de-identification method to embed facial features
of another person into a target face image. The proposed method makes face recognition
difficult while preserving the appearance of the face image. Through a set of experiments,
we demonstrated the effectiveness of the proposed method compared with the conventional
methods using AEs. We presented that the proposed method can protect the privacy of
both the target face and the face to be embedded by embedding features from non-real
face images.
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Robust Sclera Segmentation for Skin-tone Agnostic Face
Image Quality Assessment

Wassim Kabbani 1 , Christoph Busch 2 , Kiran Raja 3

Abstract: Face image quality assessment (FIQA) is crucial for obtaining good face recognition
performance. FIQA algorithms should be robust and insensitive to demographic factors. The eye
sclera has a consistent whitish color in all humans regardless of their age, ethnicity and skin-tone.
This work proposes a robust sclera segmentation method that is suitable for face images in the
enrolment and the border control face recognition scenarios. It shows how the statistical analysis of
the sclera pixels produces features that are invariant to skin-tone, age and ethnicity and thus can be
incorporated into FIQA algorithms to make them agnostic to demographic factors.

Keywords: FIQA, Face Recognition, Facial Landmarks, Eye Sclera, Skin-tone, Illumination, Natu-
ral Color, Color Imbalance

1 Introduction

Face image quality assessment refers to the process of evaluating the utility of a face im-
age for face recognition. It involves analyzing various quality factors that may impact the
recognition performance. The quality measures produced from analyzing the image can be
in the form of individual quality components, such as background uniformity, illumination
uniformity, pose, exposure, dynamic range, sharpness, facial expressions, or in the form of
a unified quality score.

The ISO/IEC CD on 29794-5 [IS] (Information technology — Biometric sample quality
— Part 5: Face image data) specifies that a face image quality assessment algorithm should
be insensitive to demographic factors such as age, skin-tone or ethnicity.

The eye sclera refers to the outer layer of the eyeball surrounding the iris. It is the opaque,
whitish portion of the eye that surrounds the colored iris and the dark circular opening
called the pupil. Figure 1 illustrates the anatomy of the eye including the sclera. This
characteristic of being whitish in color regardless of age, ethnicity and skin-tone [Ka23] is
what makes it interesting for the task of face image quality assessment.

Analyzing the eye sclera in a face image can help in making the quality assessment algo-
rithms of some of the face image quality components invariant to skin-tone and ethnicity.
Not all of the quality components specified in ISO/IEC CD on 29794-5 can make use

1 IIK, Info. Sec. and Comm. Technology, Gjovik, Norway, wassim.h.kabbani@ntnu.no
2 IIK, Info. Sec. and Comm. Technology, Gjovik, Norway, christoph.busch@ntnu.no
3 IIK, Info. Sec. and Comm. Technology, Gjovik, Norway, kiran.raja@ntnu.no
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(a) (b)

Fig. 1: Anatomy of the Eye. Image src: perspectiveopticians.co.uk

of this but many of them can. This can be, for example, useful for all the illumination
and color related components such as illumination uniformity, no under or over exposure,
natural color, dynamic range as well as for eyes visible and eyes open.

2 Related Work

The blood vessels structure of the eye sclera is unique to each person, hence it could
be used for identification [Zh12]. Therefor, sclera segmentation methods have started to
emerge since a high quality segmentation of the sclera from the eye and the iris is required
before any further processing and recognition can take place.

Most sclera segmentation methods are deep learning based models trained on large scale
datasets with ground truth segmentation masks. Some of them can only segment the sclera,
others perform full eye segmentation for the sclera, the iris, and the pupil.

ScleraSegNet [Wa19] is a sclera segmentation method based on an attention assisted U-Net
model. It utilizes attention modules in addition to the U-Net to imporve the segmentation
performance. In a following improved version of ScleraSegNet [Wa20], the authors sug-
gest to adjust the architecture by placing the attention modules into the central bottelneck
part between the contracting path and the expansive path of the U-Net to strengthen the
learning capacity of the network and this proves to improve the segmentation performance.

RITnet [Ch19] is a real-time eye segmentation deep neural network model that is trained on
the OpenEDS dataset [Ga19]. It is the winning model of OpenEDS Semantic Segmentation
Challenge 2019 4 and achieves state-of-the-art results on the OpenEDS’s testset.

Segmentation models are usually trained on specialized datasets collected for training
eye segmentation models and gaze tracking models. Among the largest and most recent
datasets are OpenEDS [Ga19], and NVGaze [Ki19].

4 https://research.facebook.com/openeds-challenge/
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The OpenEDS:OpenEyeDataset [Ga19], contains eye-images captured using a virtual-
reality head mounted display with two eye-facing cameras and under controlled illumi-
nation. It contains high quality images of 400x640 pixels of the eye region only.

The NVGaze [Ki19] dataset, from Nvidia, is created to satisfy the criteria for near-eyegaze
estimation under infrared illumination. It comprised two types of images, synthetic images
of 1280x960 pixels, and real images of 640x480 pixels of the eye region only.

While face images could be of non-uniform illumination, imbalanced color, and low reso-
lution, existing eye segmentation models are trained on datasets of high-resolution images
captured under controlled illumination in a specialized setting. This makes them less suited
for the task of segmenting the eye region in a face image in order to perform further anal-
ysis. Furthermore, the face parsing network 5 that is standardized in ISO/IEC CD 29794-5
[IS] and which segments the face into 19 classes such as hair, eyeglasses, eyes, eyebrows,
nose, mouth and ears, does not give a segmentation for the different regions inside the
eye but rather for the eye as a whole. Thus, a dedicated sclera segmentation method that
is suitable for face images commonly encountered during the face recognition process is
needed.

Figure 2 shows eye segmentation results of the RITnet model. In figure 2a it can be seen
that the model achieves very good results on a high-quality image from the OpenEDS
dataset. However in figure 2b, it can be seen that the segmentation process fails when used
on an eye region crop taken from a face image of 224x224 pixels from the LFW dataset
[Hu07].

(a) Image from OpenEDS [Ga19] (b) Crop from a face image from LFW [Hu07]

Fig. 2: Eye segmentation results of RITnet [Ch19]

3 Sclera Segmentation

The proposed sclera segmentation method is based on the facial landmarks and it uses
MediaPipe [Lu19] as the landmarks extractor. In particular, the landmarks of both eyes as
5 https://github.com/zllrunning/face-parsing.PyTorch
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well as the landmarks of both the left and the right irises are utilized. The process is the
same for both eyes so it is explained for one eye only. To decide which pixels belong to
the sclera, first a convex hull of the eye’s landmarks ch(eye) is computed, this encloses
the entire area of the eye including the sclera, the iris and the pupil. Second, the minimum
enclosing circle of the iris’ landmarks ec(iris) is computed, this encloses the iris and the
pupil. Then, all the points in the minimum bounding rectangle of the eye’s landmarks
br(eye) that test positive for being inside the convex hull ch(eye) and outside the minimum
enclosing circle of the iris landmarks ec(iris) (the euclidean distance between the point
and the center of the circle is greater than the radius) are considered to belong to the sclera
region. Figure 3 illustrates the process, where figure 3a shows the original image, figure 3b
shows the convex hull ch(eye) in green and the enclosing circle ec(iris) in yellow, figure
3c shows the bounding rectangle of the eye br(eye) in blue, and figure 3d shows the sclera
pixels painted with white.

(a) (b) (c) (d)

Fig. 3: Landmark-based Sclera Segmentation Method. Image from FRLL [DJ21]

The landmark-based sclera segmentation method can successfully segment the sclera re-
gardless of the skin tone, and is also robust to the size of the eyes and the presence of
transparent eyeglasses, as shown in figure 4.

Fig. 4: Sclera segmentation in the enrolment scenario. Images from FEI [Th]

The method works well not only in the enrolment scenario where photos of subjects are
taken under controlled environment, but also works well for the border control scenario
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where images could be of lower quality. Figure 5 shows segmentation examples of small
images of 224x224 pixels from the LFW dataset [Hu07]. The results show that the method
is robust to image resolution, skin-tone, the presence of eyeglasses and small pose varia-
tions.

Fig. 5: Sclera segmentation on smaller, in the wild images from LFW [Hu07]

4 Unnatural Color and Color Balance

Global adjustments of color intensities that affect the entire image can result in color im-
balance. Color imbalance usually takes the form of color casts or extreme color saturation.
Color casts can by created synthetically as a post-processing step after taking the photo
by manipulating the intensities of individual color channels. They can also result from il-
luminating the subject with light sources of different color temperatures, while taking the
photo, causing digital cameras to render a color cast. Extreme color saturation, on the other
hand, is created when the intensities of all colors in the image, not individual channels, are
manipulated to take much lower or much higher values than normal resulting in under or
over color saturation.

The ”No Unnatural Color” is specified as a quality component measure in ISO/IEC CD
29794-5 [IS] because the skin color is a discriminative personal quality and thus affects the
face recognition performance. However, the wide variety of skin tones and the potential
presence of factors such as tattoos, moles and other facial anomalies, makes detecting
unnatural color in face images reliably a challenging task.

Since the color of the sclera is uniformly whitish across all skin-tones, it should be the
case that the pixel values of the sclera region show consistent changes when a face image
undergoes global adjustments of color intensities such as over saturation, regardless of the
skin-tone of the subject.

In figure 6, sub figures 6a and 6f show the original images of two subjects s1 and s2 of
two different skin tones. The rest of the sub figures show synthetically created images with
different saturation factors, four for each of the original images. Tables 1 and 2 show the
mean pixel values of the face region as well as the left and right sclera regions in each of
the images for subject 1 and subject 2 respectively.

In table 1, which shows the pixel values statistics of subject s1 images, it can be seen that
the mean pixel value of the face region increases slightly resulting in brighter color as
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(a) s1 Original (b) f = 2.0 (c) f = 3.0 (d) f = 4.0 (e) f = 5.0

(f) s2 Original (g) f = 2.0 (h) f = 3.0 (i) f = 4.0 (j) f = 5.0

Fig. 6: Images of two subjects of different skin tones with different saturation factors. Images from
FEI [Th]

the image gets more saturated. In table 2, on the other hand, which shows the statistics of
subject s2 images, it can be seen that the mean pixel value of the face region decreases
slightly resulting in darker color as the image gets more saturated. However, looking at the
mean pixel values of both the left and the right sclera regions, in both tables, it can be seen
that both are clearly increasing in value resulting in a brighter color in all images and for
both subjects.

Saturation Face Oval (s1) Left Sclera (s1) Right Sclera (s1)
Original 60.30 67.28 71.94
f=2.0 56.54 77.02 80.67
f=3.0 60.96 83.81 86.97
f=4.0 66.76 94.07 103.23
f=5.0 72.38 97.45 106.73

Tab. 1: Mean pixel values for s1 images

Saturation Face Oval (s2) Left Sclera (s2) Right Sclera (s2)
Original 153.60 165.41 168.16
f=2.0 152.26 178.93 182.13
f=3.0 145.95 191.13 192.40
f=4.0 134.54 197.93 199.21
f=5.0 122.48 212.34 214.46

Tab. 2: Mean pixel values for s2 image

The purpose here is not to show an unbalanced color detection algorithm, but rather to
show that a detection algorithm that relies on analyzing the sclera region, rather than the
entire face, has better chances of being more reliable and skin-tone invariant. The consis-
tent behavior of statistical values, even simple ones like the mean, across images of people
with different skin colors and even different initial illumination conditions as in images 6a
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and 6f, when exposed to various color manipulations, and given that the ground truth color
of the sclera region is the same, makes the detection algorithms more robust and more
agnostic to demographic factors.

5 Illumination

In the same way in which the pixel values of the left and the right sclera regions can be
used with algorithms that detect unnatural color in images, they can also be employed to
get useful information about the illumination of the face images and to estimate how well
the subject in a face image is illuminated and how uniform the illumination is in a way that
is completely agnostic to the skin-tone of the subject.

Figure 7 shows examples of face images with varying illumination quality. Figure 7a shows
a very dark image where the subject is barely visible. Looking at the histogram of the pixel
values of the sclera regions, it can be clearly seen that most pixel values are on the lower
end of the value scale and thus have darker colors. Figure 7b shows an image with well
illuminated subject. This can also be deduced by looking at the histogram which also
con® rms that the illumination is symmetric between the left and the right side. Figure 7c
shows a poorly lit subject, with a light source from the top causing the eyes region to
be dark. The same information can also be deduced by looking at the histogram of the
pixel values of the sclera region. Lastly, ® gure 7d shows a face image with non-uniform
illumination, where the right side of the face is well illuminated while the left side is rather
dark. This can be con® rmed by looking at the histograms which show that the distribution
of the pixel values of the left sclera is shifted to the left and has lower pixel values, thus
the left side is less illuminated than the right side of the face. All this analysis can be done
independently from the subject in the image and without considering what skin-tone they
might have.

(a) Bad Illumination (b) Good Illumination (c) Top Illumination (d) Nonuniform

Fig. 7: Sclera segmentation for assessing face image illumination. Images from FEI [Th], LFW
[Hu07], and Illinois DOC labeled faces [Fi19]

6 Conclusion and Future Work

Face image quality assessment algorithms should be invariant to demographic factors. The
eye sclera is one region of the face which has consistent whitish color across demographic
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boundaries. This work introduced a novel algorithm for sclera segmentation that is suitable
for face images used during the enrolment and the verification scenarios. It then presented
how the behavior of the statistical features of the pixel values of the sclera regions is
consistent across different demographic boundaries which makes them very useful for
creating FIQA algorithms that are more robust and invariant to demographic factors 6.

A follow up work will utilize the sclera segmentation method and incorporate the demon-
strated consistent statistical behavior of the pixel values of the sclera regions into the face
image quality assessment algorithms of various face image quality components to make
them more robust to demographic factors.
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Exploiting Face Recognizability with Early Exit Vision
Transformers

Seth Nixon1, Pietro Ruiu2, Marinella Cadoni3, Andrea Lagorio4, Massimo Tistarelli5

Abstract: Face recognition with Deep Learning is generally approached as a problem of capac-
ity. The field has seen progressively deeper, more complex models or larger, more highly variant
datasets. However, the carbon footprint of machine learning is a concern. A real push is developing
to reduce the energy consumption of machine learning as we strive for a more eco-friendly society.
Lower energy consumption or compute budget is always desirable, if accuracy is not reduced below
a usable level. We present an approach using the state of the art Vision Transformer and Early Exits
for reducing compute budget without significantly affecting performance. We develop a system for
face recognition and identification with a closed-set gallery and show that with a small reduction in
performance, a reasonable reduction in compute cost can be obtained using our method.

Keywords: Biometrics, Face Recognition, Vision Transformer, Early Exit

1 Introduction

The variability in distinctiveness of humans can be observed when looking at human faces
which are exceptionally recognisable, while others can fade into a crowd. “Doddington’s
Zoo”[Do98, RRT09] is a well known taxonomy of this phenomenon, where individuals
are categorised into different zoomorphic groups based on how easily they can be dis-
tinguished or recognized. Principally, a large proportion of individuals can be tagged as
highly recognisable, or ”Sheep” in the taxonomy, where only a small amount fall into
the ”difficult to recognise” group. However, this small population will disproportionately
contribute to the error rate of an automatic recognition system. Additionally, for the best
recognisable population it may not be necessary to process their biometric data into com-
plex descriptions, as simpler feature vectors may suffice. In this paper we take inspiration
from this phenomenon to propose a novel approach to reduce the computational complex-
ity of an inference model for face recognition.

Transformers are a state of the art machine learning (ML) algorithm, initially presented as a
model for natural language processing [Va17] and popularised in mainstream culture with
ChatGPT. These models are notorious for their high compute requirement, due to their fun-
damental operation (Multi-Headed Self Attention) being quadratic, and their exceptional

1 University of Sassari, Department of Biomedical Sciences, Sassari, Italy, swsnixon@uniss.it
2 University of Sassari, Department of Biomedical Sciences, Sassari, Italy, pruiu@uniss.it
3 University of Sassari, Department of Biomedical Sciences, Sassari, Italy, maricadoni@uniss.it
4 University of Sassari, Department of Biomedical Sciences, Sassari, Italy, lagorio@uniss.it
5 University of Sassari, Department of Biomedical Sciences, Sassari, Italy, tista@uniss.it

132



Seth Nixon et al.

performance in a vast number of applications. They have been extended to vision with the
Vision Transformer (ViT) [Do20]. ViT’s obviate the usage of convolutions and instead use
Multi-Headed Self Attention (MHSA) to encode an image. MHSA has been shown to be
an extremely powerful operation, with similar expressive power to convolution, and has
some similarities with human vision [Tu21, Ca22]. ViTs generally have shown state of the
art performance in a wide range of applications such as image classification[Do20], ob-
ject detection [Fa21] and text to image generation [Ra21]. Attention within a ViT has also
been investigated with respect to human vision, with the aim of reducing compute budget
or improving performance.

Early Exit (EE) approaches in machine learning are one solution for implementing time
critical applications on resource-constrained devices. In these instances compute budget is
something which must be considered. EE systems allow a machine learning process to use
only a portion of the full network where using the full network would be either unnecessary
or infeasible. They have found applications in computing continuum applications where
earlier exits of the model are computed on edge devices and later exits can be offloaded to
the cloud [LZC18].

In this paper we present an EE approach using ViTs for face recognition. We explore a
novel application of percentile based exit criterion on a closed set gallery, allowing these
to be computed ad-hoc, only dependant on the outputs of a ML model. Additionally we
present how Early Exits added to a ViT can reduce the compute budget at inference with
only a small loss in performance.

2 Related works

There are many techniques for reducing the compute budget of a deep network, including
network pruning [Re93], distillation [To21] and quantisation [Go14]. Early Exits (EE)
are another form in the group of Dynamic Inference (DI) techniques. DI modulates the
complexity of an ML model in relation to some constraint (e.g. compute budget, energy
consumption) or to reduce complexity where it offers little benefit. The final goal is to
provide a result similar to the final result of the neural network while only using a subset of
the layers of the full model. Generally, accuracy is reduced but with a worthwhile reduction
in computational cost.

In [Ba18] the authors study the effect of adding EE to any ML model, proposing a general
framework that systematically “elastifies” an arbitrary network. There are also DI tech-
niques which approach the problem from the opposite direction. [Wa21] allows inputs for
the ”easier” images to be processed at a lower resolution. The authors offer a cascade of
Transformers with varying token input counts, allowing the bulk of input images to be pro-
cessed less, where the higher representational capacity models are reserved for the more
challenging inputs.

The most similar to our work is that of [PT21, Pa20]. They proposed a metric-learning
EE methodology for Deep Learning models applied to face verification. Three EEs were
placed after the residual blocks of a ResNet-50 [Sa18], trained on the large-scale MS-
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Celeb-1M dataset [Gu16]. The approach reduced computational complexity while main-
taining similar accuracy to the ®nal output of the network.

With respect to EE one of the drawbacks of CNNs is that the descriptive capability of
earlier layers is challenging to express. This is due to the feature maps remaining wide
with limited channel dimension. For example a ResNet-18 has feature map dimension
56x56x64 (HxWxC) after the ®rst block compared to 7x7x512 at the ®nal block. Ob-
viously, average pooling in the HW dimension loses a signi®cantly higher amount of
information at the earlier layers compared to the later. ViTs instead have uniform scale
throughout processing, and while this may at ®rst glance appear to be a disadvantage in
terms of robustness to scale, these models have been shown to be sensitive to scale even
without the prior embedded [Do20]. In the context of our work, this means that EEs can
be operated uniformly throughout the model.

EEs have been explored in ViT. In [BZI22] seven different architectures for EE branches
that can be inserted into ViT backbones are proposed. In [BZI21] the authors propose a
novel hybrid approach using Transformer-based EE branches on CNN backbones, terming
them single-layer vision transformer (SL-ViT). We instead determine our exit criterion
based on the matching scores of a gallery of identities, where the above methods balance
computational budget against accuracy loss with the trained classi®ers of the model.

3 Model
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Fig. 1: (a) A ViT. (b) EEs added to the base model. (c) A ViT Encoder

We begin with an off-the-shelf ViT which we term ViT-N [Do20] (vit-base-patch16-224
from huggingface[Hu]). A class (CLS) token is appended to the input to allow for image
classi®cation. Where most face recognition systems are trained with more complex loss
functions, we train with Cross Entropy Loss to maintain proximity to the vast majority of
the ViT literature.

For the EE model we take the base ViT and add additional classi®ers at layers 3, 6 and
9, the hidden state of the CLS token at these layers is used for classi®cation. To train this
model we also use Cross Entropy Loss, however we adapt it to incorporate the additional
classi®ers. There are many strategies for combining losses in EE models [Pa20, Bo17], we
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simply use the average loss of all the classifiers for the backward pass. For a model with
m exits the Early Exit Cross Entropy Loss LEE

CE is then defined in equation 1:

LEE
CE =− 1

m

m

∑
j=1

n

∑
i=1

T j
i log(p j

i ) (1)

Where T and p are respectively the Target and predicted probabilities for class i, and m is
the number of exits. For both ViT-N and ViT-EE we transfer learn from weights pre-trained
on Imagenet1k [De09]. Transfer learning from a general purpose, large scale dataset such
as Imagenet to other tasks has been shown to generalise as well, if not better, than models
trained from scratch on a specific task [KSL19, Me18], as well as significantly reduce the
time to train. Additionally, this allows us to utilise a large portion of the approximately
2500 days of TPU processing performed by Google [Do20], further increasing the energy-
efficiency of this system. The architecture of ViT-N is shown in Figure 1(a), the additional
exits are shown in Figure 1(b).

4 Exit criterion

In [RRT09] the taxonomy of the recognizability of humans defined by [Do98] was used
to improve the performance of a biometric system. Within the taxonomy there are various
zoomorphic categories which define the recognizability characteristics of a person. These
categories can be utilised to determine exit criterion in a system with a closed-set gallery.

The simplest and most commonly occurring category of recognizability is the Sheep: an
identity which exhibits high genuine matching scores and low imposter matching scores.
Practically, this is a person who is easy to recognise. Another category we consider is the
Goat which exhibits low genuine match scores, i.e. these are less likely to be recognised
correctly. Finally we consider Lambs which have high impostor scores, these are more
likely to be recognised incorrectly.

To determine if an identity is a Goat we first compute the mean genuine score for that
identity SGEN . If this identities SGEN is below a threshold then the identity is classified as
a Goat, otherwise it is either a Sheep or a Lamb.

To determine if an identity is a Lamb we compute the maximum impostor score between
the current identity and every other identity Si

IMP, i = 1...n where n is the number of
identities. We then take the mean of Si

IMP to form the mean impostor score for this identity
SIMP:

SIMP =
1
n

n

∑
i=1

Si
IMP (2)

If SIMP is above a threshold, then the identity is classified as having high impostor scores,
and is a Lamb. Should an identity not pass either the Goat or the Lamb test, then it is
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considered a Sheep. Should an identity be simultaneously a Goat and a Lamb it is consid-
ered a Goat as we compute this first. While in Doddingtons taxonomy there are a much
larger number of categories (worms, wolves, doves etc..) we will focus on the three defined
above, as they fully cover the spectrum of recognizability we are interested in.

5 Experimental setup

We train both ViT-N and ViT-EE on CASIA-WebFace [Yi14], a dataset of 494414 face
images of 10575 identities. We train for 120 epochs on 95% of the dataset, leaving 5% for
validation. We use the AdamW optimiser with a learning rate of 1e−4, decayed according
to a cosine schedule, a weight decay of 1e−2 and default betas. We stopped training at 70
epochs for both models as they had converged.

To test we use the controlled samples from the FRGC dataset [Ph05], we discard the
uncontrolled examples to remove as much noise as possible from the testing set, we also
discard any identities with less than 10 images. What results is a curated set of 24120
images of 472 identities. We then extract the face from each image at 2 times the width
of the eyes, offset vertically by 0.3 times eye width to remove as much background as
possible and approximately center the faces.

To classify with a standard ViT, we extract the final hidden state of the CLS token from
two images passed through the model, and compare this with Cosine similarity. To classify
with EEs, we extract the hidden state of the class token at the end of layers 3, 6, 9 and the
final layer. We only compare hidden states extracted from the same exit.

We split our subset of FRGC into a 30/70 (7236/16884) probe/gallery set. This is approx-
imately 122m probe/gallery and 285m gallery/gallery comparisons. To reduce the total
volume of comparisons, and through empirical testing we have seen it makes little differ-
ence to the results, we sample 10 million gallery/gallery pairs to compute exit identities,
and 5 million probe/gallery pairs to present results. In both cases we ensure approximate
identity-size-parity between the sampled pairs and the original dataset, and that approxi-
mately 10% of pairs are matches.

6 Results

First we present the results from both the ViT-N and ViT-EE. Here, each of the four exits
of ViT-EE are used to classify all of the probe/gallery pairs of images. We also extract final
hidden states from layers 3, 6, 9 and 12 of ViT-N and present how the different training
methodologies impact the hidden states extracted at each level.

The first observation is that a standard ViT performs excellently on our test set (Figure
2 ViT-N exit 4). The implication that ViTs are excellent face recognizers is unsurprising,
they have offered state of the art performance in nearly all, if not every, application they
have been applied to. This being said, experiments on more complicated face datasets
would be required to confirm this.
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Fig. 2: Detection Error Tradeoff (DET) curves of the recognition performance of hidden states ex-
tracted from four different levels of ViT-N and ViT-EE.

Secondly, as shown in Figure 2, by computing the average loss of all 4 classi®ers in ViT-
EE, we have signi®cantly increased the descriptiveness of the output feature vectors at the
earlier layers of the model, with a small reduction at the ®nal layer.
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Fig. 3: Score distributions at each exit of ViT-EE.

Figure 3 shows the matching score distribution at each exit of ViT-EE for the full set of
Probe/Gallery pairs. We can see that all exits have reasonably good separation. Most im-
portantly, as we progress further through the model, both the impostor scores and the gen-
uine scores tend to reduce, with the impostor scores reducing more thereby increasing the
overall performance. Additionally, the variance in the impostor scores generally reduces
as well, indicating that the model’s representation progressively becomes more robust to
the inter-class variation of the dataset, though there does remain a consistent contingent of
overlapping measurements.
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6.1 Early exits

In this Section we present results for the ViT-EE model with exit criterion enforced. This
forms a single system where identities are classi®ed at each layer based on their gallery
scores. We compute the Goat and Lamb threshold percentiles from 0 to 100 in increments
of 10. For a pair of Goat/Lamb thresholds (TGOAT /TLAMB) if an identities gallery match
scores have a mean genuine score (SGEN) above TGOAT and a mean impostor score (SIMP)
below TLAMB that identity is assigned to the current exit, and discarded from computation at
the later exits. If not then they have their SGEN and SIMP re-computed at the next exit within
the full set of identities which did not pass the test at the current exit. This is repeated
until the ®nal exit, where all remaining identities are assigned. Goat and Lamb percentiles
remain ®xed throughout the model. For an exit, probe samples who’s claimed identity is
assigned to this exit are scored against only the gallery samples with identities assigned
to this exit. We present results as True Match rate at False Match Rate (TMr@FMr) at
three FMr, 1%, 0.1% and 0.01%. Figure 4 shows heat maps of TMr@FMr1% and the
corresponding Floating Point Operations (FLOPs) of that system.

Fig. 4: Heat maps of TMr@FMr1% at each pair of Goat/Lamb thresholds, and the corresponding
FLOPs.

If we ®rst examine the FLOPs heat map of Figure 4. We can see that as we decrease the
Goat threshold TGOAT , and increase the Lamb threshold TLAMB, the %FLOPs decreases.
In fact, a TLAMB of 0 or a TGOAT of 100 correspond to all identities being assigned to the
®nal exit. Vice-versa a TGOAT of 0 and a TLAMB of 100 correspond to all identities being
assigned to the ®rst exit. One would expect the TMr@FMr1% to follow the same pattern,
however this is not the case. There is a region with very high lamb thresholds and medium
Goat thresholds which offers the absolutely worst performance of the systems. When the
system has a high Lamb threshold, i.e. it is less punishing on identities with poor impostor
scores, it is the Goat Threshold that dominates. It is guaranteed that at the earlier exits
the identities classi®ed have high SGEN , however if the Lamb Threshold is over the 50th
percentile, then we are naturally going to propagate more error. However, it is likely that
the identities which ®t into the 90th percentile of genuine scores have excellent separation
between their genuine and impostor distributions. As such the performance peaks at this
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point. Figure 5 shows a scatter plot of TMr at FMr = 1%, 0.1% and 0.01% for all pairs of
thresholds.
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Fig. 5: TMr@FMr for FMr = 1%, 0.1% and 0.01% across the full range of Goat/Lamb threshold
pairs. Each point corresponds to ViT-EE with a single pair of Goat/Lamb thresholds.

To compare maximum performance of the models we compare the TMr@FMr of EE sys-
tems to ViT-N. ViT-N achieves a TMr@FMr1% of 99.72%, TMr@FMr0.1% of 95.28%
and TMr@FMr0.01% of 85.27%. Our best performing system at TMr@FMr1% has 99.4%,
a loss of only 0.3%, with a ¯ ops reduction of 12.73%, a signi®cant gain. At TMr@FMr0.1%
91.28%, a loss of 4% with a more modest FLOPs reduction of 7.48%. At TMr@FMr0.01%
the maximum performance does not reduce the FLOPs.

Within ViT-EE alone, from Figure 5 we can see that there are systems at the medium to
high FMr rates which perform better, with a lower performance budget. We can increase
TMr@FMr1% by 0.9% (98.51% to 99.4%) and save 12.73% of FLOPs. We can increase
TMr@FMr0.1% by 1.15% (90.13 to 91.28%) but with a more modest reduction in FLOPs
of 7.47%. We do not see any increases in TMr@FMr0.01%. The performance where all
identities are assigned to the ®rst exit is surprisingly high, even more surprising is that
it is much higher than many of the other combinations of thresholds, where one would
expect that using the more processed feature vectors at the later exits would offer higher
discriminative capability. Regardless, with 25.49% FLOPs of the total model we only lose
3.84% TMr@FMr1%, 11.14% TMr@FMr0.1% and 17.02% TMr@FMr0.01% compared
to using the ®nal exit of ViT-EE.

Finally we can examine the Attention maps of the models to gain some insight into how
the two models differ in terms of their encoding of an image, see Figure 6.

Figure 6 shows the Attention Rollout [AZ20] of the CLS token up to layers 3, 6, 9 and
12 of ViT-N and ViT-EE. The attention of the CLS token gives an indication of which
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ViT-EE

ViT-N

Layer 3 Layer 6 Layer 9 Layer 12

Fig. 6: Attention at the exit layers of ViT-EE, and the corresponding layers of ViT-N.

areas of the image contributed more to the tokens hidden state. Firstly, the attention of
layers 9 and 12 in ViT-EE is very similar, this aligns with the DET curve in Figure 2
where both layers 9 and 12 offer similar classi®cation performance when presented with
the full set of testing pairs. We can also observe that ViT-EE has much more focused
attention in layer 3 around the eyes, with very limited attention across the rest of the face.
This suggests that the model, when describing faces at the earlier layers of the model, or
alternatively the easier identities in the dataset, ®nds suf®cient discriminative information
in just a few small features of the face. Conversely as we progress through the model the
attention increasingly encapsulates the other salient features of the face, strengthening its
reliance on these as we go further. This supports the hypothesis that some identities can be
described suf®ciently with a much simpler feature vector, where others need more complex
descriptions, involving more components of a biometric trait. Interestingly, with reference
to Figure 2, ViT-N appears to have relatively uniform attention across the different layers,
despite the hidden states at these layers offering vastly different performance capability.
As ViT-N appears to be focusing generally on the face at each level, we hypothesize that
ViT-N does not effectively encode all salient features of the face with only a portion of
the encoders of the model. This makes sense as the model is trained only to classify at the
®nal layer. In this instance, the earlier layers are purely in support of the latter, where the
layers in ViT-EE simultaneously support the later layers and offer their own classi®cations.
As ViT-EE is trained with the usage of the hidden states at the earlier layers in mind, the
model learns to encode only those features which it can suf®ciently describe to give the
best classi®cation performance at each exit.

7 Conclusions

In the proposed approach, by adding EEs to a ViT, the computational burden of a face
recognition model can be considerably reduced without signi®cantly degrading the accu-

140



Seth Nixon et al.

racy. As it has been shown, by grouping identities according to their matching scores, some
individuals can be still well described with only 25% of a full ViT.

While exploiting the averaged loss throughout the classifiers clearly allows us to reduce
the computational burden while only slightly degrading the accuracy, this is a somewhat
naive solution and not necessarily the best way of training the model. Ideally it would be
desirable to reserve the representational capacity at the later layers of the model for more
challenging identities, rather than using a smoothed version of the original representation
as in the current approach. Adopting a cascade of models may be a viable solution to
improve the representational capability of the model.

The proposed approach focused on one particular configuration of the EEs, but many oth-
ers could be investigated. For example, an EE configuration considering all layers of the
model is also a viable alternative solution.

To properly operate, the proposed system requires a minimum of two gallery images per
identity. This requirement obviously impairs the application of the system whenever only
one gallery image is available. A slight modification of the model, which is currently under
investigation, would allow the system to operate with a single gallery image, however the
exit criterion would be only based on Lamb scores.

Finally, an extension of the current method to operate on both closed set and open set
gallery data is being considered.
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Contactless Palmprint Recognition for Children
Akash Godbole1, Steven A. Grosz 2, and Anil K. Jain 3

Abstract: Effective distribution of nutritional and healthcare aid for children, particularly infants and
toddlers1, in the world’s least developed and most impoverished countries, is a major problem due to
lack of reliable identi® cation documents. We present a mobile-based contactless palmprint recogni-
tion system, Child Palm-ID, which meets the requirements of usability, cost, and accuracy for child
recognition. On a contactless child palmprint database, Child-PalmDB1, with 1,020 unique palms
(age range of 6 mos. to 48 mos.), Child Palm-ID achieves a TAR=94.8% at FAR=0.1%. Child Palm-
ID is also able to recognize adults, achieving a TAR=99.5% on the CASIA contactless palmprint
database and a TAR=100% on the COEP contactless adult palmprint database, both at FAR=0.1%.
For child palmprint images captured at an interval of ® ve months with differences in standoff dis-
tance, illumination and motion blur, the TAR drops to 80.5% at FAR=0.1%. This indicates that more
research opportunities remain in contactless child palmprint recognition.

1 Introduction
In 2020, 22% of the world’s 680 million children2, under the age of 5 years, were physi-
cally stunted due to malnourishment and lack of adequate medication3. A majority of these
children live in developing or least developed countries.

Fig. 1: Example face (a) and corresponding contactless palmprint images (b) of subjects in in Child-PalmDB2.
The predicted keypoints are also shown (in red) in (b). (c) Corresponding Regions of Interest (ROIs) extracted
from the palm images in (b) based on the predicted keypoints. The white polygons in (b) represent the palmar
friction ridge area that is captured in the ROIs in (c). Face images are collected only for record keeping and are
not used for matching.

1 Graduate Student, Computer Science, Michigan State University, godbole1@cse.msu.edu
2 Doctoral Candidate, Computer Science, Michigan State University, groszste@cse.msu.edu
3 University Distinguished Professor, Computer Science, Michigan State University, jain@cse.msu.edu
1 https://www.cdc.gov/ncbddd/childdevelopment/ positiveparenting/index.html
2 https://ourworldindata.org/grapher/under-5-population
3 https://www.who.int/data/gho/data/themes/topics/joint-child-malnutrition-estimates-unicef-who-wb
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To address this problem, international organizations such as the World Health Organization
(WHO)4, Bill and Melinda Gates Foundation (BMGF)5 and the World Food Programme
(WFP)6 have made substantial efforts to reduce malnourishment as well as improve vacci-
nation coverage among this vulnerable population. However, the lack of reliable identifi-
cation documents makes it difficult to authenticate the recipients of the services and curtail
the occurrence of fraud.
While biometric recognition has been utilized for the identification of children [En21,
Ra18, Ka22, RDS22], the available solutions have yet to meet the requirements of low-
cost acquisition, high accuracy, robustness to capture environment (e.g. dust, humidity,
and temperature), and high throughput for field deployments. It is worth noting that India’s
Aadhaar program, with an enrolment database of ∼1.4 billion, does not enroll anyone
under the age of 5 7.
A biometric trait must meet the persistence and individuality requirements for the child
population under consideration [JRN11]. These requirements make it difficult to justify
using an infant or toddler’s rapidly changing facial appearance. While a few studies have
suggested using footprints [Ko19] and toe prints, their use requires the awkward process
of removing socks and shoes and, in cases where the child is barefooted, cleaning their
feet. Iris images are difficult to capture if the child is sleeping or crying. While fingerprint
recognition has been studied in the context of infant and toddler recognition [En21, Sa19],
however, images of infant fingerprints do not contain sufficient friction ridge details for
accurate recognition. These limitations, paired with the occurrence of COVID-19 and re-
lated concerns about hygiene, has motivated the development of mobile-based contactless
biometric systems 8 9. We posit contactless palmprint recognition is a cost-effective and
feasible solution for child identification. Palmprints provide a large surface area along
with well formed principal lines and creases for recognition of infants and toddlers. The
proposed Child Palm-ID system does not require custom sensors, as smartphone cameras
have sufficient resolution to capture contactless palmprint images of children (a Samsung
Galaxy S22 has a 50MP primary camera). Our entire Child Palm-ID system, from image
capture to feature extraction and recognition runs on a Samsung Galaxy S22 at 167 ms per
comparison.
Prior attempts at palmprint-based recognition for newborns and infants faced a number of
challenges in acquisition such as i) motion blur due to hand movements and ii) deformation
and low quality introduced by contact-based sensing and oil on the child’s palms, etc.
[Le11]. To keep the child recognition problem tractable, children in this study are in the
age group of 6 to 48 months. Child development studies [St88] report that starting at the
age of about 12 months, a child can follow instructions such as opening the fist and holding
the palm in front of a mobile phone camera.
Concretely, the contributions of this study are as follows:

4 https://www.afro.who.int/news/strategic-plan-reduce-malnutrition-africa-adopted-who-member-states
5 https://www.gatesfoundation.org/our-work/programs/global-growth-and-opportunity/nutrition
6 https://www.wfp.org/nutrition
7 https://uidai.gov.in/en/my-aadhaar/about-your-aadhaar/aadhaar-enrolment.html
8 https://one.amazon.com/
9 https://www.fujitsu.com/global/services/security/offerings /biometrics/
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· An end-to-end mobile-based contactless palmprint recognition system, Child Palm-
ID, designed and prototyped for infants and toddlers. Code and contactless databases
collected by the authors will be released upon acceptance of this paper.

· Automatic keypoint detection along with homographic alignment for region of in-
terest (ROI) extraction and Thin Plate Spline (TPS) re-alignment to account for non-
linear distortion and pose variations in palmprint images.

· State-of-the art recognition accuracies of Child Palm-ID on child as well as adult
contactless palmprints; we used a COTS system [Pr] and two publicly available
algorithms [Zh17, Ma19] for adult palmprint matching as baselines.

· Evaluation on time-separated contactless child palmprints to demonstrate the need
for robust alignment and representation in the presence of differences in standoff
distance, illumination and motion blur.

Fig. 2: Child palmprint collection camp in Dayalbagh, India, January 2023. (a) Parents bringing their children for
palmprint collection must sign a consent form and provide the child’s name and age along with a mobile number
for a possible second round of data collection. (b) and (c) Authors collecting contactless palmprint images using
Armatura PalmMobileSDK [Pr]. The palmprint images were collected indoors in a pediatrician’s clinic.

2 Palmprint Databases
While there are a number of adult contactless palmprint databases10 available in the public
domain [Zh17, Ha08, Iz19, Su05, CO], there are no contactless child palmprint databases
available in the public domain. For this reason, we use the available adult palmprint
databases to pre-train our recognition model which is then ® ne-tuned using the self-collected
child palmprint databases, to account for the differences in child and adult palmprint im-
ages (i.e. size of the hand, level of motion blur and deformation, etc.).
We collected the two child palmprint datasets containing over 40,000 images from 1,824
unique child palms in two different sessions: August 2022 and January 2023 at the Saran
Ashram Hospital, Dayalbagh, India (see Fig. 2). The two databases are called Child-
PalmDB1 and Child-PalmDB2, respectively [GGJ23]. To enlarge the public adult palm-
print databases for pre-training our models, we also collected palmprints of the caregiver-

10 We were not provided access to PolyU-IITD [Ku18] and IITD Touchless Palmprint Database [Ku08] hence we
had to resort to using a private database provided to us under NDA.
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Tab. 1: Details of contactless palmprint databases used in this study

Training Database* Capture Device Image Size
(pixels)

# Unique
Palms

Total #
images

Tongji Adult [Zh17] JAI AD-80 GE 600x800 600 12,000
CASIA Multispectral [Ha08] CCD Camera 768x576 200 7,200

Child-PalmDB21 Samsung Galaxy
S22

1080x1440 963 18,277

Adult-PalmDB21 Samsung Galaxy
S22

1080x1440 1,227 22,548

SMPD [Iz19] † iPhone 6 3264x2448 92 3,677
Private Database Redmi Note 9 Pro 1080x1920 1,016 28,748

Testing Database Capture Device Image Size
(pixels)

# Unique
Palms

Total #
images

CASIA Adult [Su05] CMOS Camera 640x480 614 5,502
COEP Adult [CO] Undisclosed 1600x1200 168 1,344
Child-PalmDB1 Samsung Galaxy

S22
1080x1440 1,020 19,158

Child CrossDB Samsung Galaxy
S22

1080x1440 318 12,720

1 Collected by authors. Will be released once the paper is accepted for publication.
* Training and testing databases are disjoint.
† https://www.kaggle.com/datasets/mahdieizadpanah/sapienza-university-mobile-palmprint-databasesmpd

s/parents who brought the child to the data collection camp. This database is called Adult-
PalmDB2 and contains 1,227 unique adult palms. Child-PalmDB1 and Child-PalmDB2
contain 159 common subjects (318 palms) which allows us to evaluate the performance of
time-separated verification (in our case, about 5 months); this subset is referred to as Child
CrossDB.
The ages of the children in Child-PalmDB1 and Child-PalmDB2 range from 6-48 months.
The palmprint images were collected using the Armatura PalmMobile SDK [Pr] installed
on a Samsung Galaxy S22 at a size of 1080x1440 pixels. Multiple images/child were
collected with intentional variations in roll, pitch, and yaw to capture the full range of
pose variations present in child palmprint images.
Table 1 shows statistics on the datasets used in this study. The training and testing sets
are disjoint and captured at different times and/or by different research groups (Table 1).
The number of children in the various age groups in the child palmprint databases are as
follows: i) Child-PalmDB111: 73 (6-12 months); 161 (12-24 months); 230 (24-48 months)
and ii) Child-PalmDB2: 105 (6-12 months); 202 (12-24 months); 375 (24-48 months).
We collect images from both palms. So, the total number of unique child palms is 2,142,
including the 318 common palms between the two child palmprint databases.
Collecting palmprint images of a child is challenging and requires carefully designed pro-
tocols. We used the following procedure: i) An operator opens and holds the child’s palm
to prevent unexpected movements, ii) another operator captures the palm image at a small

11 Age information in Child-PalmDB1 is available for only 444 subjects out of 515 subjects.
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Fig. 3: A schematic diagram of the of proposed Child Palm-ID system. The input image Ip is passed to the
keypoint detection network KD(·), followed by ROI extraction. The coarse alignment between the probe and
gallery images is based on a homographic transformation, followed by the AFR-Net architecture [GJ22] with a
TPS re-alignment module.

standoff to capture the entire palmar surface under uniform lighting to reduce shadows and
maintain high contrast in the images.

3 Child Palm-ID System
Contactless palmprint recognition consists of three main modules: i) Region of Interest
(ROI) extraction and enhancement, ii) ROI alignment, and iii) ROI matching (Fig. 3). The
predominant effort in the literature has been in building palmprint recognition systems for
adults [DD16, Zh17, LK20, MFK11, Wu14, Le17, LJT13, JF08, DJM02, Ku18, ZKP16]
rather than children [RDS22, Ra18]. The two studies that did use palmprints for children
used only a small number of unique palms for training and evaluation (100 and 50 subjects,
respectively) and lacked a cross-database evaluation. Further, the authors of these two
studies did not make the child palmprint database available in the public domain.

3.1 ROI Extraction and Enhancement

Due to the potential of large pose variations in contactless palmprint image acquisition, it
is important to obtain a consistent region of interest (ROI) across all the captured images
[Zh17, DD16, LK20]. We use a deep network to predict a set of nine keypoints which local-
ize the ROI via a homographic transformation, an approach commonly used in face recog-
nition [WJ19, Zh14] with large pose variations. This keypoint-based ROI can only provide
coarse alignment, meaning we may require and additional non-linear re-alignment for an
accurate pairwise comparison of extracted ROIs. The re-alignment is particularly helpful
in the case of child palmprints due to the unconstrained nature of the data collection.
The keypoint detection module KD(·) uses a ResNet-18 architecture with two fully con-
nected layers inserted at the end to predict 9 keypoints K ∈ R9x2 in the input image (Ip).
These 9 keypoints (Fig. 4) were selected to provide a degree of symmetry between the
right and left hand while encompassing the palmar boundary containing salient informa-
tion. As ground-truth for training KD(·), we use the keypoints generated by the Armatura

148



Akash Godbole, Steven A. Grosz, and Anil K. Jain

Fig. 4: Intermediate processing steps in Child Palm-ID system to obtain an embedding. (a) and (b) are two
different contactless images of the same palm and (c) is an image of a different palm. The re-aligned ROIs
include data augmentations that are part of the TPS STN. The principal lines before and after re-alignment are
shown in blue and red, respectively. The similarity scores when comparing the ROIs are: i) (a) and (b) = 0.64, ii)
(b) and (c) = 0.38, and iii) (a) and (c) = 0.29. The similarity score threshold at FAR=0.1% is 0.46.

PalmMobile SDK COTS system12. An MSE objective function is minimized to predict the
location of the 9 keypoints.
To place the ROI into a uniform coordinate system, a set of 9 destination points D are
manually selected to perform a 9-point homographic transformation H(·) between K and
D yielding a perspective transform matrix θh. The ROI extraction module R(·) applies
θh to Ip to get a warped image Iw

p followed by a 224 x 224 crop C yielding the coarsely
aligned ROI, Ir based on the following equations: i) θh = H(K,D); ii) Iw

p = R(Ip;θh); iii)
Ir =C(Iw

p ,224). To enhance the extracted ROI, we utilize the latent enhancement network
from [GJ23] and adapt it to enhance contactless palmprint images. In particular, we simu-
lated low quality palm images by blurring and down-sampling high quality captured palm
images. The enhancement network is then trained via an MSE loss between the high qual-
ity palm-print ground-truths and the reconstructed outputs of the enhancement network
(Fig. 4). The bene® t of enhancement is shown in the ablation study in Table 3.

3.2 ROI Alignment and Matching
Adult palmprint recognition systems have utilized the principal lines [St88] for the re-
alignment of ROIs [Wu04, Zh03]. Spatial Transformer Networks (STN) have been used
to predict alignment parameters that maximize the recognition accuracy [ZC20, ECJ19,
GJ22]. Additionally, ® ne-tuned, non-linear alignment using a Thin Plate Spline (TPS) STN

12 https://armatura.us/
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has shown even higher recognition performance in more unconstrained scenarios such as
3D facial recognition, contact-to-contactless fingerprint matching as well as unconstrained
palmprint recognition [Bh17, Gr21, Ma19]. In this paper, we implement a semi-supervised
TPS STN module that learns an optimal non-linear distortion field for a coarsely aligned
ROI that maximizes the accuracy of Child Palm-ID.
The feature extraction and matching architecture of Child Palm-ID is based on AFR-
Net [GJ22], a fingerprint recognition model based on ResNet50 and Vision Transformers
(ViT). AFR-Net uses an STN to predict an affine alignment of the input images. We mod-
ify the STN to predict a TPS alignment that applies a learned distortion field, θT PS, to the
coarsely aligned palmprint ROIs (Ir) producing an aligned ROI, I′ based on the following
equation: I′ = T (Ir;θT PS). Fig. 4 shows the improved alignment between two ROIs after
the re-alignment with T (Ir). Affirming the intuition behind the use of T (·), a significant
boost in recognition performance was observed compared to the use of the pre-existing
STN in AFR-Net (from TAR = 73.8% to TAR = 88.3%, both at FAR = 0.1%. See Table
3.). Finally, normalized embeddings Zp and Zg are obtained for a given probe and gallery
image, respectively, and are compared to obtain a similarity score s ∈ [0,1] based on the
following equation: s = ZT

p ·Zg,∈ [0,1].
To further boost the recognition performance, we divide the 224x224 coarsely aligned
and enhanced ROIs into 4 quadrants and train an ensemble of models, one per quadrant
to complement the model trained on the entire ROI, as has been demonstrated in several
facets of deep learning [SR18]. Using the ensemble of these five embeddings, we obtain a
final similarity score based on mean score fusion (Table 3).

4 Experimental Results

We evaluate the verification performance of Child Palm-ID and compare it to the baseline
accuracy of a COTS system [Pr] as well as two open source algorithms [Zh17, Ma19].
We report the accuracies on Child CrossDB as well as separately for the three age groups
(6-12 mos., 12-24 mos. and 24-48 mos.) from Child-PalmDB1. Finally, we report results
of our ablation study.

4.1 Verification Results

We report verification performance on four evaluation databases that were altogether kept
separate from the training set (see Table 1). The recognition performance of the pro-
posed Child Palm-ID is competitive with COTS13. We also report the longitudinal veri-
fication performance on Child CrossDB containing the 159 subjects present in both Child-
PalmDB1 and Child-PalmDB2 in Table 2. Child CrossDB is disjoint from the training set.
It is instructive to notice the trend in performance of Child Palm-ID on different age
groups. Intuitively, a recognition system would perform better on relatively older children
since they are likely to be more cooperative during data acquisition. Child Palm-ID shows
an accuracy of TAR=92.57% on children between the ages of 6 to 12 mos., TAR=96.41%
on children between the ages of 12 to 24 mos. and TAR=98.92% on children in the age

13 The architecture and training set for the COTS is not known to us. Both the adult databases used for evaluation
are in the public domain.
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Tab. 2: TAR(%) @ FAR=0.01% (FAR=0.1%) of the proposed Child Palm-ID system (A) and the
three baselines (B, C, and D.)

Database Child
Palm-ID

(A)

COTS
(B)

CR-Comp
Code

[Zh17](C)

Matkowski
et al.

[Ma19] (D)

Sum Score Fusion of
COTS (B) with A and D

A+B B+D
CPDB1† 91.48

(94.8)
90.85
(92.7)

74.71
(78.7)

80.91
(83.7)

92.16
(94.87)

91.04
(92.7)

CPDB1†

(6-12 mos.)
91.11

(92.57)
87.79

(89.88)
72.68

(74.25)
78.91

(80.62)
90.57

(92.68)
86.19

(88.65)
CPDB1†

(12-24
mos.)

94.97
(96.41)

91.02
(93.89)

76.84
(79.82)

82.8
(85.78)

95.1
(96.52)

91.14
(93.9)

CPDB1†

(24-48
mos.)

96.97
(98.92)

94.02
(96.32)

81.76
(84.39)

87.51
(89.63)

97.13
(98.99)

94.13
(96.36)

Child
CrossDB

77.68
(80.5)

75.93
(78.2)

61.17
(64.8)

68.9
(71.7)

79.86
(82.4)

77.11
(79.8)

CASIA 98.89
(99.5)

100
(100)

(96.16)
97.2

97.98
(99.2)

100
(100)

100
(100)

COEP‡ 100
(100)

100
(100)

100
(100)

100
(100)

100
(100)

100
(100)

† We abbreviate Child-PalmDB1 as CPDB1 in this table to save space.
‡ 17 mislabelled identities were removed.

group of 24-48 mos., all @ FAR=0.1%. Child Palm-ID outperforms the COTS system at
FAR = 0.1% in each of the three evaluation age groups.
Lastly, we note an improvement by sum score fusion of Child Palm-ID and COTS, espe-
cially in the case of Child CrossDB at FAR=0.1%. This suggests a potential for improve-
ments in our algorithm, given that Child Palm-ID and COTS are complementary.
4.2 Ablation Study
In the ablation study shown in Table 3, we examine the effects of the autoencoder enhance-
ment module, TPS alignment module, ensemble of multi-patch embeddings and data aug-
mentations for training. The training datasets were fixed (Table 1) in these ablations. The
TPS re-alignment module in row 2 of Table 3, gives the biggest boost in accuracy on all
the four evaluation databases. The image enhancement, ensemble of embeddings and data
augmentations provide a further boost in accuracy.
4.3 Failure Cases

Fig. 5 shows four failure cases of Child Palm-ID system on Child CrossDB. These exam-
ples highlight the challenges in cross-dataset comparison when there are significant differ-
ences in standoff distance, lighting and rotation between two time-separated acquisitions.
Other challenges we noticed include motion blur from movement of the palm, partially
closed palms, and large pose variations.

In conjunction, Fig. 6 shows four successful cases of Child Palm-ID on Child CrossDB. It
is evident from these examples that a genuine pair of images is correctly matched under
relatively similar lighting conditions and overall orientation of the child’s palm.
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Tab. 3: Ablation Study for Child Palm-ID. Results are reported as TAR (%) @ FAR = 0.1%

Modules Used Evaluation Databases

Coarse
Align-
ment

Re-
Align
ment

Augmen-
tation

Ensem-
ble

Enhanc-
ement

CASIA
Adult

Database

COEP
Adult

Database

Child-
PalmDB1

Child
CrossDB

✓ ✗ ✗ ✗ ✗ 92.4 91.6 73.8 66.56
✓ ✓ ✗ ✗ ✗ 98.8 99.1 88.3 74.68
✓ ✓ ✓ ✗ ✗ 99.1 100 92.43 76.67
✓ ✓ ✓ ✓ ✗ 99.5 100 93.41 77.4
✓ ✓ ✓ ✓ ✓ 99.5 100 94.8 80.5

Fig. 5: Example failure cases of Child Palm-ID system in time-separated Child CrossDB. For each genuine pair
of images in (a)-(d), the similarity score s is below the threshold of 0.46 at FAR = 0.1%. In both (a)-(d), the left
image is from Child-PalmDB1 and the right image is from Child-PalmDB2 with 5 mos. of time-separation.

Fig. 6: Example successful cases of Child Palm-ID system in time-separated Child CrossDB. For each genuine
pair of images in (a)-(d), the similarity score s is above the threshold of 0.46 at FAR = 0.1%. In (a)-(d), the left
image is from Child-PalmDB1 and the right image is from Child-PalmDB2 with 5 mos. of time-separation.
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5 Conclusion and Future Work

Biometric recognition systems have made great strides over the past 20 years. However,
so far, all these systems have been primarily designed to be used by adults. Yet there are
numerous social good tasks ranging from eradicating vaccine preventable diseases to child
malnutrition where biometric recognition can play a significant role to prevent misery and
loss of life.
We have designed and prototyped Child Palm-ID, a contactless mobile-based palmprint
recognition system. We have evaluated verification performance of Child Palm-ID on both
child as well as adult contactless palmprint databases. We show competitive recognition
performance of our system against a SOTA COTS system @ FAR=0.1% and superior per-
formance over two academic algorithms available in the public domain. The main techni-
cal contributions of our paper include a re-alignment strategy for palmprint images using
a TPS alignment module and an autoencoder-based image enhancement. Both these mod-
ules are critical for success in the case of child palmprint recognition. Our ongoing work
includes i) Child Palm-ID mobile app displaying the faces of the top N retrievals from a
gallery so the operator is able to manually confirm the identity of the child, ii) introduc-
tion of a palmprint image quality metric to flag images of poor quality for recapture, iii)
synthetic palmprint generation to amplify the amount of data available for training, and
iv) representation learning to account for differences in standoff distance, illumination,
orientation and motion blur.
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Exploring the Untapped Potential of Unsupervised
Representation Learning for Training Set Agnostic Finger
Vein Recognition

Tugce Arican, 1 Raymond Veldhuis, 2 Luuk Spreeuwers 3

Abstract:

Finger vein patterns are a promising biometric trait because of their higher privacy and security
features compared to face and finger prints. Finger vein recognition methods have been researched
extensively, especially deep learning based methods such as Convolutional Neural Networks. These
methods show promising recognition performance, but their low degree of generalization and adapt-
ability results in much lower and inconsistent recognition performance in cross database scenarios.
Despite these drawbacks, much less research has gone into the generalization and adaptability of
these deep learning methods.This study addresses these issues and proposes an unsupervised learn-
ing approach, namely a patch-based Convolutional Auto-encoder for learning finger vein represen-
tations. Our proposed approach outperforms traditional baseline finger recognition methods on the
UTFVP, SDUMLA-HMT, and PKU datasets, and achieves state-of-the-art performance on the UT-
FVP dataset with 0.24% EER. It also indicates a noticeably higher generalization of finger vein
features across different datasets compared to a supervised method. The findings of this work offer
promising advancements in achieving robust finger vein recognition in real-life scenarios, due to the
enhanced generalization and adaptability of our proposed method.

Keywords: Finger vein recognition, unsupervised learning, auto-encoders, cross-database

1 Introduction

Finger vein patterns are invisible to the naked eye and leave no discernible trace, endowing
them with exceptional privacy and security characteristics compared to other biometric
modalities like facial features or finger prints. The foundation of finger vein recognition
lies in the acquisition and comparison of random vein patterns. Finger vein recognition has
gained significant popularity among researchers, engaging their efforts in various aspects,
including acquisition and extracting vein patterns, as well as the comparison and analysis
of these patterns.

Deep learning methods are extensively employed for finger vein recognition because of
their superior generalization abilities in contrast to traditional feature extraction. Re-
searchers propose a variety of supervised and unsupervised learning architectures such as
Convolutional Neural Networks (CNNs)[Hu18, Wa19, Ze19, Ku20, Ku20], Convolutional
1 EEMCS, DMB, University of Twente, Enschede, The Netherlands, t.arican@utwente.nl
2 EEMCS, DMB, University of Twente, Enschede, The Netherlands, r.n.j.veldhuis@utwente.nl
3 EEMCS, DMB, University of Twente, Enschede, The Netherlands, l.j.spreeuwers@utwente.nl
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Auto-encoders (CAEs)[Ch22, Pa23], and recently Visual Transformers[Hu22]. While su-
pervised learning achieves state-of-the-art recognition performance in finger vein recog-
nition, unsupervised methods demonstrate tremendous potential in learning meaningful
representations of finger vein patterns.

While the majority of the existing literature focuses on enhancing the recognition perfor-
mance of finger vein patterns, only a few researchers[Ta19, Pr22] point out the limitations
in the generalization and adaptability of the supervised methods to real-world scenarios,
such as cross-database comparisons. In these studies, the performance of cross-database
recognition, where the model is trained on a dataset different from the evaluation set, ex-
hibits significantly lower performance compared to the single-database case. These results
demonstrate that the state-of-the-art models are not robust against variations in dataset
characteristics between train and evaluation sets. This study introduces an unsupervised
learning method called patch-based Convolutional Auto-encoder(P-CAE) for learning rep-
resentations of finger vein patterns. The effectiveness of the P-CAE is compared against a
supervised method proposed by Kuzu et.al[KMC21]. The results achieved by the P-CAE
demonstrate significant promise for unsupervised methods in terms of generalization and
adaptability of learned finger vein features. This holds immense potential to facilitate ad-
vancements in cross-device finger vein recognition4.

2 Related Work

Several researchers have proposed various deep learning architectures for finger vein recog-
nition. Tang et. al.[Ta19] propose a Siamese architecture with a Contrastive Loss to reduce
intra-class variance and increase inter-class variance. The proposed architecture achieves
state-of-the-art results on publicly available finger vein datasets. Ou et.al.[Ou22] utilize
a Generative Adversarial Network (GAN) to address intra-class variance issues by artifi-
cially increasing the number of finger vein samples. Kuzu et al.[Ku20] highlight the effec-
tiveness of transfer learning over training from scratch and emphasise the importance of
the choice of loss function[KMC21]. Both works achieve competitive results on publicly
available finger and palm vein datasets. Bros et.al.[BKM21] address contrast issues ob-
served in finger vein images and propose an enhancement approach using a Convolutional
Auto-encoder (CAE) which learns a linear combination of finger vein images with their
annotated vein patterns. On the other hand, Chen et.al[Ch22] propose a CAE architec-
ture for automatic vein annotation from the finger vein images. Pan et.al[Pa23] highlight
the effectiveness of processing texture and shape features of finger vein images separately
through a dual-branch CAE architecture.

Despite the extensive literature on finger vein recognition using deep learning methods,
only a limited number of researchers have explored the generalization and adaptability of
these methods. In their study, Tang et.al[Ta19] present that the recognition performance
substantially degrades when the model is evaluated on a finger vein dataset different from
the dataset it is trained on. Similarly, Prommegger et.al[Pr22] claim that when the evalu-

4 Reference and probe images are captured by different devices
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ation set possesses distinct characteristics from the training set, the segmentation perfor-
mance of the compared CNN models undergoes a substantial degradation. Though these
studies acknowledge the generalization and adaptability challenges of supervised learning
for finger vein recognition, these issues have not been addressed much. Noh et.al[No21]
introduce a cycle-consistent adversarial network(CycleGAN) to address heterogeneity is-
sues between datasets. The CycleGAN is trained to generate domain-adapted images be-
tween the source and target domains. The generated image is subsequently used as input
to a CNN model for recognition purposes. While the authors claim that the CycleGAN can
handle unobserved data without retraining the model, the study does not include a compar-
ative analysis on completely unseen data to validate this claim. Chen et.al. [Ch22] propose
a vein extraction method as a domain adaptation strategy for improving generalization
in finger vein recognition. The authors employ a U-Net model as a domain adaptation
network to facilitate the mapping of finger vein images from grey domain to binary do-
main. The objective of this mapping is to minimise variations between datasets. Though
the study demonstrates that the proposed approach can achieve satisfactory recognition
performances even when the model is trained on a different dataset than the evaluation
set, the authors present the results on a model trained on a particular dataset. It remains
unclear how the characteristics of the training data impact the cross-database comparisons.
We aim to fill this gap by introducing an unsupervised learning approach that provides fin-
ger vein features with better generalization properties. This approach potentially enables
a more robust finger vein recognition system, capable of handling operational scenarios
where data characteristics may vary.

3 Methodology

3.1 Patch-based Convolutional Auto-encoder

This study proposes a patch-based Convolutional Auto-encoder(P-CAE) for finger vein
representation learning. Finger vein images are primarily composed of the finger back-
ground, and the vein patterns have low contrast and are sparsely distributed. A lower di-
mensional patch input is utilized instead of the entire finger region in order to prioritise
extraction of important vein features over less significant finger background information.
The P-CAE is trained to reconstruct patches extracted solely from the finger region. Once
the training is completed, the comparison of vein patterns is performed on a patch-by-patch
basis.

The proposed P-CAE architecture consists of 6 compression and 6 de-compression blocks
in the encoder and decoder respectively. Each block involves a convolution (or transposed-
convolution) layer, batch normalisation, and the LeakyReLu activation function. The en-
coder compresses 64 x 64-pixel patches to a latent vector with a size of 32. The P-CAE
is trained for 50 epochs with a learning rate of 5x10−5. Figure 1 summarises the P-CAE
architecture. The cosine similarity metric is employed to evaluate the similarity between
the embeddings of a pair of patches. Subsequently, the similarity scores of all patch pairs
within an image pair are averaged to determine the overall similarity between the pair of
images.
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Fig. 1: Patch-based CAE architecture

3.2 Alignment

Patch-based methods are susceptible to alignment errors. To attain optimal results with
the P-CAE, a number of alignment steps are implemented during the preprocessing step.
First, the Iterative Closest Point (ICP)[BM92] aligns a pair of finger vein images using the
finger edge information. Then, the vein patterns are horizontally aligned using the method
proposed in [Qi16], and out-of-plane rotation is corrected using the approach presented in
[Pr19]. Furthermore, the comparison between image pairs is conducted utilizing a sliding
window approach. During this step, probe image patches are systematically moved over
the reference image, and the location that produces the highest cosine similarity score from
a combination of patch pair scores, is utilized as the similarity score for the image pair.

4 Dataset and Experiments

The patch-based CAE model is evaluated on three finger vein datasets: UTFVP[TV13],
SDUMLA-HMT[YLS11], and PKU[Pe13]. Each dataset exhibits distinct characteristics
such as quality, and illumination. The UTFVP dataset consists of high quality finger vein
images, while SDUMLA-HMT contains images of lower quality, and exhibits high degree
of out-of-plane rotations and translations. Since this study does not focus on addressing
rotation and translation issues, a subset of the SDUMLA-HMT dataset with a relatively
mild out-of-plane rotation is utilized for the evaluation of this dataset. Further details about
the datasets and the divisions used for training and evaluation are presented in Table 1.

The CAE model is compared to two traditional baseline finger vein recognition methods,
namely Maximum Curvature(MC)[MNM07] and Repeated Line Tracking(RLT)[MNM04],
and a CNN architecture proposed by Kuzu et.al[KMC21]. The CNN utilizes DenseNet-161
as its backbone and showcases outstanding recognition performance on publicly available
finger vein datasets. The CNN model is trained with the parameters presented in the origi-
nal work. To ensure equitable comparison, the CNN is trained and evaluated using identical
datasets as the CAE.
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Number of
Subjects

Fingers per
Subject

Total number
of images

Train
Subjects

Evaluation
Pairs

(M / NM*)
UTFVP 60 6 1440 20 2880 / 2880

SDUMLA-HMT 106 6 3816 76 5400 / 5400
PKU 200 1 1528 100 5018 / 5018

Tab. 1: Finger vein database details
* Mated / Non-mated

The comparison performances of the aforementioned models are evaluated by comparing
their Equal Error Rates (EER) and False Non Match Rates(FNMR), where the False Match
Rate(FMR) is set to 0.1%(FNMR1000). The EER represents the point at which the FNMR
is equal to the FMR, while FNMR1000 indicates the FNMR at a specific FMR value.
Detection Error Tradeoff (DET) curves are employed to compare the tradeoff between
FMR and FNMR for different models. Furthermore, the behaviour of these two models is
investigated by comparing histograms of image pair similarity.

5 Results

Table 2 shows within dataset evaluation performances of the recognition methods men-
tioned in Section 4. The evaluation performance of MC and RLT methods is derived from
existing literature, as indicated in Table 2. The CNN and the P-CAE are trained using
the same finger vein dataset utilized for evaluation. The results obtained indicate that the
P-CAE outperforms the traditional methods on all three datasets, and achieves the state-
of-the-art performance on the UTFVP dataset with 0.24% EER. In comparison to other
methods, the CNN demonstrates a superior performance on two of the three finger vein
datasets.

MC RLT Results taken from CNN P-CAE
UTFVP 0.4 0.9 [TV13] 6.87 0.24

SDUMLA-HMT 3.65 5.85 [Ya19] 1.56 2.67
PKU 3.14 3.7 [Sy17] 2.40 2.43

Tab. 2: Within database evaluation performances of different recognition methods in EER(%)

Table 3 presents cross-database comparison performances in terms of EER(%) for the
CNN and the P-CAE models. MC and RLT do not involve a training step, hence, their
evaluation performances are fully presented in Table 2. The rows of Table 3 represent the
evaluation datasets, while the columns indicate the corresponding training sets. Notably,
the P-CAE demonstrates a superior performance compared to the CNN model in cross-
database comparisons especially on the UTFVP and SDUMLA-HMT datasets. Moreover,
the P-CAE achieves comparable performances despite variations between train and evalua-
tion sets. For example, when evaluating the SDUMLA-HMT dataset using a model trained
on the UTFVP dataset, the CNN exhibits a notable inferior performance with 6.63% EER
where the performance of the SDUMLA-HMT dataset is presented as 1.56% EER with this
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model. On the other hand, under identical conditions, the P-CAE demonstrates a compa-
rable comparison performance. Conversely, the CNN not only exhibits poor performance
in cross-database comparisons but also demonstrates a fluctuating behaviour, unlike the P-
CAE. For instance, when evaluating the PKU dataset, the CNN achieves an EER of 2.40%.
However, when the same dataset is evaluated on a model trained using the SDUMLA-HMT
dataset, the comparison performance significantly decreases to 18.8% EER.

CNN CAE
XXXXXXXXXEvaluation

Train
UT* SD** PKU UT SD PKU

UTFVP 6.87 12.2 3.68 0.24 0.38 0.24
SDUMLA-HMT 6.63 1.56 3.36 2.26 2.67 1.96

PKU 19.9 18.8 2.40 2.59 3.15 2.43

Tab. 3: Cross-database evaluation performances of CNN and CAE in EER(%)
* UT - UTFVP, SD** - SDUMLA-HMT

Table 4 shows cross-database comparison performances for the CNN and the P-CAE mod-
els in terms of FNMR1000 in percentage. The rows in the table corresponds to the evalu-
ation sets, while the columns represents the training sets. Similar to the performances pre-
sented in Table 3, particularly in cross-database comparisons, the P-CAE demonstrates no-
tably lower FNMR at an FMR of 0.1%. Furthermore, in comparison to the CNN model, the
FNMR is subject to less pronounced impact from the differences in training sets with the P-
CAE model. To illustrate, while evaluating PKU dataset, the CNN model achieves 29.27%
FNMR.Conversely, the FNMR increases to 95.60% when the training set is utilised as UT-
FVP. In contrast, the P-CAE exhibits a mere 1.36% disparity under identical conditions.

CNN CAE
XXXXXXXXXEvaluation

Train
UT* SD** PKU UT SD PKU

UTFVP 55.4 80.3 30.9 0.31 0.73 0.73
SDUMLA-HMT 46.0 14.1 25.5 8.94 12.6 8.94

PKU 95.6 99.4 29.2 19.2 23.8 20.57

Tab. 4: Cross-database evaluation performances of CNN and CAE in FNMR1000(%)
* UT - UTFVP, SD** - SDUMLA-HMT

Figure 2 presents a comparison of DET curves for both the CNN and the P-CAE models
for each training set. Figure 2b illustrates a notable fluctuation in FNMR when the CNN
is trained using a different dataset than the evaluation set. In contrast, the P-CAE (Fig.
2a) presents consistent performances despite the differences between the training and the
evaluation sets. In particular, when the P-CAE is trained on the SDUMLA-HMT or PKU
dataset, the DET curves exhibit a remarkably consistent comparison performance on all
three evaluation sets.

Similarity scores of mated and non-mated pairs highlight the differences between the P-
CAE and the CNN models. Figure 3 illustrates how the similarity scores vary when the
training set changes while evaluating the UTFVP dataset, with both the CNN and the P-
CAE models. Notably, the distance scores exhibit significant fluctuations with the change
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Fig. 2: DET curves of (a) CNN, (b) P-CAE models. Legends indicate the training dataset.

of training set in the CNN model(Fig. 3a). Moreover, when the training set differs from the
evaluation set, the distances between all image pairs decrease. This implies that the CNN
identifies more similarities between both mated and non-mated pairs in cross-database
comparisons. In contrast, Figure 3b demonstrates the notably more stable behaviour of
the P-CAE model despite the different characteristics of the training sets. Particularly, the
similarities among mated pairs are preserved almost perfectly, as evident from the minimal
changes in mated pair similarity histograms with different datasets. On the other hand, a
slight increase in similarity scores of non-mated pairs is observed when the SDUMLA-
HMT dataset is used for training. This emphasizes the ability of the P-CAE to provide
higher generalization and adaptability for finger vein features through the patches and
unsupervised learning compared to the CNN model.

Figure 3b shows that training the P-CAE on the SDUMLA-HMT dataset leads to a slight
increase in similarity scores in non-mated pairs. Figure 4 demonstrates how the similarity
scores for non-mated patch pairs are influenced by the characteristics of the training set.
The image pair is taken from the UTFVP dataset. Figure 4b shows that when evaluating
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Fig. 3: Similarity histograms of (a) the CNN and (b) the P-CAE models trained on the UTFVP
dataset evaluated on the UTFVP (UT), SDUMLA-HMT (SD), and PKU datasets

patch pairs on a model trained with the SDUMLA-HMT dataset, regions lacking distinct
vein structures demonstrate significantly higher similarity scores compared to the model
trained on the UTFVP dataset(Fig. 4a).

6 Discussion and Future Work

Table 3 indicates that the CNN demonstrates a significant fluctuation in cross-database
comparison performances, while the P-CAE achieves comparable performances across
training sets. This difference is likely due to the influence of background information dur-
ing the training and the evaluation process. A considerable portion of a finger vein image
includes the finger background, which can vary significantly across different acquisition
devices. The CNN may inadvertently utilize this information when learning identity infor-
mation. On the other hand, the P-CAE focuses on a much smaller region of the finger vein
image, which limits exposure to the background information and instead emphasises the
reconstruction of finger vein information.

Observations indicate that training the CNN model using the PKU dataset leads to no-
ticeably improved comparison performance of the UTFVP dataset when compared to the
model trained with the UTFVP dataset. Upon further examination, it comes to light that the
images of the same fingers within the UTFVP dataset display notable differences in terms
of finger shape and width, and even the image background, in contrast to relatively fewer
variations observed in the PKU dataset. It is likely that when the CNN is trained using
the UTFVP dataset, it tends to give more importance to extracting feature related to finger
shape. Consequently, this leads to higher distances for mated pairs compared to training
with the PKU dataset, even though the vein patterns appear to be similar. Although finger
shape and width carry identity-related information, the experiments suggest that these fea-
tures can also perplex the model, resulting in an increase in both false non-match and false
match rates.
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(a) Trained on UTFVP

(b) Trained on SDUMLA

Fig. 4: Patch pair similarity comparisons of a non-mated pair from the UTFVP dataset scored by the
P-CAE trained on the (a) UTFVP, (b) SDUMLA-HMT datasets

In the experiments, the P-CAE is found to be sensitive to the alignment of image pairs. The
estimation of translation and out-of-plane rotation parameters relies on the correlations
between finger vein image pairs. Therefore, the parameter estimation not only involves the
vein patterns but also the finger background. Especially on low quality datasets, such as
SDUMLA-HMT, the vein patterns are observed as blending into the finger background.
In such cases, the correlation method yields false matches between image pairs, leading
to an improper alignment. In future research, it could be beneficial to estimate translation
parameters between vein patterns instead of grey images. This approach would minimize
the contribution of the background to the estimation of translation parameters, thereby
leading to an improved alignment accuracy.

The experiments reveal that when the P-CAE is trained on a low quality dataset, such as
SDUMLA-HMT, the model struggles to learn strong discriminative vein representations.
Figure 4 demonstrates that in this case, even if the evaluation set exhibits fine vein details,
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the P-CAE fails to identify them, which leads to higher similarity scores for non-mated
pairs and ultimately results in higher false match rates. As an area for future research, it
would be worthwhile to explore reinforcing this lost information through preprocessing
techniques or reintroducing it to the model during training. Therefore, the P-CAE would
be trained to place more emphasis on capturing fine vein details.

7 Conclusion

This work explores the generalization and adaptation abilities of an unsupervised learning
method for finger vein recognition. The results indicate that the proposed P-CAE not only
outperforms traditional baseline finger vein recognition methods but also achieves state-
of-the-art performance on the UTFVP dataset with 0.24% EER.

The cross-database comparisons suggest that the P-CAE exhibits a greater resilience to the
variations between the training and the evaluation datasets. Unlike its supervised counter-
part, the P-CAE consistently demonstrates stable comparison performance and behaviour
despite the differences between training and evaluation dataset characteristics. This obser-
vation is crucial in terms of the adaptability of deep learning methods to diverse acquisition
conditions, including cross-device recognition.

This study highlights the advantage of the proposed patch-based CAE approach over a
supervised counterpart in finger vein recognition, particularly in terms of the generaliza-
tion and adaptability of the learned features. The outcomes showcased in this research
offer promising prospects for the advancement of more robust finger vein recognition tech-
niques in real-life scenarios, including the challenging domain of cross-device finger vein
recognition.
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Utility prediction performance of finger image quality
assessment software

Olaf Henniger1

Abstract: A biometric sample is the more utile for biometric recognition the greater the distance
between the sample-specific non-mated and mated comparison score distributions. Finger image
quality scores turn out to be only weakly correlated with the observed utility. This is worth inves-
tigating because finger image quality assessment software is widely used to predict the biometric
utility of finger images in many public-sector applications. This paper shows that a weak correla-
tion between predicted and observed utility does not matter if the quality scores are used to decide
whether to discard or retain biometric samples for further processing. The important point is that use-
ful samples are not mistakenly discarded or less useful samples are not mistakenly retained. This can
be measured by quality-assessment false positive and false negative rates. In cost-benefit analyses,
these metrics can be used to chose suitable quality-score thresholds for the use cases at hand.

1 Motivation

Several finger image quality assessment algorithms have been developed, e.g., the NIST
Fingerprint Image Quality (NFIQ) software version 1 [TWW04], NFIQ version 2 [Ta21]
and Minutia Detection Confidence (MiDeCon) [Te21]. For many public-sector applica-
tions such as border control, enrolment for biometric identity documents, alien register
enrolment, general identification scenarios, NFIQ 2 is required to be used for assessing
the quality of finger images [BSI].

NFIQ version 1 [TWW04] distinguished five levels of quality: 1 (excellent), 2 (very good),
3 (good), 4 (fair), and 5 (poor). The improved version 2 of NFIQ [Ta21] provides a higher
resolution of quality scores in the range from 0 to 100 (lowest to highest quality, respec-
tively). NFIQ 2 is an open-source reference implementation of ISO/IEC 29794-4 [ISO17].

Either NFIQ version computes several global and local features from a finger image to
derive a unified quality score predictive of the sample’s utility for automated biometric
recognition. For NFIQ 2, a random decision forest was trained for binary classification
into two utility classes (high or low utility). The trained random decision forest outputs the
probability that an image belongs to the high-utility class multiplied by 100 and rounded
to the nearest integer [Ta21, ISO17].

NFIQ 2 was trained on finger images captured using optical sensors based on frustrated
total internal reflection and finger images scanned from inked fingerprint cards, all with a

1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany,
olaf.henniger@igd.fraunhofer.de
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spatial sampling rate of 500 dpi (i.e., 196,85 pixels per centimetre). Though the application
of NFIQ 2 to other kinds of finger images than it was trained for is not recommended,
some papers report NFIQ 2 scores for deviate finger images. For finger images from other
sensor types or with a different spatial sampling rate, the NFIQ 2 score is hardly predictive
of utility. For instance, a recent study confirming the persistence of fingerprints over time
[KHB21] noted that the NFIQ 2 scores of 508-dpi finger images from a capacitive sensor
are not predictive of the utility of these samples.

The quality score of a biometric sample can be used, e.g., for deciding whether re-acquisition
of a biometric sample is necessary. The quality-score threshold for discarding low-quality
samples depends on the intended use of the retained samples. For instance, for public-
sector applications in Germany, a technical guideline specifies that the NFIQ 2 score
threshold for plain left and right index-finger images captured for enrolment purposes is
30 [BSI].

The contribution of this paper is to study metrics summarizing the prediction performance
of biometric sample quality assessment algorithms: quality-assessment false positive rate
and quality-assessment false negative rate.

2 Experimental setup

2.1 Finger image data set

When testing biometric sample quality assessment tools, large biometric data sets contain-
ing more than one sample per subject and covering wide ranges of potential quality issues
are an advantage. Due to quality assurance measures during data collection, finger image
data sets including low-quality images are hard to find.

We chose a subset consisting of 2 500 images of 500 different right index fingers, five
images per finger instance, taken from the CASIA Fingerprint Image Database Version
5.0 (CASIA-FingerprintV5) [CAS09]. To generate noticeable intra-class variation within
a single session, the test subjects rotated their fingers and used various levels of pressure.
The plain finger images of size 328×356 pixels were captured using an optical fingerprint
sensor (URU4000) with a spatial sampling rate of 512 dpi (201,57 pixels per centimetre).
To enable use of NFIQ 2, we re-sampled all finger images with a spatial sampling rate of
500 dpi (196,85 pixels per centimetre), using the Cognaxon WSQ viewer 4.1.

2.2 Biometric comparisons

Minutiae were extracted using the open-source FingerNet framework [Ta17], which de-
ploys a deep neural network for minutia detection. No failures to extract occurred. Minutia
positions and angles were converted to MCC (Minutia Cylinder-Code) format for compar-
ison [CFM10]. Then, each finger minutiae template was compared with each mated finger
minutiae template and with 1 245 non-mated finger minutiae templates. For fingerprints,

169



Utility prediction performance of finger image quality assessment software

no canonical representation is defined. Hence, any available sample is used as reference.
Each comparison yielded a dissimilarity score, which is the lower the more similar the two
finger images are.

2.3 Utility prediction method

We used NFIQ version 2.2 to assess the finger image quality in the data set re-sampled at
500 dpi. The NFIQ 2 score of a 500 dpi finger image is meant to predict the utility of this
image for automated recognition.

2.4 Utility assessment method

A biometric sample’s actual utility for automated biometric recognition can be assessed
by comparing it with mated and non-mated samples from a biometric data set. This paper
uses the utility assessment method described in [HFC22]. The utility of a biometric sample
i for a comparison algorithm that outputs dissimilarity scores is measured as normalized
difference between the mean of i’s non-mated dissimilarity scores and the mean of i’s
mated dissimilarity scores:

ui =
µni −µmi√

σ2
n +σ2

m
(1)

where µni is the arithmetic mean of the dissimilarity scores for i and non-mated references;
µmi is the arithmetic mean of the dissimilarity scores for i and mated references; σn is the
standard probe deviation of all non-mated dissimilarity scores; σm is the standard probe
deviation of all mated dissimilarity scores. Comparing with an as large as possible number
of other samples ensures that ui is dominated by the influence of the sample to be assessed
and not by individual other samples.

To map ui (Eq. 1) to the range from 0 to 100 required by [ISO16], the following sigmoid
function having an S-shaped curve is used [HFC22]:

u∗i =
100

1+31− ui
uA

(2)

uA = min({ui | i ∈ A}) (3)

is the lowest of the ui values of the samples in the set A of unobjectionable samples. A
sample belongs into the set A of unobjectionable samples if and only if all its mated dis-
similarity scores are less than any sample’s non-mated dissimilarity scores. Eq. 2 yields
S(0) = 25 and S(uA) = 50. S(0) = 25 means that clearly deficient samples with ui ≤ 0,
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which on average appear more similar to non-mated samples than to mated ones, are as-
signed utility scores from 0 to 25. S(uA) = 50 means that unobjectionable (i.e., adequate
or even excellent) samples are assigned utility scores from 50 to 100.

To ® t into the standardized biometric data interchange formats, quality scores must be
quantized to integers [ISO16], which is achieved by rounding to the nearest integer.

3 Experimental results

3.1 Predicted vs. observed utility scores

Fig. 1 shows the distributions of predicted and observed utility scores. Fig. 1(a) shows
the NFIQ 2 score distribution for the ® nger images in the chosen data set. We calculated
utility scores u∗i (Eq. 2) using the comparison scores from the ® nger image data set and
comparison algorithm given in Sec. 2. Fig. 1(b) shows the distribution of utility scores of
the ® nger images in the studied data set. Note that a great deal of the ® nger images is, as
for the chosen open-source comparison software, of objectionable quality (u∗i < 50). The
presence of low-utility images makes the chosen data set especially suitable for studying
® nger image quality assessment.

(a) NFIQ 2 scores (b) Observed utility scores

Fig. 1: Predicted and observed utility score distributions

A common method for characterizing a prediction model’s performance is to use the root
mean square error (RMSE) between observed and predicted values. The observed utility
scores for the data set were calculated according to Eq. 2. The RMSE for the ® nger images
from the data set was 26.8.

Scatterplots allow identifying the type of relationship (if any) between two quantities.
Fig. 2 shows a scatterplot between NFIQ 2 scores and utility scores (Eq. 2). Apparently,
the scores are rather weakly correlated.
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Fig. 2: NFIQ 2 vs. utility score scatterplot

3.2 Error vs. discard characteristics

False non-match error vs. discard characteristics (EDC), also known as error vs. reject
characteristics [GT07], show the dependence of the false non-match rate (FNMR) at a
® xed decision threshold on the percentage of reference and probe images discarded based
on lowest quality scores. Fig. 3(a) shows the false non-match EDCs with respect to the
a-posteriori utility scores from Eq. 2 and with respect to NFIQ 2 scores. The false non-
match EDCs vary for different decision threshold values. The decision threshold was ® xed
to give an initial FMR value of 1 %. Fig. 3(a) shows that discarding images with low
NFIQ 2 scores from the data set lead to a decline in FNMR as desired. As not only false
non-match but also false match errors happen, a false non-match EDC always needs to be
considered together with the corresponding false match EDC. A decrease in FNMR may

(a) False non-match errors (b) False match errors

Fig. 3: Error vs. discard characteristics at a ® xed decision threshold for an initial FMR of 1 %
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inadvertently come along with an increase in FMR. Fig. 3(b) shows the false match EDCs
with respect to the utility scores from Eq. 2 and to NFIQ 2 scores.

3.3 d′ vs. discard characteristics

To summarize the utility-prediction performance in a single plot, we use d′ vs. discard
characteristics showing the dependence of

d′ =
µn −µm√
σ2

n +σ2
m

(4)

on the percentage of reference and probe samples discarded based on lowest quality scores
(discard ratio) [HFC22]. The better the utility prediction works, the steeper d′ (the distance
between the mated and non-mated comparison score distributions) increases with increas-
ing discard ratio.

Fig. 4 shows the d′ vs. discard characteristics [HFC22] with respect to the utility scores
from Eq. 2 and with respect to NFIQ 2 scores. The d′ vs. discard characteristics show
that exclusion of images with low quality scores leads to a noticeable improvement in the
separability of the mated and non-mated comparison score distributions.

Fig. 4: d′ vs. discard characteristics

3.4 Quality-assessment error rates

If the quality scores are used to make decisions on whether to discard or to retain biometric
samples for further processing, then a weak correlation between predicted and observed
utility does not matter. The important point is to avoid mistakenly discarding useful sam-
ples or retaining less useful ones. To express this, we de® ne the following two metrics:
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· The quality-assessment false negative rate (QFNR) is the proportion of biometric
samples the quality scores of which are lower than or equal to a quality-score thresh-
old u, but the utility scores of which are greater than 50.

· The quality-assessment false positive rate (QFPR) is the proportion of biometric
samples the quality scores of which are greater than a quality-score threshold u, but
the utility scores of which are lower or equal to 50.

Similar metrics (named incorrect sample rejection rate and incorrect sample acceptance
rate) are de® ned in [Gr22], however, taking only a single mated comparison score into
account. QFNR and QFPR both depend on the chosen data set and comparison algorithm
and on the quality-score threshold u and should be quoted together at the same quality-
score threshold. The higher the quality-score threshold, the more samples are discarded,
including samples of unobjectionable quality that had better been retained. The lower the
quality-score threshold, the more samples are retained, including samples of objectionable
quality that had better been discarded.

Fig. 5 shows QFNR and QFPR for the chosen data set and comparison algorithm over
the NFIQ 2 score threshold. At the quality-score threshold of 30 for plain index-® nger
images captured for enrolment purposes [BSI], about 32 % of the retained ® nger images
are of objectionable (low) quality, and about 14 % of the discarded ® nger images are of
unobjectionable (high) quality. For data sets containing fewer objectionable (low-quality)
® nger images from the beginning, QFPR would be lower.

Fig. 5: Quality-assessment error rates over the NFIQ 2 score threshold

The quality-score threshold value of 30 is the result of a cost-bene® t analysis that takes
into account the costs of the different types of errors, i.e., of mistakenly discarding un-
objectionable samples and of mistakenly retaining objectionable samples.
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4 Conclusions

If the quality assessment algorithm is used to make decisions on whether to discard or to
retain a biometric sample for further processing, QFNR (the proportion of unobjection-
able samples mistakenly discarded) and QFPR (the proportion of objectionable samples
mistakenly retained) are useful metrics. As long as the quality scores of good samples are
greater than a chosen quality-score threshold, and the quality scores of bad samples are
less than the quality-score threshold, the exact magnitude of deviations between predicted
and observed utility scores do not matter.

Note that the utility of a biometric sample depends on the comparison algorithm and on
the data set used for comparison. It would be interesting to repeat the experiments with
commercial fingerprint comparison algorithms and larger finger image data sets captured
on a best effort basis.
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Statistical Methods for Testing Equity of False Non Match
Rates across Multiple Demographic Groups1

Michael Schuckers2, Kaniz Fatima3, Sandip Purnapatra4, Joseph Drahos5, Daqing Hou6,
Stephanie Schuckers7

Abstract: Biometric recognition is used for a variety of applications including authentication, iden-
tity proofing, and border security. One recent focus of research and development has been methods to
ensure fairness across demographic groups and metrics to evaluate fairness. However, there has been
little work in this area incorporating statistical variation. This is important because differences among
groups can be found by chance when no difference is present or may be due to an actual difference
in system performance. We extend previous work to consider when individuals are members of one
or more demographics (age, gender, race). Our methodology is meant to be more comprehendable
by a non-technical audience and uses a robust bootstrap approach for estimation of variation in false
non-match rates. After presenting our methodology, we present a simulation study and we apply our
approach to MORPH-II data.

Keywords: Fairness, Confidence Intervals, Demographics, Multiple Comparisons

1 Introduction

There has been significant attention to face recognition and artificial intelligence as a whole
as it relates to equity. For example, the U.S. Federal Trade Commission released guidance
on AI fairness, highlighting that “[i]t’s essential to test your algorithm [for discrimination]
based on race, gender, or other protected classes” [Ji21]. In a review of face recognition lit-
erature, demographic factors may have a significant influence on the performance of some
biometric recognition algorithms, resulting in a lower biometric performance for demo-
graphic groups, such as females, dark-skinned, and/or youngest subjects [Dr20]. Research
has shown that results differ depending on the specific algorithms, capture conditions, use
cases, and a host of additional factors [HSV19, GZ19, Go21, We22, Yu22, CKG23] .

This paper develops statistical methods for determining if there are statistically distin-
guishable false non-match rates (FNMR’s) simultaneously across multiple demographics
each having more than one category. These methods are aimed at non-technical audience,
such as policymakers, rather than the complicated analysis of variance and p-value ap-
proaches taken for similar circumstances by [Sc10] which can be problematic [WL16].
Building upon the concept of margins of error which are widely known in the public, we
derive methods usable for each demographic group or for all demographic groups simulta-
neously. Specifically, we extend the work of [Sc22] who considered the case where all the
1 This material is based upon work supported by the Center for Identification Technology Research and the
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demographic categories were non-overlapping. demographic groups. Here, we consider
the case where individuals are members of multiple groups or categories in several demo-
graphics and we will refer to demographics as different dimensions while categories will
be the values that each of those demographics can take. For example, our methods apply
for simultaneously comparing individuals across racial, educational, and age demograph-
ics where each individual is classified into one category within each of those groups. In
that instance for the demographic Age, an individual might be in the ‘25 to 40’ category.
Additionally, for practitioner flexibility, we present methods for both creating a single
margin of error for all demographic groups or simultaneously creating intervals for each
demographic separately. For the purposes of this paper, we think of fairness as meaning
that the FNMR’s are not statistically different across one or more demographic categories
and we are motivated by an access application.

2 Related Work

Metrics for the assessment of fairness have been proposed in the literature. [dFPM22] in-
troduce the Fairness Discrepancy Rate (FDR) which is a summary of system performance
accounting for both FNMR and FMR. Their approach uses a “relaxation constant” rather
than trying to assess the sampling variation or statistical variation between FNMR’s from
different demographic groups. Howard et al. present an evaluation of FDR noting its scal-
ing problem. To address this scaling problem, the authors propose a new fairness measure
called Gini Aggregation Rate for Biometric Equitability (GARBE) [Ho22]. NIST scien-
tists also propose the Inequality Rate (IR) metric [Gr21]. In addition, the ISO/IEC working
draft 19795-10 [IS23] proposes several metrics for demographic performance differentials,
including the error rate ratio in case of two groups, and the worst case error rate relative to
the geometric mean in case of three or more groups.

While there are several metrics of fairness, there has been little research or use of statis-
tical methods for fairness metrics. The United States National Institute for Standards and
Technology (NIST) has performed the most extensive evaluation of biometric recognition
as part of a technology evaluation [GNH19]. Results are continually updated at [NI]. Com-
mercial software biometric algorithms are submitted to NIST for testing. Evaluation is per-
formed across a variety of datasets including border, visa application, and mugshot images
and for both identification (1:N) and verification (1:1). Performance is reported in terms
of FNMR and FMR for verification and FNIR and FPIR for identification. Bootstrapping
is provided as a measure of variability and presented throughout their analysis enabling
the reader to assess differences, if any, in the context of its statistical variability. Some of
the earliest work on the impact of demographics on biometric matching performance was
done by [Gi04, Be08, Be09]. More recently, [Co19] look at the impact of demographics
on facial recognition.

Bhatt et al. [Bh23] documented and explained the causal understanding of the gender gap
problem in the popular deep learning-based facial recognition techniques. The authors
claimed the gender gap problem is caused by the imbalance of the test dataset rather than
the training set and sorting the images based on hairstyle can reduce the gender gap margin
significantly. Other research has also performed extensive evaluations of face recognition
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across demographic groups, e.g. [Zh17, Co19, Bu17, GNH19, Kr20, Gr21, Pa22, Te20,
Yu22], but have not presented statistical fairness evaluation methods as part of their work.

A definitive methodology for statistical hypothesis testing of the equality of biometric error
rates was given in [Sc10]. That approach used resampling methodology to create analysis
of variance-like tests for comparing FNMR rates across groups equivalent to a single de-
mographic here. As mentioned above, [Sc22] derived a statistical margin of error via boot-
strapping for determining which, if any, FNMR’s were different from the rest. However,
that paper did not address the practical case when testing across multiple groups simulta-
neously. In this paper, we generalize their approach to handle the more general and more
realistic case when individuals are classified into categories in one or more demographics.
One obvious application of this work is the determination of fairness or statistically equal
false non-match rates across demographic categories.

3 Methodology

The methods proposed here are motivated by an application where biometric devices are
tested across multiple demographics and where each individual is classified into categories
separately within each demographic. The aim here is to determine if any of the FNMR’s
from the categories within demographics are statistically different from the overall FNMR
assuming a fixed decision threshold for all categories. Below we will provide methods for
that determination within a single demographic or across all of the demographics. The
techniques here are useful for assessing the equity of performance across demographics.

Our flexible approach is to bootstrap individuals across groups to obtain an understanding
of the variation of the error rates in each category and use that variation to build a distri-
bution of the maximal variation for the overall error rate. For our resampling, we follow
the bootstrap methodology for FNMR of [Sc10]. Having obtained a reference distribution
of the maximal variation, we then create intervals to determine if there are groups that
are statistically different. It is important to note that this approach requires no distribu-
tional assumptions about the data. Here we present methods for both additive intervals and
multiplicative intervals.

Denote the number of demographics by D and let Gd be the number of categories within
each demographic d where d = 1, . . . ,D and k = 1, . . . ,Gd . Let π represent a population
FNMR and π̂ represent the estimated FNMR from our sample. The estimated FNMR for
category k within demographic d will be denoted by π̂dk. This is calculated by the total
number of false non-matches divided by the total number of attempts of individuals in
that category. The number of false non-matches for individual i will be denoted by yi for
i = 1,2, . . . ,n. We allow for a different number of attempts per individual which we denote
by mi for individual i. For a multiplicative interval, our equation for the weighted geometric
mean FNMR is π̇ = (∏d ∏k π̂ndk

dk )1/(∑d ∑k ndk) where ndk is the number of individuals in
category k of demographic d.

Here we propose two types of inferential intervals: additive and multiplicative. Additive
intervals are the most commonly used in practice and involve an estimate plus or minus
some margin of error (M). Multiplicative intervals are less common but involve ratios
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and an estimate multiplied and divided by a ratio of error (R). We incorporate the latter
approach since [IS23] is considering using ratios and geometric means for evaluating the
fairness of a biometric device.

Below we present four different approaches to assessing fairness: an additive approach for
comparing the FNMR’s for all categories with a single interval, an additive approach for
comparing FNMR’s with each demographic separately, a multiplicative approach for com-
paring the FNMR’s for all categories with a single interval and a multiplicative approach
for comparing FNMR’s with each demographic separately. The following are the steps for
our algorithm.

1. Calculate the error rate, π̂ and the error rate in each category k within demographic
d, π̂dk. Likewise, calculate the weighted geometric mean for the entire test, π̇ , across
the various categories k and demographics d.

2. Sample with replacement the n individuals. For the analysis below, carry along the
corresponding demographic information (to which categories they belong) and the
corresponding matching performance information (how many errors from how many
attempts) for the selected individuals.

3. Calculate the bootstrapped category error rates. Denote them as π̂b
dk for each cate-

gory k in each demographic d.

4. Next calculate and store φ = maxdk |π̂b
dk − π̂dk|, φd = maxk |π̂b

dk − π̂dk|,
ψ = maxdk

(
π̂b

dk/π̂dk, π̂dk/π̂b
dk

)
, or ψd = maxk

(
π̂b

dk/π̂dk, π̂dk/π̂b
dk

)
.

5. Repeat the previous three steps some large number of times, say B times.

6. Let M be the 1−α/2th percentile of the distribution of φ , let Md be the 1−α/2th

percentile of the distribution of φd , let R be the 1−α/2th percentile of the distribu-
tion of ψ , and let Rd be the 1−α/2th percentile of the distribution of ψd .

7. Having obtained values for M, Md , R or Rd we can create additive intervals for each
πdk using π̂ ±M and π̂d ±Md , respectively, as well as multiplicative intervals for π
and each πdk using π̇R±1 and π̇R±1

d , respectively.

From the intervals derived in the last step of the above algorithm, we can use them to
determine which, if any, groups have error rates that differ from the rest. Outstanding
category FNMR’s, π̂dk’s, will lie outside of the intervals calculated via the algorithm above.
One use for this approach is to look at the equity of FNMR’s across all of the demographics
and determining which categories have FNMR’s outside of the obtained intervals. A priori
practitioners should decide if they are interested in differences across all demographic
groups (using M or R) or in differences within each demographic group (using Md or
Rd for each d). Only one approach should be used since it is possible that there may
be differences in the outcomes between the approaches and using multiple approaches
induces issues with the familywise confidence level of the interval.
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Simulation Study Results for Margins versus Number of Categories (Gd)

(a) n=400, m=3, ρ=0.2 (b) n=400, m=5, ρ=0.2 (c) n=400, m=10, ρ=0.2

(d) n=800, m=3, ρ=0.2 (e) n=800, m=5, ρ=0.2 (f) n=800, m=10, ρ=0.2

(g) n=1200, m=3, ρ=0.2 (h) n=1200, m=5, ρ=0.2 (i) n=1200, m=10, ρ=0.2

Fig. 1: Results of a simulation study for margins of error as a function of the number of individuals
(n), number of attempts (m), the correlation between attempts (ρ), and FNMR (π). Subfigures are
organized by columns where m increases from left to right and by rows where n increases from top
to bottom. Each figure plots M versus G for fixed ρ=0.2 and with different values for π denoted by
color.

4 Simulation Study

To explicate our methodology, we present a simulation study to understand how these
performances will differ for different size demographic groups, for different overall error
rates and for sample sizes. For a combination of parameters, we generated average values
of M, Md , R, and Rd in order to understand the impact of changes to the parameters on
those quantities.

We have the following steps to our simulations having set values for the number of demo-
graphics (D), the number of categories in demographic d (Gd), the False Non-Match Rate
(π), the intra-individual correlation (ρ), the number of individuals (n), and the number of
attempts per individual (m).

1. Generate m attempts from n individuals with an FNMR of π and an intra-individual
correlation of ρ .
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Simulation Study Results for log(Ratio)’s versus Number of Categories (Gd)

(a) n=400, m=3, ρ=0.2 (b) n=400, m=5, ρ=0.2 (c) n=400, m=10, ρ=0.2

(d) n=800, m=3, ρ=0.2 (e) n=800, m=5, ρ=0.2 (f) n=800, m=10, ρ=0.2

(g) n=1200, m=3, ρ=0.2 (h) n=1200, m=5, ρ=0.2 (i) n=1200, m=10, ρ=0.2

Fig. 2: Results of simulation study for Ratios as a function of number of individuals (n), number
of attempts (m), correlation between attempts (ρ), and FNMR (π). Subfigures are organized by
columns where m increases from left to right and by rows where n increases from top to bottom.
Each figure plots natural logarithm of Rd and R versus Gd for fixed ρ=0.2 and with different values
for π denoted by color.

2. For each individual i, i = 1,2, . . . ,n, and each demographic d, d = 1,2, . . . ,D, ran-
domly select a category in {1,2, . . . ,Gd} for demographic d.

3. Bootstrap individuals and their corresponding performance/matching measurements
and their demographic categories using the algorithm given in the previous section.

4. Find and store M, Md for each d, R, and Rd for each d.

5. Repeat the previous four steps some larger number of times, say Z = 1000.

6. Calculate the mean value for M, Md , R and Rd .

For our simulation study we used D= 3 demographics and G1 = 3, G2 = 4 and G3 = 6. We
ran all combinations of the following values for each of the these parameters: π = 0.01,
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Number of Total Percentiles
Categories, Gd Subjects, n 80% 90% 95% 97.5%

3 400 0.0128 0.0153 0.0177 0.0200
4 400 0.0160 0.0191 0.0221 0.0250
6 400 0.0221 0.0262 0.0303 0.0345

All 400 0.0228 0.0268 0.0309 0.0350
3 800 0.0090 0.0107 0.0123 0.0137
4 800 0.0112 0.0132 0.0151 0.0169
6 800 0.0153 0.0179 0.0204 0.0229

All 800 0.0158 0.0183 0.0207 0.0232
3 1200 0.0073 0.0087 0.0099 0.0111
4 1200 0.0091 0.0107 0.0121 0.0135
6 1200 0.0123 0.0143 0.0162 0.0180

All 1200 0.0127 0.0146 0.0164 0.0182

Tab. 1: Percentiles from the distribution of Md’s and M’s with parameters ρ=0.2, m=10 and π=0.025

Number of Total Percentiles
Categories, Gd Subjects, n 80% 90% 95% 97.5%

3 400 2.00 2.30 2.66 3.08
4 400 2.59 3.21 8.20 15.22
6 400 42.06 128.27 290.14 536.41

All 400 42.46 130.29 307.77 557.58
3 800 1.60 1.74 1.88 2.03
4 800 1.86 2.07 2.30 2.54
6 800 2.48 2.93 3.47 4.11

All 800 2.58 3.04 3.58 4.23
3 1200 1.45 1.55 1.64 1.73
4 1200 1.63 1.76 1.90 2.04
6 1200 2.02 2.26 2.52 2.80

All 1200 2.07 2.31 2.57 2.85

Tab. 2: Percentiles from the distribution of Rd’s and R’s with parameters ρ=0.2, m=10 and π=0.025

0.025, 0.05, 0.10, ρ = 0,0.05, 0.1, 0.2, n = 400, 800, 1200, and m = 1,3,5,8,10. To gener-
ate to which category of demographic d an individual belonged, we used equal probability
though the methodology could easily be extended to consider non-equal probabilities. We
generated Z = 1000 datasets for each combination of parameters to ensure that our results
were statistically robust. Note that the average number of match decisions or attempts per
category was nm/Gd and, thus, the average number of errors was nmπ/Gd . Thus, the num-
ber of observations and the number of errors per category decreased as Gd increased. In
these simulations, if the number of errors in a given category was zero, we used a small
value, ε = 1.5/ndk, the midpoint of a Rule of 30 interval [JL97], to ensure a well-defined
values for the ratio.
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Tab. 3: FNMR Statistical Summaries for MORPH-II Analysis

Race Gender Age
Black White Female Male 17-30 31-45 45+

∑i mi 41964 9885 7927 43922 23837 18781 9231
ndk 10561 2599 2074 11086 6163 4657 2340
π̂dk 0.0241 0.0530 0.0566 0.0247 0.0347 0.0258 0.0242

4.1 Results for M and Md

We start by considering results for M and Md from our simulation study described above.
Figure 1 shows the 95th percentiles of the average error margin across sets of parameters.
There the x-axis of the subfigures is the number of categories, Gd , except for the last
category on the right which is labeled as ‘All.’ This category represents the values for φ
which is based upon the maximal absolute value of the differences across all categories
in all demographics. For the first the values on the x-axis in each subfigure, the quantity
plotted is Md . From each subfigure, we can see that the margin of error grows as Gd
increases. Moving down subfigure rows, i.e. as n increases we see that M and Md decrease.
Similarly, going from left to right across subfigure columns, i.e. as m increases we see
decreases in the margins of error. Within each subfigure, we can see that M becomes
smaller as π decreases. Similar results with specific values can be found in Table 1 which
give specific values for the percentiles of Md’s and M’s for value of n, when ρ = 0.2,
m = 10 and π = 0.025.

4.2 Results for R and Rd

Next, we discuss the results of our simulation study for the distributions of ratios that were
generated. Figure 2 has the 95th percentiles of the parameter combinations for Rd and R
from our simulation study. Because of the large range of values, the y-axis is on a natural
logarithmic scale. As we did above in Figure 1, Figure 2 varies n along the subfigure
columns and varies m along the subfigure rows. This highlights one of the results of our
simulation study which is the ratios generated by our simulation study were sometimes
quite large. This was particularly the case when the expected number of errors per number
of categories, nmπ/Gd , was small. As above, as either n or m increased these average ratios
generally decreased. Increases in π tended to result in decreased values for Rd and R. This
pattern, increases in π , differs from the trend for additive intervals and is likely a function
of the instability of ratios of small values of π . Table 2 presents the average percentiles for
Rd’s and R’s for three values of n, when ρ = 0.2, m = 10 and π = 0.025. Here the same
pattern of results as in Figure 2 and the impact of small errors on these ratios is clear as
Gd increases when n = 400.

5 Illustration using MORPH-II Data

In this section, we apply our methodology to data from the MORPH-II dataset. The MORPH-
II dataset is a longitudinal dataset consisting of mugshots images selected from repeat
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offenders, taken over the course of 5 years. For our analysis of the MORPH-II mugshot
dataset, we used a Resnet50 face recognition model pre-trained on the VGGFace2 dataset
from an open-source code repository [He15, Ca18]. Using this model, we extracted the
512-dimensional embeddings from each sample within the dataset. Then we performed
comparisons within each individual and computed FNMR. The comparison score was
computed using the cosine similarity between two sample embeddings. We computed ev-
ery permutation of genuine comparisons for each individual. For this analysis because of
sample size considerations, we considered (D=3) three demographics: race, gender, and
age. Race had two categories (black and white), gender had two categories (female and
male), and age had three categories (young adults [17-30], middle-aged adults [30-45],
and old-aged adults [45+]). The data analyzed for this project are from 13160 individuals
resulting 51844 intra-individual comparisons. Table 3 has the summary for all categories
across the various demographics. The total number of attempts per category, ∑i mi, is given
by the first row. The second and third rows have the number of individuals, ndk, and the
FNMR, π̂dk, for demographic d and category k, respectively.

For this application, we set the False Match Rate to 0.10 and had an overall FNMR of
π̂ = 0.0296 for all individuals and a weighted geometric mean of π̇ = 0.0285. As expected
there is variation between the categories in the FNMR’s. We applied our methods above
to determine if those differences were statistically discernible. For this bootstrap, we did
5000 replications of the data and results for 95th and 97.5th percentiles can be found in
Table 4.

If we want to have a single additive interval for all categories, we should start with the first
row, M, and an 95% confidence rate would give an range of π̂ ±M = 0.0296±0.0094 =
(0.0202, 0.0390). From this we would conclude that any category that fall outside this
interval would be statistically different from the overall FNMR. In this case, that would
mean that the FNMR’s for Whites and Females were statistically larger than the FNMR for
all groups. Likewise if we were using a multiplicative interval for all categories, we would
find the appropriate interval by taking π̇ ·R±1 = 0.0285(1.252)±1 = (0.0228, 0.0357). As
above, our conclusions would be that the FNMR’s for Whites and Females are larger than
the overall FNMR.

Tab. 4: Bootstrap Percentiles for FNMR Intervals

95th 97.5th 95th 97.5th

All M 0.0082 0.0094 R 1.221 1.252
Race M1 0.0068 0.0079 R1 1.141 1.161
Gender M2 0.0078 0.0090 R2 1.152 1.170
Age M3 0.0049 0.0055 R3 1.121 1.247

It is conceivable that the focus of an analysis will be on one specific demographic rather
than across all demographics. In that case, the appropriate tool would be the intervals based
upon the appropriate demographic. For example, if for the MORPH-II data we are solely
interested in Gender, then we would make an additive interval via π̂ ±M2. So that a 90%
interval would be 0.0296± 0.0078 = (0.0218, 0.0374) and we would conclude that Fe-
males were discernibly different from average. A similarly constructed 90% multiplicative
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interval for Age, 0.0285(1.121)±1 = (0.0254, 0.0319) would find that individuals aged 17
to 30 had a detectably higher FNMR.

6 Discussion

Equity and fairness in biometrics are important issues. The declaration of differences be-
tween demographic groups is a consequential one. Such conclusions about differences
between groups need to be statistically sound and recognize the presence of sampling
variation. In this paper, we have proposed interpretable methods for the determination of
statistical differences in FNMR’s in categories across multiple demographics based upon
bootstrapping biometric match data. The first approach is an additive bootstrap-based one
that extends previous work and deals with the dependence on the FNMR when individuals
are classified in categories across multiple demographics. The second approach is similar
to the first but uses a multiplicative methodology from ratios in order to generate ranges of
values that are statistically similar. Both approaches yield intervals based on the sampling
variation in the relevant metrics and can be used for the identification of demographic cat-
egories with FNMR’s that are statistically discernible. Our resampling-based approach is
focused on creating a simple interval that can be explained to a broad audience.

For the application here and the simulation study we have described above, each individual
appeared in only one category for each demographic. However, the methodology is flexible
enough to support the case where an individual is in (or selects) multiple categories within
a demographic.

The simulation study illustrated that ratio-based confidence intervals are less stable than
additive confidence intervals when the expected number of errors is small. This instability
in the ratios is more pronounced as the overall error rate decreases.

As with any statistical intervals, the choice of 1−α , the confidence level, is important.
Here the intervals chosen are derived to define family-wise error rates and control the
effects of multiplicity. While we prefer the use of a single interval across all demograph-
ics for ease of interpretation, we have provided methods for the creation of demographic
specific intervals.

To illustrate the utility of our methodology, we have applied our approach to MORPH-II
data. In this application, we note that percentiles for M and R are larger than values for
any of the Md and Rd , respectively. This is expected since the former quantities account
for variation across all demographics, rather than across a single set of demographic cat-
egories. Additionally, we see that the variation within a demographic depends upon the
error rate within each category and upon the group with the smallest number of match
decisions. This is because biometric error rates are inherently binary. The application of
our bootstrap methodology to the MORPH-II data took less than one minute to complete
using the R programming language on a standard laptop.

The focus of this paper has been on false non-match rates since we are motivated in fairness
in access but it is possible to extend the work here to false match rates though the variance
structure of false match rates requires a more complicated bootstrap resampling structure,
see Schuckers [Sc10].
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Voice Morphing: Two Identities in One Voice

Sushanta K. Pani1, Anurag Chowdhury, Morgan Sandler, Arun Ross

Abstract: In a biometric system, each biometric sample or template is typically associated with a
single identity. However, recent research has demonstrated the possibility of generating “morph”
biometric samples that can succesfully match more than a single identity. Morph attacks are now
recognized as a potential security threat to biometric systems. However, most morph attacks have
been studied on biometric modalities operating in the image domain, such as face, fingerprint, and
iris. In this preliminary work, we introduce Voice Identity Morphing (VIM) - a voice-based morph
attack that can synthesize speech samples that impersonate the voice characteristics of a pair of
individuals. Our experiments evaluate the vulnerabilities of two popular speaker recognition systems,
ECAPA-TDNN and x-vector, to VIM, with a success rate (MMPMR) of over 80% at a false match
rate of 1% on the Librispeech dataset.

Keywords: Identity Morphing, Morph Attack, Speaker Recognition, Speech Synthesis

1 Introduction

Biometric systems use physical or behavioral traits to recognize individuals [JFR07]. A
biometric system acquires a biometric sample of an individual (e.g., voice) using a sensor
(e.g., microphone) and extracts a salient feature set (or template). This template is then
used to recognize the individual. Typically, a template is associated with a single identity.
However, over the past decade, several adversarial techniques, called morph attacks, have
been developed to create synthetic biometric samples that can successfully match multi-
ple identities [FFM14].2 Furthermore, in recent times, DeepFake based synthetic image
generators have been used to launch morph attacks on image-based biometric systems,
viz., face, fingerprint, and iris, with high success rates [Ve21]. The success of such attacks
can potentially lead to compromise of security in sensitive applications where a single
biometric ID card could be shared by two or more individuals for nefarious purposes.

Existing literature on morph attacks demonstrates its potency against biometric modalities
such as face, fingerprint, and iris [Ve21], [Sc17], [SR21]. For example, landmark-based
[MFFM19, RRB16] and deep learning-based [Zh21, Da18] face morph attacks have been
shown to be effective against face recognition systems. Similarly, researchers have shown
the possibility of launching a morph attack against iris matchers both at the image level
[FFM14, SR21] and feature level [FCM16, RB17].

1 All authors are affiliated with Michigan State University, USA, Corresponding author: Arun Ross
(rossarun@cse.msu.edu)

2 A related vulnerability known as MasterPrint attack [RMR17] or MasterFace attack [Ng22] has also been
studied.
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The voice modality, on the other hand, has seemingly been spared from morph attacks
until now. The use of voice biometrics is especially relevant in some commercial applica-
tions, such as digital voice assistants [Ho18] and telephone banking [MSI01]. The voice
morphing attack may be particularly harmful in scenarios where verification of a single
identity is essential to proceed. For instance, consider an online spoken language test. In
this context, the test-taking system might require the candidate to enroll their voice before-
hand to ensure that the same individual appears for the test. This step is typically achieved
using a speaker recognition system, designed to prevent an accomplice from taking the test
on behalf of the candidate. However, with a voice morphing attack method, the candidate
could enroll a morphed combination of their voice and that of an accomplice. This blend
would match both identities, allowing the accomplice to take the test on the candidate’s
behalf by successfully matching their voice to the enrolled morphed template. This situa-
tion, coupled with the rapid adoption of voice biometric-enabled devices and services, has
heightened interest in understanding their vulnerabilities to morphing attacks. Therefore, it
is essential to investigate the viability and success rate of such attacks on popular speaker
recognition systems.

In this paper, we propose a voice morphing technique called Voice Identity Morphing
(VIM)3 that can synthesize artificial voice samples containing the voice characteristics of
a pair of identities. Experimentally we show that the morph voice samples generated from
two identities can successfully match target audio samples of both constituent identities
using two different popular speaker recognition systems. The proposed method uses the
DeepTalk network [CRD21] to extract speaker embeddings from two source identities.
Then, it performs a feature-level fusion of the two embeddings producing a new embed-
ding corresponding to the morphed identity. Finally, the morphed embedding is input to a
Tacotron 2-based Text-to-Speech synthesizer to generate a morphed audio sample.

The main contributions of this preliminary work are as follows: (a) We propose a voice
identity morphing technique capable of generating speech samples that can successfully
match two identities within the framework of a speaker recognition system. (b) We evalu-
ate and demonstrate the vulnerability of two popular speaker recognition systems, namely
x-vector [Sn18] and ECAPA-TDNN [DTD], to our proposed method. (c) We perform an
ablation study to better understand this vulnerability, and we initiate a discussion on po-
tential forensic measures that may counteract it. (d) We propose directions for future study
on this topic.

2 Proposed Method: Voice Identity Morphing

Voice Identity Morphing (VIM), as shown in Figure 1, has two stages: a) synthetic voice
generation and b) morph attack on a speaker recognition system. In the first stage, the
proposed method generates synthetic speech samples exhibiting speaker-dependent speech
characteristics pertaining to two different speakers, also referred to as the target speaker
pair. The synthetic speech sample, called the morphed speech sample, is then compared to
3 Note that voice morphing as defined in this work is different from previous use of this terminology in the speech

literature, where it denotes modifying an individual’s voice to sound like another individual.
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Fig. 1: Illustration of Voice Identity Morphing: Initially, the DeepTalk encoder processes and ex-
tracts embeddings that capture the unique speaker characteristics of two distinct individuals. Sub-
sequently, to create a morphed identity, we compute the average of these two embeddings. This
averaged embedding then serves as a reference point for our speech synthesis module. Ultimately,
employing this reference, the vocoder module generates a spectrogram that merges elements from
both contributing speakers.

individual voice samples from the target speaker pair to launch the morph attack. An attack
is successful if the morphed speech sample matches both the target speaker pair’s speech
samples. The morph voice generation architecture has three separate modules: Encoder,
Synthesizer, and Vocoder.

We use a pre-trained DeepTalk encoder model to generate vocal style-based speaker iden-
tity embeddings of voice samples. We choose this encoder for its competitive performance
with the x-vector system and its robustness to degraded audio scenarios. This encoder
architecture consists of a 1D-CNN based speech ® lter bank also known as DeepVOX net-
work [CR20] and Global Style Token (GST) [Wa18] based prosody embedding network.
The DeepVOX network generates short-term speaker-dependent DeepVOX features (see
Table 1 for architecture details). The GST based prosody embedding network generates
a ® xed dimensional reference embedding from DeepVOX features by using a 2D-CNN
followed by a 128-unit GRU. The DeepTalk encoder is pre-trained on the Librispeech,
VoxCeleb1 and VoxCeleb2 datasets. The synthesizer module uses these embeddings as
an input during the morph sample generation stages (speech synthesis and vocoding). As
an initial step of the morph sample generation stage, we average the embeddings (Emba
and Embb) of two voice samples from separate speakers to generate a morph embedding
Embmorph = (Emba +Embb)/2. We perform this averaging step to incorporate features
from both constituent identities. This assumes that there is an underlying geometric rela-
tionship between the identities in the learned embedding space from the DeepTalk encoder.
We illustrate these relationships using t-SNE in Figure 3.

We use Tacotron 2 speech synthesizer [Sh18] to generate a mel-spectrogram for the
corresponding text input. We use the Tacotron 2 synthesizer to retain consistency with
the original DeepTalk architecture. Tacotron 2 architecture consists of an encoder and a
decoder with an attention mechanism. The encoder creates an internal representation of
input text, and the decoder uses the internal representation to generate features that encode
the audio as a frame-level mel-spectrogram. The attention mechanism helps the decoder
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Tab. 1: DeepVOX network setup for learning a 40-dimension feature representation from speech
frames. All rows are convolutional layers separated by a SELU activation function.

In Channels Out Channels Kernel Dilation
1 2 5x1 2x1
2 4 5x1 2x1
4 8 7x1 3x1
8 16 9x1 4x1

16 32 11x1 5x1
32 40 11x1 5x1

learn from the internal representation by weighting out potential failure cases where some
subsequences of text are repeated or ignored by the decoder.

We use a WaveRNN-based neural vocoder [Ka18] pretrained model to generate morph
samples by inverting the mel-spectrogram output from the Tacotron 2 synthesizer into
audio samples. WaveRNN aims to have an expressive and non-linear transformation of the
context and minimize the number of operations each step. An RNN addresses this purpose
by combining the context and input within a single transformation.

3 Experimental Protocol

3.1 Dataset

We conducted experiments using the publicly accessible Librispeech dataset [Pa15], an
audiobook corpus derived from Librivox projects. This dataset includes 1000 hours of
audio data, in which, for each sample, a speaker reads English text. The dataset is divided
into three subsets (100hr, 360hr, 500hr), all sampled at 16kHz. For our experiment, we
utilized the 500 hour subset that consists of 1,166 participants (554 female and 612 male).
We selected the 500hr subset not only because it is the largest subset, but also because it
encompasses 440 speakers, each with more than 30 minutes of speaking time – a factor
crucial for the morph generation process.

3.2 Baseline Recognition Performance

We assess speaker recognition systems’ vulnerability to morph samples using two popu-
lar speaker recognition systems: x-vector [Sn18] and ECAPA-TDNN [DTD]. We choose
these systems as they are freely available and are used in a wide range of systems.4 We
use the implementation of these systems in Speechbrain [RPO21] toolkit. The x-vector
matcher is a TDNN (Time delay neural network) architecture and applies statistical pool-
ing to extract 512-dimensional embedding for variable length utterances. The matcher uti-
lizes categorical cross-entropy loss for training. The ECAPA-TDNN matcher architecture
4 ECAPA-TDNN amassed 553,704 downloads in one month (June 2023) according to the HuggingFace website

[In23]
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consists of convolutional layers, residual blocks, and attentive statistical pooling layers. It
utilizes Additive Margin SoftMax Loss to generate a 192-dimensional embedding. Both
matchers utilize Voxceleb1 [NCZ17] and Voxceleb2 [CNZ18] datasets to train the models.
They use cosine distance similarity of speaker embeddings to compare a pair of speaker
identities.

Before assessing their vulnerability, we evaluate the baseline recognition performance of
these speaker recognition systems on 440 subjects in the 500-hr subset of the Librispeech
dataset [Pa15]. Table 2 provides the performance of these speaker recognition systems
in terms of True Match Rate (TMR) at 1%, 0.1%, and 0.01% False Match Rate (FMR).
TMR is the proportion of genuine samples that were correctly matched, whereas FMR was
the proportion of impostor samples that were incorrectly matched. ECAPA-TDNN model
performs better than the x-vector model in correctly classifying genuine and impostor
pairs.

Tab. 2: Performance of two speaker recognition systems in terms of TMR (%) at 1%, 0.1%, and
0.01% FMR in the Librispeech dataset. The ECAPA-TDNN and x-vector are two popular, high-
performing speaker recognition systems available in the Speechbrain toolkit.

Matcher
TMR (%)

FMR 1% FMR 0.1% FMR 0.01%

ECAPA-TDNN 98.91 97.50 93.25
x-vector 88.17 78.57 68.52

3.3 Morph Generation Setup and Results

To generate morph voice samples that incorporate both identities of two different speakers,
we first fine-tune a separate Tacotron 2 synthesizer with speech samples of that speaker
pair. A pre-trained Tacotron 2 synthesizer needs approximately 30 minutes of the voice
samples for fine-tuning [CRD21]. Therefore, we select 440 speakers (221 female and 219
male) which has 30 minutes or more cumulative duration of voice samples. From 440
speakers, we generate 96,580 speaker pairs (440C2 ). To generate better quality morph
samples, we consider those speaker pairs which have high similarity in their speech. Each
instance of Tacotron 2 takes 8-10 hours to fine-tune. Given this, we select the top 100
speaker pairs. We measure the similarity by the cosine distance of their ECAPA-TDNN-
extracted speaker embeddings. Through this process, we select the top 100 speaker pairs,
out of which only 43 pairs have unique speakers. The trimmed list of speaker pairs has
3 cross gender speaker pairs. Considering these 43 speaker pairs, we fine-tune 43 differ-
ent Tacotron 2 synthesizers in parallel. For fine-tuning these Tacotron 2 synthesizers, we
also provide 256-dimensional speaker embeddings extracted from a pre-trained DeepTalk
encoder model [CRD21] as input along with a reference text. The fine-tuned Tacotron 2
synthesizer outputs a morphed mel spectrogram which is then fed as input into the Wav-
eRNN vocoder [Ka18] to generate morphed speech samples. We create 100 such morphed
samples from each speaker pair (10 samples per speaker) which results in 4,300 morphed
samples. The speech samples used to generate morph samples are different from the ones
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used for training the Tacotron 2 synthesizer. We use the remaining voice samples of a
speaker for testing. Our experiment has disjoint sets of training (60%), morph (10%) and
test (30%) speech samples.

To evaluate the vulnerabilities of the two speaker recognition systems against the gener-
ated morph samples (morph attack), we use the Mated Morph Presentation Match Rate
(MMPMR) [Sc17] and Morphing Attack Potential (MAP) [Fe22] metrics. MMPMR is a
fraction of successful morph attacks out of the total number of morph attacks. A morph
attack is considered successful when the morph sample matches with test samples of both
speakers. Table 3 provides the performance of morph attacks in terms of MMPMR at
different thresholds corresponding to 1%, 0.1%, and 0.01% FMRs. We report the morph
attack success rate in two categories: speaker pair level and morph sample level. A success-
ful morph attack at the speaker pair level has at least one morph sample that matches the
samples of both speakers. However, morph sample-level MMPMR reports the success of
all morph samples irrespective of the speaker. The proposed morphing technique VIM can
create morph samples attacking ECAPA-TDNN and x-vector speaker recognition systems
with 95.34% and 86.04% respective success rates at 0.1% FMR, for speaker pair level.
The results show that the ECAPA-TDNN speaker recognition system is more susceptible
to morph attacks compared to the x-vector recognition system. The considerable success
rate of morph attacks could likely be related to the morph pair selection process or the
effective capturing of subject information by the DeepTalk encoding method. This infers
that prior knowledge of the speaker recognition system would generate stronger morph
attacks. Also, we hypothesize that state-of-the-art speaker recognition systems are likely
to detect vocal features of both the parent speakers in a composite audio. This may make
them vulnerable to such morphing attacks as well. We find that the fusion of speech syn-
thesis embeddings generates effective morph audio samples for use in attacks on speaker
recognition systems.

Tab. 3: Vulnerability assessment of two speaker recognition systems to voice identity morph attack
in terms of MMPMR (%) at different threshold corresponding to 1%, 0.1%, and 0.01% FMR on the
Librispeech dataset.

Matcher
Speaker pair MMPMR (%) Morph sample MMPMR (%)

FMR 1% FMR 0.1% FMR 0.01% FMR 1% FMR 0.1% FMR 0.01%

ECAPA-TDNN 100.00 95.34 81.39 91.23 62.11 21.58
x-vector 93.02 86.04 9.30 82.13 38.95 4.32

3.4 Result Analysis

We further analyze our morph attack performance using: 1) histogram plots, 2) t-SNE
plots, and 3) morphing attack potential (MAP). Figure 2 shows the histogram plots of
match scores corresponding to genuine pairs (green), impostor pairs (red), and pairs which
include at least one morphed sample (blue) for both speaker recognition systems. In both
systems, we find that the morphed pairs match score distribution lies between genuine
and impostor score distributions. Morph samples are classified as genuine matches in the
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Tab. 4: Morphing Attack Potential (MAP) [Fe22]: This metric represents the success rate (%) of
a morphed sample matching at least a speci® ed number of probe voice samples (denoted as # of
attempts) within the Librispeech dataset, using one or both of the speaker recognition systems (SRS),
namely ECAPA-TDNN and x-vector. The success rate is evaluated at three false match rate (FMR)
thresholds: 1%, 0.1%, and 0.01%.

# of Attempts
FMR 1% FMR 0.1% FMR 0.01%

1 SRS 2 SRS 1 SRS 2 SRS 1 SRS 2 SRS

1 92.0% 52.7% 60.4% 7.6% 20.2% 2.3%
2 90.2% 46.3% 54.4% 5.7% 16.5% 1.7%
3 88.9% 41.6% 50.8% 5.0% 14.3% 1.0%
4 87.9% 38.1% 47.9% 4.6% 13.0% 0.6%
5 87.0% 35.7% 45.8% 4.2% 11.4% 0.3%

ECAPA-TDNN and x-vector systems with recognition thresholds of 0.46 and 0.96 respec-
tively at 0.1% FMR.

ECAPA-TDNN x-vector

Fig. 2: Speaker recognition match score distributions of non-morph versus non-morph genuine
(Green), non-morph versus non-morph impostor (Red), and morph versus non-morph genuine morph
scores (Blue) using ECAPA-TDNN and x-vector embeddings.

The second analysis we perform is based on the t-SNE dimensionality reduction tech-
nique. The t-SNE [VdMH08] method helps visualize high-dimensional embeddings in
a two-dimensional space by reducing the dimension. Figure 3 shows the t-SNE plot of
morph sample embeddings from two speaker pairs (AB and CD) along with non-morph
samples of four constituent speakers (A, B, C, and D). The embeddings are extracted by the
ECAPA-TDNN recognition system. Here, embeddings of morph samples of one speaker
pair (AB) are closer to embeddings of A and B speakers. Similarly, embeddings of morph
samples of another speaker pair (CD) are closer to embeddings of C and D speakers. The
analysis again validates the effectiveness of the proposed morphing technique and the po-
tential threat of morph attacks.
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Fig. 3: t-SNE plot which illustrates high-dimensional ECAPA-TDNN embeddings of morph speech
samples from two separate speaker pairs (AB and CD) and non-morph speech samples of individual
speakers (A, B, C, and D). Morph embeddings of each pair are closer to the non-morph embeddings
of their constituent speakers.

The Morphing Attack Potential (MAP) [Fe22] constitutes the third analysis. This metric
takes into account multiple Speaker Recognition Systems (SRS) to ensure generality, and
a variable number of verified probe samples for robustness. The result is a matrix (Table
4) in which one axis represents the number of probe samples (referred to as the number
of attempts), and the other axis represents the number of SRS. The entries in each row
represent the success rate (in percentage) of a morphed sample matching at least a specified
number of probe voice samples (referred to as the number of attempts) using either or both
of the SRS, viz., ECAPA-TDNN and x-vector. We report the success rates over three FMR
thresholds of 1%, 0.1%, and 0.01%. The results imply that VIM is effective at a fairly
competitive FMR of 1%, but suggest there is still room for improvement in performance
at very low FMR thresholds. This may be attributed to the morph selection process or
perhaps to the pre-trained models used in the encoder and speech synthesis steps.

4 Summary and Future Work

To the best of our knowledge, this preliminary work is the first to demonstrate the vulner-
ability of speaker recognition systems to morph attacks. In this regard, we propose a voice
morphing technique called VIM to generate speech samples corresponding to the identities
of two subjects. Using these morph samples, we demonstrate a morph attack success rate
of over 80% on two popular speaker recognition systems (ECAPA-TDNN and x-vector).
As future work, we propose to select high-similarity pairs for a morphing attack using x-
vector to investigate whether the selection process plays a vital role in the performance of
such an attack. Additionally, evaluating newer speaker recognition systems such as TitaNet
[KPG22] and MFA-Conformer [Zh22] would provide more insight into the generalizabil-
ity of VIM. Comparing other speech synthesis systems in the speech synthesis step would
shed light on the role this step plays in the VIM attack. Furthermore, we aim to develop a
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system for detecting morphed speech samples, possibly through the identification of their
constituent identities. It may also be interesting to explore the maximum number of iden-
tities that can be combined into a single audio sample using VIM.

5 Reproducibility

The code for generating VIM samples can be found online at our Github link. 5
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Compressed Models Decompress Race Biases:
What Quantized Models Forget for Fair Face Recognition

Pedro C. Neto1,2, Eduarda Caldeira1,2, Jaime S. Cardoso1,2 and Ana F. Sequeira 1

Abstract: With the ever-growing complexity of deep learning models for face recognition, it be-
comes hard to deploy these systems in real life. Researchers have two options: 1) use smaller models;
2) compress their current models. Since the usage of smaller models might lead to concerning biases,
compression gains relevance. However, compressing might be also responsible for an increase in the
bias of the final model. We investigate the overall performance, the performance on each ethnicity
subgroup and the racial bias of a State-of-the-Art quantization approach when used with synthetic
and real data. This analysis provides a few more details on potential benefits of performing quan-
tization with synthetic data, for instance, the reduction of biases on the majority of test scenarios.
We tested five distinct architectures and three different training datasets. The models were evaluated
on a fourth dataset which was collected to infer and compare the performance of face recognition
models on different ethnicity.

Keywords: Racial Bias, Face Recognition, Deep Learning, Compression, Quantization, Synthetic
Data.

1 Introduction

Face recognition methods have made significant progress over the previous years [Bo22].
Current systems are capable of rivalling with humans under certain conditions and are
quickly reducing the gap on the remaining test scenarios [Ph18]. The urge to keep the
current rate of improvement on these deep learning-based approaches led to an era of
complex and obscure models. As such, despite their extraordinary performance, there are
two pressing concerns. First, there are hardware limitations that affect the complexity of
the models that can be deployed and used in real scenarios. These limitations affect both
storage, memory and processing time. The second concern is that the behaviour of a deep
neural network is not easily understood [Ne22]. As such, besides the valuable information,
also irrelevant or even harmful correlations can be learnt by these models, and hidden
within their obscure nature.

Addressing these two concerns is of utter importance. To tackle them individually, one
must be careful to avoid a potential trade-off between their mitigation. For instance, con-
sidering the possibility of an existing bias on the models, further reducing the model size
can lead to an increased bias. Moreover, unless the model is reduced to an interpretable
version of itself, these growing biases remain hidden within the black-box model.

1 INESC TEC, Porto, Portugal, pedro.d.carneiro@inesctec.pt
2 Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
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Instead of using a smaller model, current work is investigating different model compres-
sion approaches. Quantization, knowledge distillation and pruning are the most common.
In this work, we aim to study the impact of quantization on the mitigation or ampli®ca-
tion of existing biases. Hooker et al. [Ho20] presented a set of experiments that indicates
a potential increase of the previous biases and tried to identify the elements forgotten by
the deep neural network [Ho19]. To further extend this research, we framed our problem
within the context of racial biases in face recognition systems. Stoychev et al. [SG22] pre-
sented mixed results on a face-related task and the effects on the biases were dependent
on the training dataset. For this reason, our work, starting from Boutros et al. [BDK22]
quantization approach, further includes the usage of real and synthetic data and the usage
of distinct datasets for training. This study also aims to understand the current trade-offs
between small models and hidden biases.

Fig. 1: Representation on a potential source of biases created after quantizing a deep neural network.
Less represented classes or classes prone to suffer from discrimination might be easier to forget,
leading to errors focused on those classes.

Within the context of this work, we aim to answer three research questions: 1) Are smaller
models more biased? 2) Are quantized models more biased? (As represented in Figure 1)
3) What is the impact of using synthetic data to quantize these models? We individually
address each of these questions and provide a potential explanation for the behaviour dis-
played by the models. Furthermore, the usage of synthetic data is motivated by the pos-
sibility of further growing our current datasets without compromising ethical concerns or
privacy. Besides, with synthetic data, it is possible to create a higher degree of variability.
Given these research questions, we present the following contributions:

· A study on racial bias on four differently sized models trained on MS1MV2 [De19]
and of two models trained on BUPT-Balancedface and BUPT-Globalface [WZD21];

· Using QuantFace [BDK22] and real data we study the racial bias of the quantized
version of all the models previously evaluated;

· We repeat the previous analysis with synthetic data;
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• While confirming some of the Hooker et al. [Ho20] findings, we have also discov-
ered that quantization with synthetic data mitigates the racial bias of the resulting
model.

While we conducted our studies on a face recognition task, we theorise that the results
seen are plausible for similar verification or classification problems, and other biometric
modalities. In other words, smaller models and quantisation might impact the class with
higher risk of discrimination in the same way that we describe in this study.

The following sections are divided into four major sections and a conclusion. Section 2
describes the five distinct datasets utilised in this study. Afterwards, in Section 3 and 4 the
methodology and experimental setup are described in detail. Finally, the results are shown
and discussed in Section 5.

2 Datasets

This study utilized five distinct datasets. MS1MV2 [De19], BUPT-Balancedface and BUPT-
Globalface [WZD21] have been used for training the base models and quantization, while
the synthetic data [BDK22] was only used for quantization and RFW [Wa19] just for eval-
uation of the models.

2.1 MS1MV2

MS1MV2 is widely used in the literature to train and compare several deep face recog-
nition models [Bo22, Ne21]. It is a refined version of the MS-Celeb-1M dataset [Gu16],
which further improved the training of these systems. The dataset contains 85k different
identities and almost six million images and it is not balanced with respect to the race.

2.2 BUPT-Balancedface and BUPT-Globalface

Wang et al. [WZD21] introduced two distinct datasets to train deep face recognition sys-
tems. These datasets have been created to mitigate race bias on face recognition through
skin tone labelling as African, Asian, Caucasian and Indian. BUPT-Globalface contains
two million images from 38k different identities, and the distribution of races follows their
distribution in the world. On the other hand, BUPT-Balancedface contains 1.3 million im-
ages from 28k identities which are divided into 7k identities per race. As such, this second
dataset is race balanced.

2.3 Synthetic data

This dataset, introduced in [BDK22] contains approximately 500k unlabelled synthetic
images. These images have been generated by a generative adversarial network [Go14,

202



Pedro C. Neto et al.

Ka20]. The noise used as input to generate the images was sampled from a Gaussian
distribution and fed to a pretrained generator (official open source implementation 3 of
StyleGAN2-AD). The usage of synthetic data is often seen to result in sub-optimal per-
formances [Qi21] which might be caused by a domain gap between real and synthetic
data [Xu20, Sa18, Le20]. In this work, the goal is not to use the synthetic data to learn the
representations from scratch, and we further argue that there might exist advantages of this
domain gap.

2.4 RFW

Racial Faces in-the-wild (RFW) [Wa19], was proposed by the same authors of BUPT-
Balancedface, and was designed as a benchmarking dataset for fair face verification. Simi-
larly, it includes labels for ethnicity, which allows for a fair assessment of potential biases.
It contains 3000 individuals with 6000 image pairs for face verification.

3 Methods

The methodology was designed in two different processes. First, it is necessary to under-
stand if there is a bias problem on quantized models, and for this we have used the publicly
available QuantFace models. If the problem is identified, it is necessary to understand if it
is visible on models trained on other datasets (balanced and non-balanced).

There are four different architectures for QuantFace available: MobileFaceNet [Ch18],
ResNet-18 [He16], ResNet-50 and ResNet-100. Each of these architectures is available
in five distinct shapes: the original full-precision model, the 8-bit model quantized with
real data, the 8-bit model quantized with synthetic data, the 6-bit model quantized with
real data and finally the 6-bit model quantized with synthetic data. This part is essential
to understand if the behaviour of the quantized model changes with the selected precision
and the network architecture. Hence, the dataset for this is fixed as the MS1MV2, so we
can ignore the data as a factor of variability.

For the second part of the study, a ResNet-34 was trained on BUPT-Balancedface and a
second ResNet-34 was trained on BUPT-Globalface. The first is available in the four dif-
ferent quantized versions described above, whereas the second was only studied in its 8-bit
version with real data quantization from two different sources and synthetic quantization.
The network architecture is fixed so that the variability factors are limited to the data used
for training and quantization. Moreover, the usage of a different real dataset for quanti-
zation than the one used for training attempts to further improve the understanding of the
reasons behind the performance of a model. For instance, performance changes might be
caused by the usage of data from a different distribution than the training data.

In order to gain additional insights regarding the reasons behind the impact of the synthetic
data on the bias resulting from the quantization, we further trained an ethnicity classifier
3 https://github.com/NVlabs/stylegan2-ada
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on BUPT-Balancedface to estimate the ethnicity distribution in the synthetic data. This
classifier comprises a fully-connect layer on top of a pretrained Elastic-Arc model [Bo22]
model and achieves accuracies above 95%.

4 Experimental Setup

For the quantization process we have utilized the open-source implementation of Quant-
Face4 with a batch size of 128 on a Nvidia Tesla v100 32GB. We have utilized the same
configuration as proposed by Boutros et al. [BDK22]. For training the face recognition
models on BUPT-Balancedface and BUPT-Globalface, we have utilized the same proto-
col of Deng et al. [De19] to preprocess the images, reduce the learning rate and stop the
training. The ethnicity classifier utilised the Elastic-Arc model [Bo22] with all its layers
frozen. An additional classifier layer was added and trained.

4.1 Evaluation Metrics

The performance of the evaluated models was measured in terms of accuracy. For the
fairness evaluation of these models we have utilised two metrics: the standard deviation
between the different accuracies (STD), and the skewed error ratio (SER) seen in Equa-
tion 1.

SER =
100−min(acc)
100−max(acc)

(1)

The STD aims to evaluate the variance between the different accuracy values. The usage of
STD in a set with just four different samples might be questioned, however, this has been
the approach used in the literature [WZD21]. For the sake of reproducible research and
compliance with the literature, we have chosen to retain the metrics previously used. On
the other hand, SER measures or much larger is the worst error when compared with the
better error. This is important to understand the relative differences between the different
accuracy values. As a relative evaluation metric, SER is highly sensitive when the accuracy
is above 99%. This happens because as the errors get below 1% their relative difference
also change accordingly. For instance, a SER computed for a maximum accuracy of 90%
and a minimum accuracy of 80% is the same if these accuracy values were 99.9% and
99.8%. STD is highly sensitive to absolute differences, and grows large on sets with lower
accuracy values.

5 Results

A careful analysis of the performance of the different sized models at full precision (Ta-
ble 1) shows that smaller models tend to have higher biases and lower performance in terms
4 https://github.com/fdbtrs/QuantFace/
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of average accuracy. ResNet-100 is an exception and this difference might be related to the
fact that SER becomes highly sensitive when the errors are below 1%.

Tab. 1: Table comprising the results, evaluated on RFW, from the different models trained on
MS1MV2 and their respective quantized versions for different bits and quantization strategies (real
or synthetic data). The versions of the models quantized with synthetic data seem to display better
fairness metrics at a comparable average performance.

Model Bits Quant. Caucasian Indian Asian African Avg. STD SER
32 - 95.18% 92.00% 89.93% 90.22% 91.83% 2.41 2.09
8 Real 95.32% 91.60% 89.27% 90.08% 91.57% 2.68 2.29

MobileFaceNets 8 Synth. 94.18% 91.83% 88.85% 89.72% 91.15% 2.38 1.92
6 Real 90.05% 86.52% 82.88% 83.18% 85.66% 3.36 1.72
6 Synth. 89.97% 86.95% 83.13% 84.40% 86.11% 3.02 1.68
32 - 97.48% 95.38% 93.72% 94.27% 95.21% 1.66 2.49
8 Real 97.42% 95.33% 93.55% 94.20% 95.13% 1.70 2.50

ResNet-18 8 Synth. 96.95% 95.07% 93.30% 93.87% 94.80% 1.61 2.20
6 Real 96.93% 94.65% 92.52% 93.22% 94.33% 1.95 2.44
6 Synth. 96.80% 94.78% 92.35% 93.28% 94.30% 1.94 2.39
32 - 99.00% 98.15% 97.62% 98.32% 98.27% 0.57 2.38
8 Real 99.07% 98.07% 97.65% 98.40% 98.30% 0.60 2.53

ResNet-50 8 Synth. 99.02% 97.72% 97.33% 97.88% 97.99% 0.73 2.72
6 Real 98.32% 96.27% 94.55% 95.87% 96.25% 1.56 3.24
6 Synth. 97.95% 96.63% 94.97% 96.20% 96.44% 1.23 2.45
32 - 99.65% 98.88% 98.50% 99.00% 99.01% 0.48 4.29
8 Real 99.57% 98.87% 98.15% 98.77% 98.84% 0.58 4.30

ResNet-100 8 Synth. 99.37% 98.72% 98.13% 98.78% 98.75% 0.51 2.97
6 Real 95.27% 93.15% 90.32% 91.70% 92.61% 2.12 2.05
6 Synth. 95.93% 93.40% 91.92% 92.60% 93.46% 1.75 1.99

The quantized version of these models seems to retain the performance and bias advan-
tages when compared to simpler models. As theorised, the quantization has a negative
impact on the bias, and in most cases on the performance too. The lower the number of bit,
the higher the bias. However, the usage of synthetic data has shown, for all the different
precisions, a capability to reduce the bias while retaining the performance. From this data,
it is not clear if the improvement is due to a specific characteristic of the synthetic data.

We have used the ethnicity classifier to get an estimation of the racial balance of the syn-
thetic data. We obtained 365889 Caucasians, 81568 Asians, 81568 Indians and 61966
Africans. Since the data is not balanced, it is not possible to associate the effects of this
data to its balance.

Further training two ResNet-34 on BUPT-Balancedface and BUPT-Globalface shows, at
full precision, that despite a higher performance of the latter, the balance of the former is
essential to ensure better bias metrics. On the model trained with the BUPT-Balancedface
the versions quantized with synthetic data has not only kept the same tendency of the
previous table, but it has also surpassed by a large margin the version of the method
quantized with the balanced data. This might be caused by the lower variability of the
BUPT-Balancedface data with respect to the number of identities.
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Tab. 2: Table comprising the results, evaluated on RFW, from two ResNet-34 models trained on
BUPT-Balancedface (BL) and BUPT-Globalface (GL) and their respective quantized versions for
different bits and quantization strategies (BL, GL or synthetic data). The versions of the models
quantized with synthetic data seem to perform outstandingly well.

Train Data Bits Quant. Caucasian Indian Asian African Avg. STD SER
32 - 96.60% 94.50% 94.03% 93.37% 94.63% 1.40 1.95
8 BL 94.98% 93.60% 92.77% 90.95% 93.08% 1.68 1.80

BL 8 Synth. 96.03% 94.40% 93.97% 92.50% 94.23% 1.45 1.89
6 BL 89.22% 87.87% 86.25% 82.80% 86.54% 2.77 1.60
6 Synth. 94.58% 92.88% 91.45% 91.13% 92.51% 1.58 1.64
32 - 97.67% 95.52% 94.15% 93.87% 95.30% 1.74 2.63
8 BL 95.42% 92.75% 91.83% 89.88% 92.47% 2.30 2.21

GL 8 GL. 94.70% 92.15% 90.23% 88.75% 91.46% 2.57 2.12
8 Synth. 97.33% 95.15% 94.17% 93.55% 95.05% 1.66 2.42

The ResNet-34 trained on the BUPT-Globalface performs better if quantized with the data
from the BUPT-Balancedface instead of using the data from training. Once again, it might
be possible that introducing variability and unseen data for the quantization increases the
capability of the model to be robust for all ethnicities. This is further validated by the
version quantized with the synthetic data, which leads to a performance similar to the full
precision model.

6 Conclusion

In this document, we tackled three research questions, and we have provided answers
to all of them. 1) and 2) It was possible to infer that models quantized with real data
and smaller models are indeed more biased; 3) it was also verifiable that using synthetic
data for quantization positively impacts the fairness metrics. We have extended previous
literature on the assessment of the information that is lost by quantized models and further
introduced a novel topic regarding the usage of synthetic data for bias mitigation.

Despite the interesting results shown by our experiments, there are several gaps in the liter-
ature that should be tackled in future work. For instance, it is not known if this behaviour
is the same for gender biases, or if synthetic data harms gender biases while helping to
mitigate race biases. A more comprehensive study is required. The usage of the combined
real data that has and has not been seen, and synthetic data should be also analysed to
understand how can we, just by changing the training data, mitigate these biases while re-
taining the original performance. Furthermore, we still do not know if these findings hold
for different traits and tasks, and further studies are required to confirm the generalization
of these findings.

While the results shown are still preliminary, they introduce a few research directions that
might be relevant for the future of biometrics in an era of increasing concern with these
biases.
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Fuzzy Signature with Biometric-Independent Verification

Haruna Higo1, Toshiyuki Isshiki1, Saki Otsuki1, Kenji Yasunaga2

Abstract: Just as biometric authentication has replaced conventional authentication methods to im-
prove convenience and security, fuzzy signatures (FS), a technique that replaces the signing key
of a digital signature with biometric information, has been studied. This paper proposes biometric-
independent fuzzy signature (BIFS), a novel FS primitive that enables biometric-independent ver-
ification, which is inherently unsolvable with conventional FS. To circumvent that problem, BIFS
generates signatures through a two-party protocol using biometric information and helper keys. We
also propose a construction of BIFS that can easily replace existing signature services because the
signature and verification keys are in the same form as those of digital signatures.

Keywords: Digital signature, secure sketch, fuzzy signature.

1 Introduction

Biometric authentication compensates for the disadvantages of authentication by memory
and possession. Biometric characteristics have strong bindings with the owner, so there
is less risk of being forgotten or guessed, unlike passwords, and less risk of being lost
or stolen, unlike IC cards. Recent technological advances have successfully overcome the
difficulties caused by the nature of biometric information, and biometric authentication is
now used in large-scale applications such as national IDs.

A digital signature (DS) on an electronic document serves an equivalent purpose as a sig-
nature on a paper document. That is, with DS, the signer guarantees that he or she has
endorsed some document. Typical applications are e-mail protections (S/MIME), elec-
tronic contracts, and blockchain applications such as cryptocurrency transfers and proof of
attributes. The basis for the guarantee is the binding between the signing keys and the own-
ers. If a signing key is stolen, attackers can impersonate the owner; if lost, the owner can
no longer give guarantees. This feature is similar to that of authentication. Therefore, there
are lines of research on fuzzy cryptographic primitives, such as fuzzy extractors [DRS04],
to study the use of biometric information as a substitute for signing keys.

Fuzzy signature (FS), proposed by Takahashi et al. [Ta15], enables one to sign a message
only with a biometric feature, which is extendedly researched in [Ma16, Ta19, Ka21]. The
feature of FS is that the signer can generate signatures without remembering or holding
anything. However, the feature of using only biometric features as a signing key has the
1 NEC Corporation, 1753 Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan, {h-higo-aj,

toshiyuki-isshiki, saki-otsuki}@nec.com
2 Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan, ya-
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following two problems that seem difficult to be solved in principle: (1) A single user
needs to use the same key for signing since its biometric feature plays the role of signing
key; and (2) biometric information must be left in verification keys and signatures since
the fuzziness can only be absorbed in the verification phase. Biometric dependence is
particularly problematic in blockchain applications, as verification keys and signatures are
made public.

KeyGen

Sign SignSigning protocol

Bio. feature

Message

Cloud

User’s
device

Verify

Verification 
result

Signed message

Helper key

Verification key

Verifier

Bio. feature

Fig. 1: Algorithms of BIFS

In this paper, we propose a novel FS primitive as illustrated in Figure 1, called BIFS, that
enables biometric-independent verification. The core of BIFS is a two-party signing pro-
tocol. In the signature protocol, the first signer uses a biometric feature, and the second
signer uses a helper key which is generated as a pair with a verification key on a biometric
feature in the key generation phase. The requirement to have access to the helper keys is a
usability disadvantage of BIFS compared to FS. However, the two fundamental problems
of FS are solved with good use of the helper keys. First, multiple keys can be associated
with a single biometric characteristic by using different helper keys. Secondly, verification
keys and signatures can be constructed as biometric-independent data since the fuzziness
can be absorbed in the signing protocol. As a security requirement, we define unforge-
ability of the signatures and confidentiality of the biometric features from the helper keys,
verification keys, and signatures.

DS FS BIFS
Binding between signing key and owner Weak Strong Strong
Storage for signing Signing key No Helper key
Biometric-independent verification Yes No Yes

Tab. 1: Comparison of the signature methods.

We propose a generic construction for BIFS. Similar to the schemes in [Ta19], the scheme
is based on a linear sketch scheme and a DS scheme with key-homomorphism [DS19].
Signatures and the verification keys in the proposed scheme are in the same forms as those
of the underlying DS scheme. Therefore, not only can signatures and verification keys be
made public, but also the proposed scheme is easy to replace existing signature services
without changing the verification applications. This paper further discusses the feasibility
of the proposed scheme by comparing it to DS and FS schemes, as summarized in Table 1.
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2 Preliminaries

N, Z, and R denote the sets of all natural numbers, integers, and real numbers, respectively.
a← A denotes that a is the output from the algorithm A or chosen according to the distri-
bution A. b U←− B denotes that b is chosen uniformly at random from the set B. κ denotes a
security parameter, and PPT means probabilistic polynomial time on κ . negl(κ) denotes a
negligible function on κ that satisfies negl(κ) < 1/p(k) for all positive polynomials p(·)
and sufficiently large k. We omit public parameters among the inputs if it is implicit from
the contexts.

We use a model of biometric features as F = ((dis,W ), t,W ) in which (dis,W ) is a metric
space where W is a space of biometric features that constitutes an abelian group, and
dis : W ×W 7→R is the distance function, t ∈R is the threshold for comparison where it is
assumed that dis(x,x′)< t holds if and only if two biometric features x and x′ are extracted
from the identical biometric characteristic, and W is a distribution of biometric features
over W .

Linear Sketch To tolerate the differences between two readings of biometric features,
we employ the linear sketch (LS) [Ma16] in the proposed scheme. The concept of LS
is designed according to secure sketch [DRS04] that enables precise reconstruction of a
noisy input. A sketch is a composition of a key and a biometric feature in both primitives.
With linearity, LS enables to reconstruct the difference of the keys if the two features are
similar enough.

Formally, an LS scheme for biometric features F = ((dis,W ), t,W ) and an abelian group
(K ,+) consists of three PPT algorithms SetupLS, GenLS, and RecLS, described as follows:
The setup algorithm SetupLS takes a description of a model of biometric features and an
abelian group (K ,+) as input and outputs a public parameter ppLS. The sketch generation
algorithm GenLS takes a public parameter ppLS, an element x∈K , and a biometric feature
w∈W as input and outputs a sketch s. The difference reconstruction algorithm RecLS takes
a public parameter ppLS and two sketches s and s′ as input and outputs a difference ∆.

As correctness, for every ppLS from SetupLS, x,x′ ∈ K , and
w,w′ ∈ W that satisfy dis(w,w′) < t, it is required to hold that
RecLS(ppLS,GenLS(ppLS,x,w),GenLS(ppLS,x

′,w′)) = x− x′.

Two security requirements are defined for LS schemes. The first one, linearity re-
quires existence of a PPT algorithm LinLS that for every ppLS from SetupLS, x,∆ ∈
K , and w,e ∈W , the two distributions {s← GenLS(ppLS,x,w); s′ ← GenLS(ppLS,x+
∆,w + e): (s,s′)} and {s ← GenLS(ppLS,x,w); s′ ← LinLS(ppLS,s,∆,e): (s,s′)} are sta-
tistically indistinguishable. The second one, weak simulatability requires existence of
a PPT algorithm SimLS that for every PPT algorithm A , there exists a polynomial u
such that Pr[A (Dreal) = 1]− uPr[A (Dsim) = 1] ≤ negl(κ) holds for Dreal := {ppLS ←
SetupLS(F ,(K ,+)); x U←−K ; w←W ; s← GenLS(ppLS,x,w): (ppLS,x,s)} and Dsim :=
{ppLS← SetupLS(F ,(K ,+)); x U←−K ; s← SimLS(ppLS): (ppLS,x,s)}.
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Digital Signatures We also utilize digital signature (DS) schemes that have key-
homomorphic properties. We first review the standard definitions for DS schemes. A DS
scheme consists of four PPT algorithms SetupSIG, KeyGenSIG, SignSIG, and VerifySIG, de-
scribed as follows: The setup algorithm SetupSIG takes a security parameter κ as input
and outputs a public parameter ppSIG that determines a signing key space KppSIG . The key
generation algorithm KeyGenSIG takes a public parameter ppSIG as input and outputs a pair
of a signing key skSIG and a verification key vkSIG. The signing algorithm SignSIG takes
a public parameter ppSIG, a signing key skSIG, a message µ as input and outputs a signa-
ture σ . The verification algorithms VerifySIG takes a public parameter ppSIG, a verification
key vkSIG, a message µ , and a signature σ as input and outputs a signal that represents
acceptance (⊤) or rejection (⊥) of the message-signature pair.

As correctness, for every ppSIG from SetupSIG, (skSIG,vkSIG) ←
KeyGenSIG(ppSIG), and message µ , it is required to hold that ⊤ ←
VerifySIG(ppSIG,vkSIG,µ,SignSIG(ppSIG,skSIG,µ)).

We require the existential unforgeability against chosen message attacks (EUF-CMA) for
secure DS schemes. That is, a DS scheme satisfies EUF-CMA security if for every PPT
algorithm A , it holds that

Pr




ppSIG← SetupSIG(1κ);
(skSIG,vkSIG)← KeyGenSIG(ppSIG);
(µ∗,σ∗)←A SignSIG(ppSIG,skSIG,·)(ppSIG,vkSIG) :
⊤← VerifySIG(ppSIG,vkSIG,µ∗,σ∗)


≤ negl(κ),

where µ∗ must not be queried to the signing oracle.

Simply, the key-homomorphism is a property that a signature can be inverted to a signature
of a different key for the same message. Formally, a key-homomorphic DS scheme satisfies
the following four properties. First, the signing key space KppSIG is required to constitute
an abelian group. Second is a simple key generation process property that the key gen-
eration algorithm can be divided into two subprocesses: the first randomly chooses the
signing key, and the second determines the corresponding verification key. Third is a prop-
erty of inverting verification keys that a PPT algorithm VKShiftSIG exists for every ppSIG

generated by SetupSIG and skSIG,∆ ∈KppSIG , it holds that KeyGenSIG′(ppSIG,skSIG+∆) =
VKShiftSIG(ppSIG,KeyGenSIG

′(ppSIG,skSIG),∆). The last is a property of inverting signa-
tures that a PPT algorithm SignShiftSIG exists for every ppSIG, skSIG,∆ ∈ KppSIG , and
message µ , it holds that the two distributions {σ ′ ← SignSIG(ppSIG,skSIG + ∆,µ): σ ′}
and {σ ← SignSIG(ppSIG,skSIG,µ); σ ′ ← SignShiftSIG(ppSIG,σ ,∆)} are identical and
VerifySIG(ppSIG,KeyGenSIG

′(ppSIG,skSIG+∆),µ,SignShiftSIG(ppSIG,σ ,∆)) =⊤.

3 Distributed Biometric Signing Protocol

We propose a naive concept of fuzzy signature that enables biometric-independent verifi-
cation as BIFS. BIFS is designed to solve the principle problem of FS while using a bio-
metric feature as a part of a signing key. That is, BIFS can bind multiple keys with a single

212



Fuzzy Signature with Biometric-Independent Verification

biometric characteristic, and verification keys and signatures are biometric-independent
data. For that purpose, BIFS combines the ideas of key distribution and FS and enables
signing by two signers where one of the signers’ input is a biometric feature.

Therefore, the key generation algorithm generates a pair of a helper key and a verification
key from a biometric feature. A signature is generated with a two-party signature protocol
with SignBBIFS on a biometric feature and SignKBIFS on a helper key without revealing inputs
each other. The verification algorithm works similarly to DS’s, where the output ⊤ means
that the two biometric features used in the key generation of the verification key and the
signing of the message are extracted from an identical biometric characteristic. Formally,
a BIFS scheme for a model of biometric features F is a tuple of five PPT algorithms
SetupBIFS, KeyGenBIFS, SignBBIFS, SignKBIFS, and VerifyBIFS, described below:

• The setup algorithm SetupBIFS takes a security parameter κ and a model of biometric
features F as input and outputs a public parameter ppBIFS.

• The key generation algorithm KeyGenBIFS takes a public parameter and a biometric
feature w as input and outputs a pair of a helper key hkBIFS and a veriification key
vkBIFS.

• The signing protocol is a two party protocol with SignBBIFS and SignKBIFS, where
SignBBIFS takes a public parameter ppBIFS, a biometric feature w′, and a message
µ as input, and SignKBIFS a public parameter ppBIFS and a helper key hkBIFS, and the
output is a signature σ .

• The verification algorithms VerifyBIFS takes a public parameter ppBIFS, a verifica-
tion key vkBIFS, a message µ , and a signature σ as input and outputs a signal that
represents acceptance (⊤) or rejection (⊥) of the message/signature pair.

If a BIFS scheme is correct, it holds that ⊤← VerifyBIFS(ppBIFS,vkBIFS,µ,σ) for every
ppBIFS from SetupBIFS(1κ ,F ), w and w′ that satisfies dis(w,w′)≤ t, µ , (hkBIFS,vkBIFS)←
KeyGenBIFS(ppBIFS,w), and σ ← ⟨SignBBIFS(ppBIFS,w

′,µ),SignKBIFS(ppBIFS,hkBIFS)⟩.

As the security of BIFS, we require unforgeability of the signatures and confidentiality of
the biometric features. Due to the space limitation, we sketch the ideas of the definitions.
The unforgeability of BIFS is defined through security games in a similar way to that of
the two-party signature scheme in [Li17] except that BIFS uses biometric features. The
game is defined with an experiment in which an adversary who controls one of the parties
BIFS.Signi asks stateful oracles for key generation and signing with the instructions of the
other party BIFS.Sign j where j ̸= i ∈ {B,K}.

We require different levels of confidentiality for the helper keys compared to the verifica-
tion keys and signatures, since the second signer keeps the former secret while the latter
two may be made public. According to the definition of the secure sketch [DRS04], the
helper keys are allowed to decrease a limited amount of the entropy of the underlying bio-
metric features. On the other hand, we require the verification keys and signatures to be
independent of the underlying biometric features.
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4 Proposed scheme

Construction We propose a generic construction for BIFS. The proposed construction
is designed in a similar idea as the schemes in [Ta19] and based on a linear sketch scheme
and a key-homomorphic DS scheme. The key generation algorithm first generates a key
pair (skSIG,vkSIG) for the DS. skSIG is virtually used in the signing protocol. The helper
key hkBIFS is a sketch of skSIG with a biometric feature, which hides the skSIG. Signatures
are generated through a two-message protocol. On receiving a sketch generated from a
newly and randomly selected differential key ∆ by the first signer SignBBIFS, the second
signer SignKBIFS derives a masked signing key sk′SIG = skSIG−∆ and signs the message.
A signature of sk′SIG can be transformed into one of skSIG through the signature inversion
operation by the first signer who knows ∆. This way, the signers can generate a signature
without revealing their secret inputs and the virtual key. The verification keys and valid
signatures of the proposed scheme are in the same form as those of the underlying DS
scheme; thus, the verification algorithm is the same. A formal description is given below:

Setup: On input 1κ and a model of biometric features F , runs ppSIG← SetupSIG(1κ) and
ppLS← SetupLS(F ,(KppSIG ,+)) and outputs ppBIFS := (ppSIG,ppLS).

Key generation: On input ppBIFS and w, runs (skSIG,vkSIG)← KeyGenSIG, computes a
sketch s := GenLS(skSIG,w)+w, and outputs hkBIFS := s and vkBIFS := vkSIG.

Signing: On input (w′,µ,vkBIFS = vkSIG) for SignBBIFS and hkBIFS = s for SignKBIFS,

firstly SignBBIFS chooses a differential key ∆ U←− KppSIG , computes a sketch s′ :=
GenLS(∆,w′), and sends s′ and µ to SignKBIFS. Then, SignKBIFS computes a masked key
as sk′SIG := RecLS(s,s′) and returns a temporary signature σ ′ ← SignSIG(sk′SIG,µ).
Finally, SignBBIFS generates a final signature σ ← SignShiftSIG(∆,σ ′) and outputs
the final signature if ⊤← VerifySIG(vkSIG,µ,σ) and ⊥ otherwise.

Verification: On input (vkBIFS = vkSIG,µ,σ), outputs the result of VerifySIG(vkSIG,µ,σ).

If the distance of the two biometric features w and w′ is within the threshold, the masked
key reconstructed from s and s′ satisfies sk′SIG = skSIG−∆. Therefore, the temporary sig-
nature σ ′ is transformed into a valid signature of the virtual key skSIG through the key-
homomorphic operation, and thus the correctness of the scheme holds.

Security Here we briefly describe the security properties of the proposed scheme. The
unforgeability is satisfied based on the EUF-CMA security and key-homomorphism of the
underlying DS scheme. The proof can be given through a sequence of games where the
last game is reduced to the EUF-CMA security game of the underlying DS scheme. The
confidentiality for the helper keys is satisfied since a helper key is a sketch. Also, since
the verification keys and signatures are in the same form as those of the underlying DS
scheme, they are obviously independent of the biometric features.
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Efficiency analysis Here we compare the data sizes and computational costs of the pro-
posed BIFS scheme with the DS and FS schemes.

([byte]) Signing key Helper key Verification key Signature
DS sk (32) - vk (48) σ (96)
FS - - sketch+ vk (2096) sketch+ vk+σ (2192)

BIFS - sketch (2048) vk (48) σ (96)

Tab. 2: Comparison of data sizes.

The BIFS scheme replaces the signing key of the underlying DS scheme with a biometric
feature and a helper key which is a sketch of the signing key, while the verification key
and signature are in identical form. On the other hand, although the generic construction
of FS in [Ta15] replaces the signing key by only a biometric feature, the verification key
and signature additionally contain a sketch to that of the underlying DS scheme. Table 2
compares the data sizes of the DS, FS [Ta15], and BIFS schemes where sk, vk, and σ
means a signing key, verification key, and signature of a DS scheme, respectively, and
sketch means a sketch of the signing key.

In considering the actual sizes, we assume adopting biometric features of ArcFace [De19]
of which features are floating point vectors with 512 dimensions and BLS signa-
ture [BLS01] with curve BLS12-381 [Bo17] with the same setting as adopted in Ethereum
2.0. A sketch is a floating point vector of which size is the same as the features and is 2048
bytes. A signing key, verification key, and signature are 32, 48, and 96 bytes, respectively.
Therefore, the actual sizes of each data are as shown in brackets in Table 2. The sketches
dominate the sizes; thus, the size of the helper key is larger than the signing key of the
DS scheme. On the other hand, the signature size, which is expected to be generated more
than once for each key pair, is the same as the DS scheme’s and significantly smaller than
the FS scheme’s that contains a sketch in a signature.

([µs]) Key generation Sign with key Sign with feature Verification

DS
KeyGenSIG SignSIG - VerifySIG

(56) (373) - (925)

FS
KeyGenSIG - KeyGenSIG+SignSIG VerifySIG+VKShiftSIG

(56) - (429) (980)

BIFS
KeyGenSIG SignSIG SignShiftSIG VerifySIG

(56) (373) (373) (925)

Tab. 3: Comparison of computational costs.

On the computational costs, we compare the required operations of the underlying DS
scheme as in Table 3. Since the computational costs of the DS schemes with group oper-
ations are significantly larger than that of the LS schemes described in [Ta19] with real
number operations, here we consider the former only. Underlines represent the additional
costs compared to that of the DS scheme.

As shown in Table 3, the cost for the signing in the BIFS scheme is increased by the cost
for SignShiftSIG. In detail, SignShiftSIG is executed by SignBBIFS and SignSIG by SignKBIFS.
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The verification costs are the same for the BIFS and DS schemes. On the other hand, the
FS scheme requires additional costs for both signing and verification.

We added SignShiftSIG and VKShiftSIG to the BLS signature implementation published
in [Mi] and executed on an Ubuntu 18.04 machine with Intel Core i7-8700 3.2 GHz
CPU and 16 GB DDR RAM. The average running times for Ethereum 2.0 parameters
of KeyGenSIG, SignSIG, VerifySIG, VKShiftSIG, and SignShiftSIG are 56, 373, 925, 55 and
373 µs, respectively. Table 3 shows the running times with brackets. While singing for the
BIFS scheme takes about twice the time compared to the normal BLS signature and the
FS scheme, the time is less than 1 ms. The verification time for the BIFS scheme is the
same as the BLS signature, which is slightly faster than the FS scheme.

5 Discussion

One of the challenges of DS is the difficulty of managing signing keys. Signing keys can
be lost or stolen, since they do not have essential bindings with their owners. As a counter-
measure, the eIDAS Regulations and others recognize remote signature services, in which
a service provider takes custody of the owner’s keys and generates signatures according
to the owners’ instructions, as having the same effect as the services where the owners
manage keys. Similarly, for applications such as cryptocurrencies, many custodial wal-
let services in which service providers take custody of owners’ keys are being deployed.
While custodial services make it harder to lose signing keys, they do not solve the problem
of being stolen; the issue has just shifted to user authentication in the service.

Thanks to the characteristics of biometric information, FS solves the binding problems.
However, FS has two fundamental problems: A single biometric characteristic cannot be
used as multiple keys since only biometric features play roles of signing keys, and veri-
fication keys and signatures are biometric-dependent since the fuzziness can be absorbed
only in the verification phase. Especially, the verification keys and signatures of the FS
schemes [Ta19] contains sketches which leak a limited amount of information of the bio-
metric features. For example, cryptocurrencies and other applications on the public chain
allow individuals to use multiple keys, and signatures are publicly verified by a third party.
Thus, it might be challenging to utilize FS as a replacement for existing signature services.

With good use of the helper keys, BIFS solves the two fundamental problems of FS. On the
other hand, the requirement to have access to the helper keys can be a usability disadvan-
tage of BIFS compared to FS. One of the possible ways for helper key management is for
the service provider to manage them in the same way as signing keys in custodial services.
In this case, although an attacker could steal the helper key, signatures cannot be gener-
ated from the helper key without the biometric information of the owner. Another possible
method is for the user to manage helper keys by storing them on a user’s device such as
an IC card or token. If multiple helper keys are managed in one device, the user’s burden
is insignificant. Since we can implement the proposed method to have the same signature
and verification key format as the BLS signature used in Ethereum 2.0 and others, it may
be possible to replace the existing service without changing the verification algorithm.
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Face verification explainability heatmap generation using a 
vision transformer1 

Ricardo Correia, Fernando Pereira and Paulo L. Correia2 

Abstract: Explainable Face Recognition (XFR) is a critical technology to support the large 
deployment of learning-based face recognition solutions. This paper aims at contributing to the  
more transparent usage of Vision Transformers (ViTs) for face verification (FV) tasks, by proposing 
a novel approach for generating FV explainability heatmaps, for both positive and negative 
decisions. The proposed solution leverages on the attention maps generated by a ViT and employs 
masking techniques to create masks based on the highlighted regions in the attention maps. These 
masks are applied to the pair of faces, and the masking technique with most impact on the decision 
is selected to be used to generate heatmaps for the probe-gallery pair of faces. These heatmaps offer 
valuable insights into the decision-making process, shedding light on the most important face 
regions for the verification outcome. The key novelty of this paper lies in the proposed approach for 
generating explainability heatmaps tailored for verification pairs in the context of ViT models, which 
combines the ViT attention maps regions of the probe-gallery pair to create masks that allow 
evaluating those region´s impact on the verification decision for both positive and negative 
decisions.  

Keywords: Explainable face recognition, vision transformer, face verification heatmaps 

1 Introduction 

The increasing adoption of artificial intelligence (AI) tools, and deep learning (DL) models 
in particular, for multiple computer vision tasks, impacts users and their lives, thus 
accentuating the need for explainable artificial intelligence (XAI). In the context of face 
recognition (FR), this type of technology is known as explainable face recognition (XFR), 
acknowledging concerns about the lack of transparency of many FR models. In this 
context, understanding how a model works, especially when it fails, is crucial for 
improving and developing more effective FR solutions, and increase its societal 
acceptance. For FV, it is vital to know why impostors are wrongly validated or legitimate 
users are denied access. 

A post-hoc XFR tool is applied after the FR model has made its decision, not changing 
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the model, while aiming at providing insights on how the model arrived at its decision. 
Various post-hoc XFR tools have been developed to enhance the explainability of FV 
decisions [Me22], [PDS18], [MM22], which can be categorized based on how they extract 
information from the FR model into propagation-based or perturbation-based tools. 
Propagation-based XFR tools leverage specific properties of the model being explained 
by considering the internal structure of the model. Perturbation-based tools make changes 
to the input face, e.g., masking, or altering specific input features, to assess their impact 
on the FV model’s decision, not considering the inner working of the model. 

ViTs [Va17] have recently emerged as a promising tool also for FR purposes [ZD21a]. 
The ViT self-attention mechanism can contribute to enhance FR explainability since 
propagation-based tools can explore it to provide insights about the decision made, and 
generate attention maps expressing the importance of different input image patches for the 
ViT created embeddings. Even if a ViT is often trained with a classification logic, it can 
still be used for FV tasks to compute embeddings for both the probe and gallery images 
and compare those embeddings to determine their similarity. While the ViT attention maps 
provide insights about the face salient regions with more influence in obtaining the desired 
output class, they are not necessarily appropriate to explain a FV decision, where the 
similarity of two faces is compared. As such, these attention maps provide important 
information, but they cannot be directly taken as FV explainability heatmaps. On the 
contrary, perturbation based XFR tools, such as Average Removal/Aggregation (AVG) 
[MM22] and MinPlus [Me22], do not consider the model internal structure but rather focus 
on the task decision, and therefore they directly output FV explainability heatmaps.  

In this context, this paper proposes a novel XFR post-hoc tool for creating FV 
explainability heatmaps, leveraging the advantages of ViT propagation-based tools and 
their attention maps. Positive and negative FV decisions are treated differently since for 
the first case the goal is to highlight those facial regions contributing most to the similarity 
between probe and gallery images, while for the latter case the regions contributing to 
differentiate individuals should be highlighted. The key novelty of the proposed solution 
lies on the way attention maps regions for the probe-gallery pair are combined to create 
masks that allow evaluating those region’s impact on the ViT FV decision, and then to 
generate effective FV explainability heatmaps.  

This paper is structured as follows: Section 2 provides a brief overview of the state-of-the-
art on explainable FV. Section 3 presents the proposed FV explainability XFR post-hoc 
tool, exploiting the ViT attention maps to derive ViT FV explainability heatmaps. Section 
4 reports and discusses the results and findings obtained with the proposed XFR tool, 
comparing with state-of-the-art methods and highlighting the advantage of the proposed 
tool to also create explainability heatmaps for negative FV decisions. Section 5 presents 
final remarks and outlines future research directions. 
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2 Brief review on face verification explainability 

Explainability tools play a crucial role to provide insights on the inner working of FV 
models. While a few works propose XFR ante-hoc tools, i.e. intrinsically interpretable 
models that inherently provide transparency in the decision-making process 
[WBT22][JZ21], the main literature focus has been on XFR post-hoc tools. As discussed 
in the Introduction, post-hoc FV explainability tools (and FR tools) can be categorized as 
perturbation-based and propagation-based tools. Examples of the former include Local 
Interpretable Model-agnostic Explanations (LIME) [RSG16], Randomized Input 
Sampling for Explanation (RISE) [PDS18], AVG [MM22] and MinPlus [Me22]. These 
tools can be applied to any black-box model without changing the model architecture. 
LIME works by randomly selecting super-pixels and training a weighted model to 
determine their importance. RISE, MinPlus and AVG perturb different face regions to 
measure their effect on the model´s decision, thus creating a FV explainability heatmap. 

Propagation-based post-hoc tools based on the ViT offer a more direct way to understand 
the internal functioning of a ViT model, by leveraging its attention mechanism [CGW20]. 
Examples of such tools applied to ViT include Rollout [AZ20], Gradient-weighted Class 
Activation Mapping (Grad-CAM) [Se17], Layer-wise Relevance Propagation (LRP) 
[Bi16], and a ViT-LRP tool [CGW20] which provide insights into the probe regions that 
are essential to its embedding representation. Rollout uses the attention matrices computed 
for the various attention layers to generate an attention map. These attention matrices 
represent the learned attention weights that capture the relationships between the different 
patches within the probe face image and are used to derive an attention map, visually 
representing the importance of each patch. Grad-CAM uses the attention matrices and 
combines them based on their gradients with respect to the output class to generate an 
attention map. ViT-LRP adapts LRP to the ViT architecture, propagating the output class 
relevance scores to the attention matrices of the various attention layers, enabling the 
identification of the most important probe patches for the obtained embedding 
representation. Unlike perturbation-based tools, propagation-based ViT tools do not 
directly provide FV explainability heatmaps, but rather attention maps that highlight 
important regions in the context of image classification.   

3 Proposed face verification explainability tool 

This section proposes a novel FV explainability heatmap generation tool that provides 
insights into the decision-making process by highlighting the regions that contribute the 
most to a positive or a negative FV decision. The architecture for the proposed FV 
explainability tool is depicted in Fig. 1, and its key modules to explain both types of FV 
decisions are detailed in the following. 
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3.1 Architecture and walkthrough 

The proposed explainability tool complements a Face Verification Pipeline using a ViT 
model to perform feature extraction and produce embeddings describing the input probe 
and gallery images, see overall architecture in Fig. 1. The Attention Map Generation 
module creates attention maps for the probe (P) and gallery (G) face images using a ViT 
propagation-based post-hoc tool. These classification-focused attention maps capture the 
regions that most influence the embedding representation of each input image, probe and 
gallery. Following the methodology outlined in [ZD21a], the Face Verification Decision 
is based on the distance, 𝑑, between the embeddings computed for the probe and gallery 
images using the square Frobenius norm,  𝑑 = ‖ 𝑒𝑃 − 𝑒𝐺  ‖𝐹

2 , where {𝑒𝑃, 𝑒𝐺}∈ ℝn are the 
probe and gallery embeddings, respectively. If this distance exceeds the decision 
threshold, a negative FV decision is taken. To find the optimal threshold, cross-validation 
is performed on the FV dataset, following the same methodology used by [ZD21a]. 

 
Fig. 1 Proposed face verification explainability architecture 

The proposed Face Verification Heatmap Generation Pipeline starts with an Attention 
Map Thresholding module, applying Otsu thresholding [Ot79] to obtain a binary 
thresholded version of the ViT attention map, highlighting the most salient areas. Then, 
based on the FV decision, a different strategy for Mask Creation is adopted, as detailed in 
Section 3.2. The goal is to determine which input face areas are more relevant for the FV 
decision. While several masking techniques are discussed, the Mask Selection module 
selects the mask considered as most impactful for the FV decision. This involves feeding 
new pairs of images, obtained by applying the created masks to the probe and gallery face 
images, to the Face Verification Pipeline, and checking how the distance between the 
original and new embeddings changes. A selection metric is proposed to assess the impact 
of each candidate masking technique and guide the selection of the best mask creation 
technique. Finally, the Explainability Heatmap Creation module creates the FV 
explainability heatmap by considering the selected masking technique and the original 
probe and gallery attention maps. To get smoother heatmaps, they are filtered, applying 
an 8×8 dilation followed by a Gaussian filter of size 56×56 and 6.6 variance. Finally, for 
visualization purposes, the heatmap (with the warmer colours representing the more 
important regions) is overlaid with the probe face image luminance. 
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3.2 Positive decision explainability heatmap generation 

The proposed FV explainability heatmap generation tool for positive verification decisions 
takes as input the probe and gallery face images and performs four main steps: (i) attention 
map thresholding; (ii) mask creation, where several alternative solutions are considered; 
(iii) mask selection; and (iv) explainability heatmap creation. The Attention Map 
Thresholding module converts the attention maps created by the ViT propagation-based 
tool into a binary mask as described above. Mask creation considers alternative masking 
techniques for creating two image pairs, PP – positive probe, and PG – positive gallery, to 
be submitted to the FV pipeline as part of the Mask Selection module. The PP image pair 
includes the probe face image and a masked version of the gallery face image while the 
PG pair includes the gallery face image and a masked version of the probe face image, see 
Fig. 1. By excluding the regions identified as important in the corresponding attention 
maps, it is expected that the similarity of the new PP and PG pairs will decrease regarding 
the original probe and gallery face images. Two masking techniques are proposed for the 
positive FV case:  

• Only Intersection Masking (OIM)  – The thresholded attention maps computed in 
the Attention Map Thresholding module for both input images are combined to create 
a single mask, corresponding to the intersection of both the probe and gallery 
thresholded attention masks, thus including only the regions highlighted as important 
in both the probe and gallery thresholded attention maps.  

• Unified Masking (UM) – The thresholded attention maps computed within the 
Attention Map Thresholding module for both input images are combined to create a 
single mask, corresponding to the union of both the probe and gallery thresholded 
attention masks, thus including the important regions from both face images.  

For each masking technique, the generated mask is applied to both the probe and gallery 
images and the percentage of removed area is denoted as RA. The Mask selection module 
takes the PP and PG pairs generated with each mask creation technique and feeds them to 
the Face Verification Pipeline. The distances between the corresponding embeddings, dPG 
and dPP , against the original FV embeddings distance, 𝑑, are then computed; since the 
areas identified as important in the attention maps were excluded, the distance between 
embeddings is expected to increase. The selection metric used to evaluate the effectiveness 
of the mask creation techniques considers: (i) the variation of the distance between the 
embeddings prior and after the masking, which is related to the relevance of the removed 
areas; and (ii) the size of the removed areas, to ensure that techniques masking out larger 
image areas do not receive an unfair advantage, as larger masked areas tend to result in a 
larger increase in the embeddings distance. The proposed selection metric for positive FV 
decision cases (SM+) is computed as: 

where dPG = ‖ 𝑒𝐺 − 𝑒𝑀𝑃  ‖𝐹
2  and dPP = ‖ 𝑒𝑃 − 𝑒𝑀𝐺  ‖𝐹

2  correspond to the distance between 

SM+ = ((dPG - 𝑑 )/ 𝑑 ) / 2RA  + ((dPP - 𝑑 )/ 𝑑 ) / 2RA ,                (1) 
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embeddings for the PG and PP image pairs, and 𝑒𝑀𝑃 and 𝑒𝑀𝐺 correspond to the 
embeddings resulting from the ViT model module after masking the probe (P) and gallery 
(G) images, respectively. The best mask creation strategy is the one leading to a larger 
SM+ value, as this metric captures the contribution of the masked areas to the FV decision. 
Finally, the Explainability Heatmap Creation module considers the areas of the selected 
mask as those contributing the most to explain the FV decision. The FV explainability 
heatmap values are obtained from the original attention maps for the selected area. The 
OIM heatmap considers only the regions common to both attention maps and, as such, it 
is generated by computing the average values of the attention maps for these shared 
regions. The UM heatmap follows the same approach, except when only one attention map 
contributes to a part of the UM mask, in which case its value is directly used. Finally, the 
filtering process described in Section 3.1 is applied.  

3.3 Negative decision explainability heatmap generation 

The proposed explainability heatmap generation tool for negative FV decisions differs 
from the positive case on the mask creation process and the selection metric. Mask 
creation aims to create one image pair, NPG – negative probe and gallery, to be fed to the 
Face Verification Pipeline as part of the Mask Selection module, consisting of masked 
versions of both the probe and gallery face images. The masking techniques aim at 
removing the regions that contribute to the differentiation between individuals and, by 
doing so, it is expected that the similarity of the new NPG pairs will increase regarding 
the original probe-gallery similarity. In addition to the masking techniques proposed in 
Section 3.2 (OIM and UM), the Non-Intersecting Unified Masking (N-IUM) technique 
combines the thresholded attention maps for the probe and gallery face images to form a 
single mask, including the union minus the intersection of both masks, to keep regions that 
are considered important in only one of the attention maps.  

The Mask Selection module feeds the NPG image pair to the Face Verification Pipeline 
and computes the dNGP distance between the new embeddings, comparing it against the 
original FV embeddings distance, d. By masking out areas identified as important in the 
attention maps, a smaller distance between embeddings is expected. For the negative FV 
decisions, the proposed mask technique selection metric (SM-) is: 

where dNGP= ‖ 𝑒𝑀𝐺 − 𝑒𝑀𝑃  ‖𝐹
2  is the squared Frobenius norm distance between 𝑒𝑀𝑃 and  

𝑒𝑀𝐺, which correspond to the embeddings resulting from the ViT model module after 
masking the probe (P) and gallery (G) images, respectively. The best mask creation 
technique produces the larger SM- value, corresponding to a larger impact on the FV 
decision with a larger reduction of the dNGP value weighted by RA. The Explainability 
Heatmap Creation process is completed with the same filtering described in Section 3.1.  

SM-= (( 𝑑 - dNGP )/ 𝑑 )/RA,                 (2) 
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4 Results and discussion 

The ViT code available from [CGW20] was used in this paper for training and testing the 
ViT model as specified in [ZD21a]. Training used the large-scale database MS-Celeb-1M 
[Gu16], which contains 5.3 million images of 93,431 celebrities, with the CosFace loss 
function [Wa18]. For evaluation purposes, several FR datasets were used, notably LFW 
[Hu07], Similar-looking LFW (SLLFW) [De16], Cross-Age LFW (CALFW) [ZDH17], 
Cross-Pose LFW (CPLFW) [ZD18] and Transferable Adversarial LFW (TALFW) 
[ZD21b]. The LFW dataset is split into 10 subsets of image pairs, each with 300 positive 
and 300 negative pairs; the LFW variants allow testing in more challenging scenarios.  

Masking technique selection 

The performance of the various proposed masking techniques when integrated in the 
proposed FV explainability heatmap generation tool is evaluated by calculating the 
average value of SM+ for each masking technique (OIM, UM) across the positive decision 
probe-gallery pairs for each dataset, and the average value of SM- for each masking 
technique (OIM, UM, N-IUM) for the negative decision probe-gallery pairs for each 
dataset. A summary of the results obtained is included in Tab. 1. ViT-LRP [CGW20] is 
used to generate the attention maps, and all FV pairs of each dataset are considered.  

Tab. 1 Masking techniques evaluation results for positive and negative face verification decisions. 

FV decision Masking 
technique 

LFW TALFW CALFW SLLFW CPLFW 

Positive  OIM 10.00 5.93 4.97 9.72 3.89 
UM 4.80 2.82 2.59 5.1 1.49 

Negative  OIM 1.84 2.01 2.40 2.84 2.62 
UM 1.56 1.52 1.69 1.95 1.39 
N-IUM 1.70 1.61 1.82 2.13 1.48 

 
The results in Tab. 1 show that, the OIM masks perform the best in capturing the important 
features for explaining both positive and negative decisions. For the alternative ViT 
attention map generation tools, notably No-Grad ViT-LRP [CGW20] (a variant of ViT-
LRP not integrating gradient information from the attention matrices) and Rollout [AZ20], 
they both provide consistent results with the ViT-LRP results reported in Table 1 in terms 
of the best mask creation techniques. In this context, the Mask Selection module in the 
pipeline may not be necessary, as the results clearly indicate that OIM is the most effective 
masking technique for both types of FV decision. Therefore, to provide an explanation for 
a FV decision, No-Grad ViT-LRP OIM, ViT-LRP OIM or Rollout OIM should be used. 
 
Evaluation of face verification explainability heatmaps 

To evaluate the FV explainability heatmaps generated by the proposed explainability tool 
against the state-of-the-art, a set of perturbation tests were conducted by progressively 
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masking the probe pixels in descending relevance order, in line with the approach from 
[CGW20]. Tests were applied to 1000 LFW true positive pairs, as the state-of-the-art 
explainability tools only explain positive decisions. Using No-Grad ViT-LRP, ViT-LRP 
and Rollout in the Attention Map Generation module and the OIM masking technique, 
these are compared against the MinPlus, LIME and RISE benchmarks, using Recall as the 
evaluation metric - see Fig. 2 (left). The tool leading to a faster decrease in Recall is 
considered the most effective. For negative decisions, only the proposed explainability 
tool is evaluated as MinPlus, LIME and RISE focus only on similar regions to explain 
positive decisions. Tests were performed for 1000 LFW true negative pairs, with both the 
probe and gallery images being progressively masked based on their respective FV 
explainability heatmaps; here, the True Negative Rate (TNR) metric was used for 
evaluation. By gradually masking regions that contribute to distinguishing individuals, the 
expectation is that TNR decreases and the tool leading to a faster decrease will be the most 
effective, see Fig. 2 (right). 

 

Fig. 2 Post-hoc tools evaluation: left) Recall evaluation; right) TNR evaluation 

The Recall results in Fig. 2 show that the proposed No-Grad ViT-LRP OIM tool achieves 
the best explainability performance for the positive FV decisions along with MinPlus. For 
negative decisions, the TNR results show that the proposed No-Grad ViT-LRP OIM tool 
also performs the best. In summary, the proposed No-Grad ViT-LRP OIM tool allows 
generating effective explainability heatmaps for both positive and negative decisions, a 
major advantage over perturbation-based tools. Fig. 3 includes a few examples of FV 
explainability heatmaps for both types of FV decisions.  

 
Fig. 3 Face verification explainability heatmap examples 
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5 Conclusions and future work 

This paper proposes a novel ViT post-hoc FV explainability tool based on heatmaps, 
achieving comparable performance to perturbation-based tools for positive decisions. The 
best solution uses the original attention maps generated by No-Grad ViT-LRP [CGW20] 
and the OIM masking technique. A key advantage of the proposed propagation-based 
approach regarding the perturbation-based explainability tools is its ability to effectively 
explain both positive and negative FV decisions. As future work, the goal is to further 
leverage the ViT attention mechanisms to create a FV ante-hoc tool. 
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Comparison of two architectures for text-independent
verification after character-unaware text segmentation

Maria De Marsico 1 Mohammadreza Shabani2

Abstract: This paper compares the performance of two popular CNN architectures, ResNet-50
and MobileNetV2, fine-tuned for text-independent writer verification. The used benchmark is IAM
dataset. The further contributions are an easy and fast sub-region cropping for robust model training,
and a biometrics-oriented performance evaluation. The preliminary results are encouraging.

Keywords: Text-independent writer verification, ResNet-50, MobileNetV2

1 Introduction

Automatic handwriting recognition and writer verification/identification have attracted
great interest due to their practical applications. The former supports antique document
digital transcription, preservation, and literary analysis. The latter is rather suited for au-
thentication, security, and forensic analysis. The possibly overlapping used features achieve
different goals, as in speech vs speaker recognition. Handwriting style is a challenging be-
havioral biometric trait due to the high variability in individual writing, especially across
time. Real-time online recognition also exploits dynamic features. Offline recognition only
exploits the graphical sign once the text is complete, through the extraction of visual-
spatial features. Writer recognition can be either text-dependent or text-independent. The
former exploits stored prototypes of text written by the subjects to recognize. A prototype
is represented in many cases by the signature and must be repeated and compared with
the reference template during recognition. We tackle offline text-independent verification.
Compared to signature verification, it is more challenging since it encompasses a broader
scope and covers identity verification through all forms of handwritten text.
Traditional approaches to handwritten text and writer recognition have relied on manual
feature extraction [WTB14, Ni15, Ra08]. The advent of deep learning algorithms also in-
fluences this field. This work compares the performance of fine-tuning of two pre-trained
architectures, namely ResNet-50 and MobileNetV2, for writer recognition. The contribu-
tions of this work can be summarized as follows:
- most literature works propose ad-hoc architectures; this work explores the use of pre-
trained CNNs with some fine-tuning after data augmentation;
- pre-processing and sample segmentation are generally based on character- or line-based
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2 Sapienza University of Rome, Department of Computer Science, Via Salaria 113, 00198 - Rome, Italy, sha-
bani.1966731@studenti.uniroma1.it

228



Maria De Marsico and Mohammadreza Shabani

constraints; in this work segmentation constraints are completely relaxed; the clear advan-
tage of the paper is that the analysis is not restricted to a specific line, but can be any part
of the written sheet of paper, including multiple lines;
- the machine learning-oriented performance measure via overall accuracy in a closed set-
ting using a softmax layer is well suited for generic recognition/classification tasks and
comparable with Rank-1 identification rate; this work adopts standard biometric evalua-
tion metrics for verification; three related aspects are especially relevant: 1) the use of data
from different sessions for training and testing, to evaluate the system in a real-world sce-
nario where the collection of reference data is separated in time from probe submission; 2)
the preliminary evaluation of the performance when handling unseen data, meaning that,
in the testing phase, the templates to compare, both in the system gallery and in the probe
set, are represented by the model-computed embeddings, which can be obtained also for
subjects not included in the training set; 3) the ability to perform a thorough analysis of
operation thresholds to better support both authentication tasks and forensic verification;
- experiments exploited different distance/similarity measures to further assess the gener-
alizability of the approach and the robustness of obtained embeddings.

2 Related work

Several available surveys deal with off-line text-independent writer recognition, e.g., [XLW17];
languages with different writing characteristics, i.e., Arabic, Chinese, and English are con-
sidered in [TSR17]; [Di19] is a review on signature verification; a more general survey can
be found, e.g., in [RNR19]. We only mention here some recent works dealing with text-
independent handwriting that lend themselves to some comparison with our approach.
The paper [Ch19] compares approaches based on hand-crafted features derived from Lo-
cal Binary Patterns (LBP), Local Ternary Patterns (LTP), and Local Phase Quantization
(LPQ); these are applied to connected components in a sample document used for writer
identification. A simple nearest neighbor classifier (1-NN) with Hamming distance mea-
sure is trained to identify the writer according to the similarity of written documents. The
writer of the probe sample is recognized via the most similar sample in the gallery. In the
experiments on IAM dataset (the same used here), a maximum of 14 randomly-selected
text line images is used per writer. A random selection of 60% of the text line images
makes the training set while 40% is used as the testing set. It is not clear how often the
text lines for training and testing come from the same samples, being acquired in the same
lapse of time. This overlooks the fact that handwriting is a behavioral trait affected by even
small time differences. The identification seems closed set, with no dissimilarity threshold
for the recognition. Therefore, the unseen data could not be correctly classified.
The CNN used in [Ng19] is first trained to extract local features, from both the whole
square regions containing generally isolated character images and their sub-regions. Ran-
domly sampled tuples of images are used to train to aggregate the extracted local features
of tuple images to form global features. The strategy is applied to both Japanese Kanji
handwriting and to text lines in IAM dataset. Since IAM dataset contains a strongly un-
balanced set of pages per user, the authors divide the pages for the writers with only one
page into two halves (the first for training/validation and the second for testing). Regarding
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the writers with two or more pages, only one page is used for training/validation and one
page for testing. Hence, 350 writers have a half page and 300 writers have one page for
training. Some imbalance remains, with the already mentioned additional issue that more
than half of subjects’ training and testing samples come from the same document, i.e., they
are acquired in the same time. A final softmax layer returns the identity prediction.
The paper [JJ20] adopts an extended version of ResNet-50 joining deep residual networks
and a traditional handwriting descriptor. The authors exploit text cropping, but, differently
from our proposal (see Section 3.2), it is based on text lines, i.e., the extracted patches are
almost equal or less than a word. In the approach proposed in our paper, cropping is based
on rectangular areas possibly spanning more lines, therefore taking also into account both
horizontal and vertical co-articulation of the written sign, without any further constraint.
Further differences are related to the splitting in training and testing sets of IAM dataset.
The authors of [JJ20] divide all text lines into two subsets and then extract 1500 training
patches from the first subset and 300 test patches from the second subset per writer. This
seems to cause a number of patches per writer in the training and testing sets to possibly
come from the same document. For this reason, it is possible to draw similar considerations
as for [Ng19]. Performance is measured in terms of accuracy using a softmax layer.

3 Experimental setup

We re-trained MobileNetV2 [Sa18] and ResNet-50 [He16]. They represent two different
classes of CNNs. They support different uses with different accuracy. ResNet-50 obtains
the best performance, but the lighter MobileNetV2 lends itself to mobile applications. We
used the pre-trained models from Keras API 3. A novel unconstrained segmentation of
written forms is applied to IAM dataset (Section 3.1) to obtain the exploited samples for
fine-tuning and testing (Section 3.2), and three different data augmentation strategies were
investigated for more robust models (Section 3.3). For each round of experiments, each
architecture includes a softmax layer to readily compare the classification with the ground
truth. After building the model, differently from the works mentioned in Section 2, we drop
the softmax layer to extract the embeddings, and then use them as templates in all possible
biometric mated and non-mated comparison trials. The compared samples never come
from training forms. The performance achieved with different similarity/distance measures
assesses the robustness of the extracted embeddings. A following round of experiments
(Section 3.2) adopts a train/test partition where some users only appear in the test set, to
test the generalizability of results useful for real-world applications.

3.1 The dataset

This work exploited the IAM Handwriting Database 4, which contains forms of uncon-
strained handwritten English text from 657 writers. The forms were scanned at a resolu-
tion of 300dpi and saved as PNG images with 256 gray levels. Figure 1 shows a complete
3 https://keras.io/api/applications/
4 https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
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form with the speci®c writer’s ID and Name (the latter has been deleted for privacy is-
sues). The forms provided by each writer ranged from 1 page (350 writers) to 59 pages
(1 writer). This imbalance has been variously addressed in literature, as can be observed
from Section 2. Our strategy is discussed and compared in Section 3.2.

Fig. 1: A form from IAM handwriting database, its handwritten text, and the extracted edges.

The English text and the writer ID on top of the form are removed during pre-processing
(Figure1 - left) and the ID is stored as ground truth together with the pre-processed sam-
ple. All forms are provided as PNG ®les together with corresponding XML form label
®les. These include segmentation information and several estimated parameters that allow
extracting only the handwritten portion of the form (Figure 1 - center). The images are
captured in a different setting by each writer, so pre-processing also removes the noise and
variations in background illumination using a Gaussian blur ®lter. Finally, Canny Edge
Detector extracts only the edges from the handwriting (Figure 1 - right).

3.2 Splitting Data and Cropping Data

As a behavioral trait, handwriting can be affected by factors like hurry, mood, etc. Even
small time differences can be re¯ ected in variations of some features in the written text.
Therefore, we deem that using separate data but extracted from the same sample for both
training and testing, or for enrollment and probe, would achieve unrealistic results. We pre-
ferred to maintain the set of training and testing forms strictly separated. Unfortunately,
this caused leaving out the 350 subjects with a single form, because there would be a com-
plete lack of the time-related variations observed in normal writers. For the same reason, it
is not even feasible to use these subjects during testing by splitting the single form into ref-
erence/gallery sample and probe sample. The results would be probably better but would
not generalize to a real application. The experiments presented here adopted two different
strategies to split the data into training and testing sets, still aiming to preserve the balance
in the training data for different users. We will indicate them as strategy A and strategy B.
In the ®rst strategy A, the training set and the test set contain the same 31 subjects, selected
as all those having at least 9 forms split in training and testing. The compared templates are
the embeddings computed by the trained model. It is worth underlining the difference with
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the strategies of works discussed in Section 2. The test set contains four forms per writer.
The others are used for training. To prevent inter-subjects unbalance, only the minimum
possible number of forms for training is considered, which is five forms. Differently from
other works in literature, we do not segment the text neither into single characters nor into
words or lines. Rather, the cropped-edged images are further split into several images with
sizes of 500× 500. To increase the size of the training set, a little overlap is allowed be-
tween the cropped training images, using a specific threshold: for each form in the training
set, the edged image is cropped into eight different smaller images. In contrast, overlap is
not allowed for test forms, that are cropped into just three different smaller images (Fig-
ure 2). The obtained smaller images are used as either training or testing samples. The
adopted segmentation entails faster processing and further allows exploiting both horizon-
tal and vertical co-articulation characteristics of the written sign. In real applications it is
possible to classify any part of a written sheet of paper, including multiple lines. Overall,

Fig. 2: Samples of Cropped Images

the training set contains 1240 samples of 31 different writers, while the testing set con-
tains 372 samples (Table 1 - about 77% samples for training and the rest for testing). More
samples come from the random on-the-fly augmentation process (Section 3.3).
Experiments with strategy B, all else being equal, aimed to a preliminary test of the gen-
eralizability of the obtained models: the training set contains samples from 25 subjects,
while all 31 subjects appear in the testing set. Also in this case the compared templates
are the embeddings computed by the trained model, to which we also submit the samples
of the 6 subjects not previously seen during the training. These 6 subjects can only be in-
cluded in the probe set as impostors, or also be included in the system gallery as legitimate
users. Therefore strategy B does neither simply nor necessarily cause an increase of im-
postors but is rather useful to evaluate the ability to classify possibly unseen yet legitimate
data without re-training the system. On the other hand, subject splitting between training
and testing is hardly feasible, due to the huge inbalance in available data and the possible
overfitting effect. To the best of our knowledge, no previous work has explored this issue.

3.3 Data Augmentation

Data augmentation plays a vital role in preventing overfitting in neural networks by en-
suring that the model does not rely too heavily on any specific features and has more data
to learn from. Ultimately, the primary objective of data augmentation is to increase the
generalizability of the model, enhancing its ability to perform well on new, unseen data.
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Dataset #ID Forms per ID Cropped Samples Total

A Train 31 5 8 (overlap) 1240
Test 31 4 3 (no overlap) 372

B Train 25 5 8 (overlap) 1000
Test 31 4 3 (no overlap) 372

Tab. 1: Summary of used data with the two data splitting strategies

Data augmentation was applied in turn according to three different approaches using Keras
Image Generator 5: 1) no augmentation; 2) augmentation by rotation; 3) augmentation by
rotation, shift, brightness, zooming, and re-scaling. Of course, being the samples made of
pieces of text, not all kinds of augmentation are suitable. In addition, each transformation
can be specified with a range and a degree of randomness. A comparison among the three
approaches demonstrated that the models trained with the randomly transformed batch
of images after the richer set of augmentation operations provide the best performance.
Therefore, for the sake of space and clarity, we report only the related results.

4 Experimental results

In biometric verification, the prevailing direction of errors (either type-I or type-II) is crit-
ical. The accuracy obtained by a softmax layer does not account for this aspect. We rather
compare the embeddings returned by the trained models. This also allows testing veri-
fication on unseen data. The experiments further compute the performance of different
distance/similarity measures: Euclidean, Mahalanobis, and Manhattan distances, and cor-
relation and cosine similarity. For the sake of space, the reported results only refer to
correlation and cosine similarity that provided the best results. However, the performance
differences are almost generally negligible, thus testifying to the robustness of the obtained
embeddings across different comparison measures. The used performance measures are:
1) the mean and standard deviation (std) of the genuine score distribution (GMEAN and
GSTD) account for its quality; the lower the std, the better concentrated the distribution;
2) the same values for the impostor score distribution (IMEAN and ISTD) suggest the
separation from the previous one; the lower the std and the farther the mean values, the
better; 3) the Area Under Curve (AUC) for the ROC; 4) the equal error rate (EER) is the
equilibrium point between False Match Rate (FMR) and False Non Match Rate (FNMR).
5) ZeroFMR, FMR1000, and FMR100, i.e., FNMR when FMR=0, FMR=0.001, and FMR=0.01.

Results with MobileNetV2 Architecture Table 2 summarizes the results for MobileNetV2.
The correlation appears to be the best comparison method. Genuine and impostor score
distributions are quite well separated also passing from training strategy A to B (see upper
row of Figure 3). This seems to testify that fine-tuned MobileNetV2, though with lower

5 https://www.tensorflow.org/api docs/python/tf/keras/preprocessing/
image/ImageDataGenerator
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performance than ResNet-50 (see below), generalizes quite well on unseen data. ROC
comparison confirms the stable behavior of the fine-tuned model.

Similarity GMEAN GSTD IMEAN ISTD AUC EER ZeroFMR FMR1000 FMR100

A correl. 0.93 0.04 0.59 0.20 0.98 0.07 0.98 0.75 0.39
cosine 0.95 0.02 0.74 0.13 0.98 0.07 0.98 0.75 0.40

B correl. 0.93 0.03 0.62 0.19 0.98 0.068 0.96 0.77 0.40
cosine 0.96 0.02 0.75 0.13 0.98 0.07 0.97 0.78 0.40

Tab. 2: Results by MobileNetV2: training strategy A or B with correlation or cosine similarity

Fig. 3: Upper row: Score distributions for MobileNetV2 using training strategy A (left) or B (right).
Bottom row: ROC curve for MobileNetV2 using training strategy A (left) or B (right)

Results with ResNet-50 Architecture The best results with ResNet-50 are summarized in
Table 3. Further details can be discussed regarding correlation, which is the best compar-

Similarity GMEAN GSTD IMEAN ISTD AUC EER ZeroFMR FMR1000 FMR100

A correl. 0.92 0.05 0.46 0.18 0.99 0.03 0.71 0.33 0.09
cosine 0.95 0.03 0.63 0.13 0.99 0.03 0.71 0.34 0.09

B correl. 0.92 0.04 0.48 0.20 0.99 0.04 0.90 0.61 0.20
cosine 0.95 0.03 0.66 0.13 0.99 0.04 0.89 0.61 0.20

Tab. 3: Results by ResNet-50: training strategy A or B with correlation or cosine similarity

ison strategy. It is interesting to notice (Figure 4 - top) that passing from training strategy
A to B the genuine and impostor score distributions remain quite well separated, with the
genuine one being narrow and concentrated on the highest similarity values. This seems to
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Fig. 4: Upper row: Score distributions for ResNet-50 using training strategy A (left) or B (right).
Bottom row: ROC curve for ResNet-50 using training strategy A (left) or B (right)

testify also for this model the quite good generalizability on unseen data. The same con-
siderations stem from ROC curves (Figure 4 - bottom).

Final observations. The different evaluation protocols make the comparison with the men-
tioned papers impossible. However, it is worth reporting the results obtained with softmax
with our partition of the suitable testing data. In contrast with those reported above, Mo-
bileNetV2 achieves 86.83% accuracy, while ResNet-50 achieves a much lower 61.02%.
This seems to confirm that biometric tasks call for biometric performance measures.

5 Conclusions

This preliminary study aimed at evaluating the possibility of fine-tuning pre-trained CNNs
for offline text-independent writer verification on IAM dataset. The experiments relied on
MobileNetV2, producing less accurate embeddings but best suited for mobile applications,
and ResNet-50. More distance/similarity measures allowed for checking the robustness of
the extracted embeddings, which were also applied in a preliminary study involving some
unseen data. The results seem to testify that it is worth continuing along this line, despite
the different outcomes of accuracy measure vs. biometric evaluation. Future work includes
testing the approach on different languages (e.g., Arabic and Kanji) and more unseen data.
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Impact of Image Context for Single Deep Learning Face
Morphing Attack Detection

Joana Alves Pimenta1, Iurii Medvedev2, Nuno Gonçalves3

Abstract: The increase in security concerns due to technological advancements has led to the pop-
ularity of biometric approaches that utilize physiological or behavioral characteristics for enhanced
recognition. Face recognition systems (FRSs) have become prevalent, but they are still vulnerable
to image manipulation techniques such as face morphing attacks. This study investigates the impact
of the alignment settings of input images on deep learning face morphing detection performance.
We analyze the interconnections between the face contour and image context and suggest optimal
alignment conditions for face morphing detection.

Keywords: Face morphing detection; face recognition, deep learning; convolutional neural net-
works; classification.

1 Introduction
The expansion of technological advancements in modern society has led to an increase
in security concerns. Traditional identification methods have become less reliable due to
their vulnerability to forgetfulness, loss, replication, or theft, thereby compromising their
intended security function. As a solution to this issue, biometric approaches are gaining
popularity as they utilize physiological or behavioral characteristics to enhance the recog-
nition process. Face image modality took one of the most important roles in modern bio-
metric applications due to the simplicity of face image acquisition and recent advances in
computer vision techniques. This led to the widespread use of Face Recognition Systems
(FRSs) which utilize facial traits for the purpose of identification or verification [Li20].
Despite the fact that FRSs are currently used in various applications, they are still highly
vulnerable to attacks due to the extensive range of image manipulation techniques that can
be used to deceive the system.

One of the most important types of threats to FRSs is the face morphing attack. In this
attack, facial features from two or more images are merged to create a synthetic image
that incorporates features from both faces. The resulting image is similar to the images
that gave rise to it, which allows one person to impersonate another, thereby violating the
principle of self-ownership. That is why face morphing detection is a critical task in the era
of digital manipulation and deep learning techniques. However, the performance of face
morphing detection may depend on various factors, such as the alignment and preprocess-
ing of input images. Specifically, the face image alignment setting can impact the amount

1 University of Coimbra, Institute of Systems and Robotics - Coimbra, Portugal, joana.pimenta@isr.uc.pt
2 University of Coimbra, Institute of Systems and Robotics - Coimbra, Portugal, iurii.medvedev@isr.uc.pt
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of context included in the input image, which in turn can hypothetically affect the perfor-
mance of the detection algorithm. We conduct our research to define optimal alignment
settings for face morphing detection, exploring the possibility of using interconnections
between the face contour and image context to improve the performance of the detection
algorithm.

Essentially, our purpose is to investigate the relationship between image context and MAD,
with the aim of identifying the most effective context properties for detection. Throughout
this paper, the term ”image context” refers to the background and surrounding elements in
the image, i.e., the part of the image that does not contain the face.

As an additional contribution, we combined a dataset that adheres to the International Civil
Aviation Organization (ICAO) guidelines for detecting face morphing.

2 Related Work

Face Recognition. Current advances in face recognition methods use deep learning tech-
niques that employ deep neural networks, allowing the learning of deep facial features,
which have high discriminative power.

Face recognition deep networks are commonly trained using classification-based tasks,
employing softmax loss or its margin-based alternatives like ArcFace [De19]. The addition
of a margin to the softmax loss is crucial because it significantly improves the discrimina-
tive power of the learned features. More recently, there has been a focus on incorporating
adaptiveness into the margin based on the quality of the input image. For instance, Mag-
Face [Me21] optimizes the feature embedding using an adaptive margin and regularization
based on its magnitude. Another approach is AdaFace [KJL22], which proposes adapting
the margin function based on the norm of the feature embedding.

Face Morphing Generation. Face morphing can be performed using landmark-based or
deep learning-based approaches. Landmark-based methods employ a set of fiducial facial
points, which are detected on all contributing face images, to generate a morph image by
warping and bending procedures [FFM14].

Deep learning-based methods may employ encoder-decoder architectures, such as Gener-
ative Adversarial Networks (GANs) [Go14]. For example, the MorGAN [Da18] approach
aims to make the generated images look similar to the real images while also encouraging
the generators to produce diverse images that differ from each other. Karras et al. [KLA19]
proposed the StyleGAN approach, which can be used to generate high-quality morphs.

The MIPGAN [H.21] approach revisits the StyleGAN by introducing an end-to-end op-
timization approach with a novel loss function that emphasizes preserving the identity of
the generated morphed face images by incorporating identity priors. MorDIFF [Da23] pro-
poses the use of diffusion autoencoders to generate high-fidelity and smooth face morphing
attacks, which are highly vulnerable to state-of-the-art face recognition models. ReGen-
Morph [Da21] approach proposes to eliminate blending artifacts by combining image-level
morphing and GAN-based generation, resulting in visibly realistic morphed images with
high appearance quality.
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Face Morphing Detection. Morphing attack detection (MAD) methods can be classified
into two types, depending on the security application scenario: Single Morphing Attack
Detection (S-MAD) and Differential Morphing Attack Detection (D-MAD).

S-MAD refers to techniques that can detect a morphed image without comparing it to
an authentic reference image (non-reference). They are therefore based on the analysis of
visual artifacts or inconsistencies in the morphed image itself. Many approaches rely on the
analysis of handcrafted features like Binarized Statistical image features (BSIF) [RRB16],
Local Binary Pattern (LBP) [OPH96], Local Phase Quantization (LPQ) [OH08] image
descriptors, and Photo Response Non-Uniformity (PRNU) known as sensor noise [Sc19].

Recent works intensively uses deep learning for face morphing detection. OrthoMAD
approach [Ne] proposes to use a regularization term for the creation of two orthogonal
latent vectors that disentangle identity information from morphing attacks. MorDeephy
method [MSG23] introduced fused classification to generalize morphing detection to un-
seen attacks. The formulation will be followed in this work. Tapia et al. [TB21] proposed
a framework using few-shot learning with siamese networks and domain generalization.
The framework includes a triplet-semi-hard loss function and clustering to assign classes
to image samples. In this work, we focus only on the S-MAD case to perform the analysis
of image alignment settings.

3 Methodology
Source Data Curating. An initial challenge encountered in this research was the lack of
a suitably extensive dataset that conformed to ICAO compliance requirements. To address
this issue, we combined multiple datasets comprising compliant images, including both
publicly available and privately obtained data. When selecting the datasets, we prioritized
those that provided a larger number of images per identity and included the following ones:
FRGC [Ph05], XM2VTS [Me00], ND Twins [Ph11], FERET [Ph00, Ph98], AR [MB98],
PICS [Un99], FEI [Th06], IMMF [FS05] and GTDB [A.99]. Several selected components
were filtered to remove non-compliant images, i.e., non-frontal images or other images
not suitable for morphing. In the specific case of the ND twins dataset, only one twin
from the pair was included due to their striking resemblance, which will be confusing for
the methodology of this research. Our result dataset, which we call the ICMD dataset,
comprises over 50k images of more than 2.5k individuals.

Morph Image Generation. To accompany our training data with face morph samples, we
employed landmark-based and deep learning-based (specifically GAN-based) face morph-
ing approaches. These samples are generated using the originals from the ICMD dataset,
where pairing is performed following the [MSG23], to ensure unambiguous class labeling
in the fused classification task. Namely, the identity list of the dataset is randomly split
into two disjoint subsets attributed to the First and Second networks, and the pairing is
made between those subsets. In the end, we ensured a consistent classification classifica-
tion of morphed combinations by the networks. To generalize the detection performance
and reduce overfitting for artifact detection, we have included selfmorphs for both LDM
and StyleGAN approaches. Selfmorphs are generated using images of the same individual,
resulting in morphed images that continue to represent that same individual but contain
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merging artifacts of a different kind. As a result, considering selfmorphs as bona fide sam-
ples we can prioritize morphing detection based on the behavior of deep facial features.

Alignment settings Our search for the optimal amount of image context for morphing
detection is based on selecting several different alignment settings and running identical
experiments for each setting. The face alignment in academia is usually performed by
a rigid transformation, which minimizes the coordinate distance between the five facial
landmarks (detected by MTCNN [XZ17]) ({left eye}, {right eye}, {nose}, {left mouth
corner}, {right mouth corner}) and the definite target list of coordinates (for the resulting
image size of 112×112 - {{38.2, 41.7}, {73.5, 41.5}, {56.0, 61.7}, {41.5, 82.4}, {70.7,
82.2}}) [De19]. The particular list of settings that we used is based on the scaling of
this target set of coordinates. The Table 1 presents a schematic correspondence of each
alignment with the scale factor utilized, along with its respective indicative ratio of the
face’s occupancy area in the image. We estimate this face’s occupancy as the ratio of face
area (limited by a face contour detected using 68 landmarks [Ki09]) to the full image area.

Tab. 1: Summary table of all alignment conditions with their respective scale factors and ratios.

Alignments a b c d e f g h i j k
Scale Factor 1.65 1.40 1.10 1.00 0.90 0.85 0.80 0.75 0.70 0.65 0.60

Ratio 0.15 0.21 0.34 0.42 0.51 0.56 0.62 0.70 0.77 0.86 0.94

S-MAD - Fused Classification. In our work, we approach no-reference face morphing
detection in several ways. First, we follow the fused classification approach, where two
parallel networks were trained simultaneously. These networks were specifically designed
to acquire high-level features by performing classification tasks in order to generalize the
performance to unseen attacks [MSG23].

The overall pipeline schematic is presented in Fig.1. Each sample is assigned two class
labels: morphs inherit them from source identities; bona fides have a duplicated original
label. The classification task is made differently for each of the networks. First Network
labels them by the original identity from the first source image, and the Second Network
by the second original label. The main motivation is learning high-level identity discrim-
inative features, which can indicate the presence of face morphing. Such classification is
regulated by the explicit binary classification of a dot product of those resulting high-level
features.
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Fig. 1: S-MAD fused approach schematics. In order to simplify the visualization, a single image is
shown per batch.

240



Image Context in Face Morphing Detection

Mathematically, such a schematic is formulated as the weighted sum: L = α1L1 +α2L2 +
βL3, where L1 and L2 are face recognition components, and L3 is a morphing detection
component. Based on the common softmax formulation, each network is regularized by
the respective losses:

L1 =−
1
N

N

∑
i

log(
eẆ T

ẏi
ḟi+ḃẏi

∑C
j e ḟẏ j

), L2 =−
1
N

N

∑
i

log(
eẄ T

ÿi
f̈i+b̈ÿi

∑C
j e f̈ÿ j

), (1)

where fi are deep features of the ith sample, yi represents the class index of the ith sample,
and W and b denote the weights and biases of the last fully connected layer, respectively.
N represents the batch size, while C represents the total number of classes.

Finally, in order to determine the similarity metric based on the ground truth authenticity
label of the image, the morphing detection score is obtained by computing the dot product
of the backbone outputs ( ḟ · f̈ ). This score is then passed through the sigmoid function and
used to define the binary cross-entropy loss. As a final result, the corresponding loss is
defined by:

L3 =−
1
N

N

∑
i

t log
1

1+ e− f̈ · ḟ +(1− t) log
(

1− 1
1+ e− f̈ · ḟ

)
(2)

The optimization process involves combining the resulting losses as a weighted sum, re-
sulting in L, with the goal of minimizing it. This is done to learn facial features that are
discriminative and specifically regularized for the task of detecting morphing.

S-MAD - Binary Classification. Another approach for face morphing detection is indeed
similar to the straightforward binary classification (morph/non-morph). To implement it,
we removed the identity classification part from the fused approach and retained only a
single deep network in the entire pipeline. The model schema is presented in Fig.2.

Morphing

y=n00000002

y=n00000002

y=n00000005

Batch 1
(morph)

y=n00000022
y=n00000022

Batch 2
(bona)

.

..

 .

..

 Backbone Binary 
Cross- Entropy

Define Ground 
Truth Label

Feature 
Layer

 

Class 
Layer Alignment a

Alignment b

Alignment c

...
Alignment k

Alignment 
Settings

y=n00000005

.

..

L
f 

 w b

Fig. 2: S-MAD approach model schema for a single network. In order to simplify the visualization,
a single image is shown per batch.

Benchmarking. For performance estimation, we employ the open-source morphing bench-
marking utilities 4 and adopt them into our work. We replace the bona fide subset with the
images from FRLL-Set [DJ17], Utrecht [Un99], MIT-CBCL [He01] and EFIEP [Av19]
(since the default suggested protocols share images with our training data). All protocols

4 https://github.com/iurii-m/MorDeephy.git
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share the same list of bona fide images and are only different in the content of morphs,
which are taken from the FRLL-Morphs dataset [Sa22] (protocol names correspond to
the FRLL-Morph subset names): protocol-asml with ∼ 2k morphs, protocol-opencv with
∼ 1.3k morphs, protocol-facemorpher with ∼ 2k morphs, protocol-webmorph with ∼ 1k
morphs and protocol-stylegan with ∼ 2k morphs.

Heatmap Computation. We analyze the image context impact using the Gradient-Weighted
Class Activation Mapping (Grad-CAM) technique and generate a heatmap that highlights
the regions of the input image that have the most significant influence on the ground truth
binary prediction.

4 Experiments and Results
Training Settings. As a baseline model in our work, we use EfficientNetB3 [TL19], which
is pretrained on the ImageNet dataset. We trained our models for five epochs using a
stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a learning rate
linearly decaying from 0.075 to 1e-5 . The batch included 28 images. Separate training ex-
periments are performed for each alignment case on concatenated datasets: original, LDM,
StyleGAN morphs, and selfmorphs. Face morphs are generated with LDM and StyleGAN
approaches. The parameters for the fused approach, which determine the appropriate bal-
ance between the different components of the loss function, are taken from the original
work [MSG23]: α= α1= α2 and α/β=0.2.

Binary Classification. Based on the results presented in Table 2, the alignment range with
optimal performance is observed between e to g, with e being the possible optimal case.
Based on heatmaps, the face is the principal region for the detection decision, and the
regions, which are prompt to contain morphing artifacts, are mainly activated (see Fig. 3).

Tab. 2: BPCER@APCER = (0.1, 0.01) of our S-MAD binary approach for various alignment settings

Alignments
BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph
δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ =0.1 δ=0.01 δ=0.1 δ=0.01

a 0.199 0.622 0.125 0.558 0.199 0.663 0.663 0.663 0.523 0.663
b 0.143 0.380 0.131 0.387 0.144 0.440 0.586 0.586 0.340 0.586
c 0.365 0.630 0.331 0.675 0.320 0.676 0.676 0.676 0.489 0.676
d 0.236 0.511 0.161 0.549 0.161 0.489 0.623 0.623 0.436 0.623
e 0.141 0.348 0.102 0.532 0.080 0.424 0.710 0.710 0.321 0.641
f 0.199 0.455 0.127 0.551 0.125 0.533 0.675 0.675 0.328 0.579
g 0.158 0.373 0.106 0.532 0.209 0.532 0.586 0.586 0.348 0.586
h 0.330 0.580 0.138 0.682 0.093 0.486 0.724 0.724 0.486 0.724
i 0.214 0.408 0.174 0.476 0.149 0.442 0.573 0.573 0.396 0.573
j 0.221 0.465 0.187 0.596 0.141 0.457 0.776 0.776 0.475 0.682
k 0.243 0.498 0.194 0.557 0.146 0.513 0.794 0.794 0.467 0.707

a b c d e f g h i j k

Fig. 3: Grad-CAM morph heatmaps for the S-MAD binary approach under different alignment
conditions (Recall that bona fide sets are equal across all the protocols).
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Fused Classification. For this approach, the optimal range is observed at alignment set-
tings from d to i, with g being possibly the optimal case. At the same time, this method-
ology allows for superior results in comparison to the binary classification case, which
may be related to the regularization imposed by the face recognition task. Based on the

Tab. 3: BPCER@APCER = (0.1, 0.01) of S-MAD fused approach for various alignment settings

Alignments
BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph
δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ =0.1 δ=0.01 δ=0.1 δ=0.01

a 0.159 0.689 0.187 0.517 0.239 0.599 0.842 0.946 0.606 0.885
b 0.063 0.495 0.072 0.646 0.099 0.658 0.671 0.946 0.702 0.964
c 0.125 0.467 0.215 0.588 0.240 0.566 0.694 0.884 0.541 0.859
d 0.040 0.374 0.102 0.558 0.103 0.568 0.574 0.835 0.305 0.781
e 0.162 0.580 0.149 0.582 0.177 0.602 0.566 0.767 0.605 0.870
f 0.184 0.530 0.180 0.488 0.175 0.451 0.582 0.788 0.517 0.785
g 0.034 0.233 0.025 0.701 0.037 0.701 0.487 0.875 0.216 0.788
h 0.168 0.642 0.168 0.535 0.165 0.599 0.536 0.850 0.542 0.854
i 0.046 0.255 0.036 0.365 0.044 0.390 0.305 0.583 0.246 0.554
j 0.287 0.630 0.268 0.585 0.262 0.564 0.844 0.959 0.697 0.907
k 0.193 0.652 0.253 0.745 0.262 0.792 0.825 0.953 0.674 0.915

a b c d e f h i j kg

Fig. 4: Grad-CAM morph heatmaps for the S-MAD fused approach under different alignment con-
ditions (Recall that bona fide sets are equal across all the protocols).

heatmaps, the detection is mainly focused on the face region and, in many cases, on the
regions of intersection between the foreground and background (see Fig. 4).

NIST FRVT MORPH Results. We compare the results of our best model (visteamicao-
000) for fused case with several state-of-the-art (SOTA) MAD approaches, tested on the
FRVT NIST MORPH Benchmark [FR]. Each dataset from the benchmark has images
generated through different protocols, with distinctions made in tiers such as Tier 2 - Au-
tomated Morph Analysis and Tier 3 - High-Quality Morph Analysis.

Tab. 4: Comparison with the SOTA S-MAD approaches using APCER@BPCER = (0.1, 0.01).

Algorithm Visa-Border (Tier 2) Twente (Tier 2) Manual (Tier 3)
δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01

Our 0.089 0.291 0.032 0.128 0.802 0.975
Aghdaie et al. [Ag21] 0.037 0.542 0.002 0.060 0.879 0.975

Medvedev et al. [MSG23] 0.232 0.555 0.174 0.493 0.641 0.926
Ferrara et al. [FFM21] 0.477 0.999 0.002 0.183 0.938 0.985

Ramachandra et al. [Ra19] 0.375 0.990 0.304 0.998 0.938 0.985
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Fig. 5: Detection Error Trade-off curves for different SOTA approaches in different datasets
(Visa-Border, Twente and Manual dataset).

Regarding the Visa-Border dataset, our approach outperforms all other SOTA approaches,
with a morph miss rate of 0.29 at a false detection rate of 0.01. In the Twente dataset, when
comparing with other approaches, the results demonstrate a highly favorable outcome as
well, with a morph error rate of 0.128 at a false detection rate of 0.01 (See table 4). Al-
though not represented in the table, comparable results were achieved for other datasets,
such as the UNIBO Automatic Morphed Face Generation Tool v1.0 and even MIPGAN-II
with less dominant but still competitive performances. It is important to take into consider-
ation the in¯ uence of the dataset used, and this Tier 2 typology is generally less challeng-
ing. When faced with more realistic datasets (Manual dataset), it becomes apparent that
overall SOTA approaches show poor generalization across various unseen morphing tech-
niques. Even so, our model results achieved competitive results when compared to those
approaches.

5 Conclusions
In this work, we aim to identify the context properties that are most effective for S-MAD.
The extensive experiments allowed us to determine the alignment range where S-MAD
is more effective. Moreover, in this range, there seems to be a certain correspondence
between both fused and binary approaches, which translates into a similar area of face
occupancy in the image. Despite that, our results also show that face is the most domi-
nant activation region across all the alignment settings, and the impact of context on face
morphing detection is limited. Our method achieved state-of-the-art comparable perfor-
mances on some of the NIST FRVT MORPH benchmark protocols. Our future work will
be directed toward investigating similar properties in the differential scenario.
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Contactless Fingerprints: Differential Performance for 
Fingers of Varying Size and Ridge Density 

Carson King1, Evan Garrett2, Aeddon Berti3, Nasser Nasrabadi4 and Jeremy Dawson5 

Abstract: The match performance of contactless fingerprint probes compared to contact-based 
galleries has increased accuracy. This performance, along with convenience of use, is encouraging 
the utilization of contactless fingerprint collection methods. However, issues with differential 
performance for different demographics may still exist. Past works focused mainly on the 
interoperability of contactless prints with smartphone applications and kiosk devices. This paper 
focuses on the differential performance of genuine match scores based on the demographic of 
finger size, ridge density, and total ridge count. Distribution of genuine match scores shows a 
correlation between an increase in genuine match scores and these variables in contactless 
smartphone collection methods with the largest correlation appearing in finger size.  

Keywords: Fingerprint, Interoperability, Contact, Contactless, Finger Size, Ridge Density 

1 Introduction 

The advancement of camera capture quality for mobile devices has sparked interest in 
the use of these devices as contactless fingerprint capture tools. Smartphones allow for a 
portable and quick collection that is more accessible and convenient than traditional 
standalone sensors. Along with this newfound interest comes the set of challenges that 
are linked to the optimization and accuracy of contactless fingerprints compared to their 
contact counterparts. These contactless fingerprint tools typically generate a contact 
equivalent fingerprint, obtained from the fingerphoto, for subsequent matching attempts. 
Contactless fingerprint imaging systems have been found to have distortion and loss of 
information, image clarity, and greyscale variations, which tends to be an issue caused 
by the difference in lighting based on the collection location. Due to the limited amount 
of datasets available for contactless fingerprints, research has focused on the 
interoperability of contactless and ink or livescan contact-based fingerprints is limited 
[MP17]. Other works have reported challenges arising from low ridge/valley contrast, 
non-uniform illumination, perspective distortions from non-uniform collection distances, 
differences in the finger orientation, and lack of cross-compatibility when matching 
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against legacy datasets [Gr22]. The purpose of the study presented here is to evaluate the 
effects caused by finger size and ridge density in the interoperability of contact and 
contactless-based collection methods. Contributions in this paper are 1) an analysis of 
the correlation between finger size and ridge density in contactless fingerprint datasets, 
and 2) an analysis of the impact of finger size and ridge density on genuine match scores 
when matched against a contact dataset.  These results will lend critical insight into how 
finger scaling in collection apps can impact the performance of contactless fingerprints.  

There have been two main areas of research in the field of contactless fingerprint 
technology; differential performance and interoperability between contact and 
contactless images. The research field of contactless fingerprints has mainly been 
focused on interoperability since legacy contact-based datasets requiring this 
functionality. Beyond matching contactless probes to legacy contact galleries, 
demographic factors have also been explored to determine which variables can influence 
contactless match scores [Gr22, BND22]. These demographic factors were skin color, 
skin texture, keratin levels, pigmentation, temperature, elasticity, and finger minutiae. To 
date, no linear relationship between any of these demographics and match performance 
has been observed. However, there was a strong correlation between the image quality 
and match scores observed in [HE16]. Enhancement of fingerprint images has been a 
major area of study for both contact and contactless fingerprints because distortion 
generally causes high FNMR [MS16]. Enhancement techniques can be simple, such as 
removing noise from slap fingerprints to allow for accurate segmentation [RM11], to 
complex, such as using deep learning to unwarp contactless fingerprint images [Da19]. 
Finger size has been investigated with differing results. Previous research that 
investigated the influence of finger size on the interoperability of contactless fingerprints 
with the acquired match scores against contact-based devices found that there was a 
correlation between finger size and match scores with one of the matchers evaluated 
[Wi21]. However, the finger sizes were only separated into two distinct ranges, large or 
small, and it is difficult to determine the actual effect of finger size with only two 
subjective and qualitative size variables. This concept was examined in another study 
that compared fingerprints from smartphones to legacy slaps and found a TAR of 
95.79% and a FAR of 0.1% while the baseline using contact-based methods was a TAR 
of 98.55% with an equal FAR of 0.1% [De18]. An issue that could cause variation in 
match performance is finger orientation. One study observed variations of match scores 
based on finger orientation, with results indicating that pose correction caused a decrease 
in EER and a 9.93%, 10.20%, and 74.97% improvement in rank 1 accuracy from three 
respective databases [TK20]. Ridge density is the spacing of individual ridges in a 
fingerprint and is a unique trait that is commonly used for its uniqueness in anti-spoofing 
liveness detection [AS06]. Contactless fingerprints present a challenge when considering 
ridge density because of the curvature of the finger when taking the image leads to 
perspective distortion of the ridges on the periphery of the finger. A resolution of 500 ppi 
is the minimum sampling rate required, but this causes under-sampling of the edges, so 
the US National Institute of Standards and Technology (NIST) recommends a 700 ppi 
sampling rate to accurately capture the edges [Li18].  
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1.1 Dataset and Measurements 

The dataset that was utilized for this research6 consists of contact fingerprints, 
contactless fingerprints, and hand images. The devices used to collect this data were the 
Guardian and Kojak for contact fingerprints, Gemalto and Morpho Wave for contactless 
kiosk capture images, and two third-party apps, on the Android Galaxy S20 and Android 
Galaxy S21 for contactless fingerprints. A commercial digital camera was also used to 
capture hand geometry images. The largest demographics for these collections consisted 
of 20–29-year-old Caucasians. To ensure the uniformity of the measurements, a custom 
interface was created to measure the width of the first joint closest to each fingertip in 
the hand geometry images as a baseline finger size measurement (Fig. 1(a)). Finger size 
distribution is provided in Fig. 1(b), with most finger sizes being between 15 mm and 17 
mm in width. Finger size distributions are shown in Fig. 1.  

 
(a) 

 
(b) 

Fig 1. Finger Size Distribution Chart (a) and Finger Size Program Result in mm (b) 

Ridge density was determined in MATLAB by gathering datapoints using images that 
were collected with the contact-based Kojak device, since they were the baseline for 
generating match scores. The regionplots command was used with the centroids 
parameter to find the center of mass of each image. Multiple centroids were found and 
averaged to find the horizontal and vertical center of rows of the fingerprint image. 
Then, the edge detection was done using a Sobel filter with the edge function, an 
example of a centroid image and an edge-detected image are shown in Fig. 2(a) and Fig. 
2(b), respectively. Finally, the pixel values at the rows and columns were stored in arrays 
that were iterated to count the number of ridges in the image that were detected. Fifteen 
pixels were counted in both the positive and negative direction in both rows and columns 
to count the ridges. Once the ridges were accounted for, the individual arrays were 
divided by 2 since the edge detection method counted both the start of the ridge and 
where it ended. These values were averaged to get a ridge value for each fingerprint. For 
the ridge density calculation performed in this study, only horizontal ridges (with respect 
to the orientation of the fingers in the hand photos) were utilized, because the finger 
measurements were only the width of the finger. The flatter the participant’s finger was 

 
6 Dataset is available upon request. 
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on the capture platform resulted in more data being collected, increasing the ridge count 
number. This adds a third variable to be considered: ridge count in each individual 
capture. For this purpose, total ridges, regardless of direction and finger size, were 
counted to see the impact of total ridges on genuine match scores. The matcher utilized 
was the Innovatrics fingerprint matcher version 7.6.0.627, which is a consumer off the 
shelf system optimized for matching contactless fingerprints. 

 
(a) 

 
(b) 

Fig. 2: Uncropped Input Image with Centroids (a) & Sobel Edge Detected Fingerprint (b) 

2 Results 

Understanding the relation between fingerphoto ridge density and finger size is 
imperative to understanding the impact that they influence the genuine match scores. 
Ridge density was found for each finger by dividing the number of horizontal ridges by 
the size of the finger, with the resulting values ranging from 0.19 to 1.45 ridges/mm. 
Fingers were separated into 10 bins based on their ridge density value where each bin is 
0.05 ridges/mm in width. In this dataset, there does appear to be a correlation in the 
relationship between the two variables of finger size and ridge density. This relationship 
is a positive linear function, as the finger size increases the ridge density increases, with 
the difference in the average for the smallest finger size bin and the largest finger size 
bin being over 3 units of ridges per millimeter. The Kojak device fingerprints were used 
as the gallery and matched against the other devices to produce the match scores to 
associate with finger size and ridge density. The middle range of sizes do not appear to 
have a correlation between the finger size and match score, but there is a noticeable 
difference at both the lower end (13mm and 14mm) and upper end (19mm and 20mm) 
shown in Fig. 3. 

 
Fig. 3: Finger Size and Ridge Density Relationship 
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No statistically significant correlation between the three variables investigated and 
genuine match scores was observed in the baseline Guardian vs. Kojak matching 
experiment. The smallest finger size had a maximum genuine score below 700, but every 
size above this had genuine scores over 900, with similar results for all three variables, 
as shown in Fig. 4 and Fig. 5. This result is to be expected due to the maturity of contact-
based fingerprint collection and matching.   

 
(a) 

 
(b) 

 

Fig. 4: Genuine Score Against Finger Size (a) & Ridge Density (b) Contact-Based Guardian 

 

Fig. 5: Genuine Score Against Total Ridge Count Contact-Based Guardian 

For the contactless kiosk fingerprint images, there were varying results between the two 
devices. The median values were consistent for all three variables for the Gemalto 
device, but they had different maximum match scores, while the Morpho device had 
similar results to the contact-based method with no correlations observed between the 
genuine scores and any of the three variables. The fingerprints captured using 
smartphone apps produced results that displayed a correlation between finger size, ridge 
density, and genuine match scores. The results had variation based on which of the two 
applications were used. However, between the two models of cellular devices, there was 
little variation. Application A results were similar to the contactless Gemalto results for 
the finger size variable. As finger size increased, the median stayed consistent but the 
maximum score increased. The ridge density plots displayed no correlation between 
finger size and ridge density for the fingerprints that were captured with application A. 
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The ridge count plots had a variation in the smallest bin of ridge count between the two 
devices, which could be caused by a capture issue, such as finger orientation. 
Application B displayed the highest correlation between genuine scores, finger size, and 
ridge density. The results between each model of the cellular device had little variation, 
as observed in application A. Application B finger size and genuine score plots showed 
the most apparent correlation between finger size and genuine match scores. Genuine 
scores for fingers sizes between 13 mm and 16 mm had exceptionally low genuine match 
scores, but for 17 mm and up, the genuine match scores started to drastically increase 
with finger size. There seemed to be a correlation between ridge density and genuine 
match score. As ridge density increases there is a slight increase in genuine match scores 
averages. There was a significant quantity of outliers for the smaller ridge density bins. 
For ridge count, it appears that lower ridge counts were correlated with a higher average 
match score, but the middle range of ridge counts had many outliers that were above the 
average value. The results for each smartphone are displayed side by side for each 
variable and application in Fig. 6 through Fig. 11. 

 
(a) 

 
(b) 

 

Fig. 6: Genuine Score Against Finger Size App A S20 (a) & S21 (b) 

 
(a) 

 
(b) 

 

Fig. 7: Genuine Score Against Ridge Density App A S20 (a) & S21 (b) 
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(a) 

 
(b) 

 

Fig. 8: Genuine Score Against Total Ridge Count App A S20 (a) & S21 (b) 

 
(a) 

 
(b) 

 

Fig. 9: Genuine Score Against Finger Size App B S20 (a) & S21 (b) 

 
(a) 

 
(b) 

 

Fig. 10: Genuine Score Against Ridge Density App B S20 (a) & S21 (b) 
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(a) 

 
(b) 

 

Fig. 11: Genuine Score Against Total Ridge Count App B S20 (a) & S21 (b) 

3 Conclusion 

Ultimately, these results provide evidence that there is a correlation between finger size 
and match scores, specifically in contactless fingerprints compared to contact-based 
prints. It is difficult to accurately determine the total effect that they have on the match 
score due to the low number of data available at the smallest and largest bins present in 
the contactless dataset used for this study. The smallest finger size bins typically 
displayed comparatively low genuine scores, while the scores increased and stayed 
relatively consistent at sizes of 15 mm and up. The smallest finger sizes did have the 
most variation between the different devices, and further investigation is needed to 
determine the cause of this. In a similar fashion, ridge density showed the same trend as 
the finger size result with little to no correlation in each case except the cellular device 
fingerprint images. The total ridge count appeared to have little to no correlation across 
any device. The observation of fingerprints captured using smartphone apps resulted in 
the highest variability in results expected because this is the newest modality and has had 
little time for optimization and refinement. These results have major implications on 
how contactless fingerprint app developers scale finger images prior to image processing 
to produce a contact-equivalent image. To further this research, these experiments need 
to be performed on a larger dataset consisting of more variability in finger size, 
specifically containing exceptionally large and small fingers. The distribution of finger 
sizes will most likely retain the same distribution observed in this study based on the 
average finger sizes, but it is desirable to have more data to have a higher sample of the 
outliers in finger size.  
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Impact of Data Breadth and Depth on Performance of
Siamese Neural Network Model: Experiments with Two
Behavioral Biometric Datasets

Ahmed Anu Wahab1, Daqing Hou2

Abstract: Deep learning models, such as the Siamese Neural Networks (SNN), have shown great
potential in capturing the intricate patterns in behavioral data. However, the impact of dataset breadth
(i.e., the number of subjects) and depth (i.e., the amount of data per subject) on the performance of
these models remain unexplored. To this end, we have conducted extensive experiments using two
publicly available large datasets (Aalto and BrainRun), varying both the number of training subjects
and the number of samples per subject. Our results show that dataset depth plays a crucial role in
capturing more intricate variations specific to individual subjects, thereby positively influencing the
performance of the SNN models. On the other hand, increasing the dataset breadth enables the model
to effectively capture more inter-subject variability, which proved to be a more significant factor in
improving the overall model performance. Specifically, once a certain threshold for the number of
training subjects is surpassed, breadth starts to dominate performance and the impact of dataset
depth diminishes and disappears. These findings shed light on the importance of dataset breadth and
depth in training deep learning models for behavioral biometrics and provide valuable insights for
designing more effective authentication systems.

Keywords: Deep learning, Behavioral Biometrics, Siamese Neural Network, Dataset Breadth and
Depth.

1 Introduction
Behavioral biometrics is an emerging solution that leverages a user’s unique behavioral
patterns for identity verification. Key advantages of behavioral biometrics include passive-
ness, unobtrusiveness, and cost-effectiveness (requiring no additional hardware), making
it an attractive solution [WHS23]. Moreover, unlike other methods, behavioral biometrics
can continuously monitor a user’s behavioral patterns for anomalies and prevent account
takeovers beyond the login point, which is also known as continuous authentication.

Recent years has seen an increasing trend towards using deep learning models in behav-
ioral biometrics [HWD10, AJT20, DZ13]. However, binary classifiers are commonly used
in these work, where a model is required for each subject, making it difficult to scale. Other
issues include the need for a substantial volume of data per subject to train adequately, as
well as the necessity for retraining when new data is added to a subject.

The Siamese Neural Network (SNN) has been used to overcome these limitations for
keystroke dynamics [Ac21]. SNN, originally implemented for image classification and
person re-identification [Br93], is specifically designed for measuring the similarity be-
tween two or more inputs. It trains two or more identical sub-networks, each of which pro-
1 ECE, Clarkson University, Potsdam, NY, USA, wahabaa@clarkson.edu
2 ECE, Clarkson University, Potsdam, NY, USA, dhou@clarkson.edu
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Keystroke Dataset #Subjects Data per subject

CMU [KM09] 51 ‘.tie5Roanl’ 400 times
GreyC (A) [GEAR09] 133 ‘greyc laboratory’ 51 times
GreyC (B) [GEAR12] 83 132 samples
Clarkson I [Vu14] 39 43,066 keystrokes
Clarkson II [Mu17] 103 125,000 keystrokes
Buffalo [SCU16] 148 17,000 keystrokes
Account Recovery [Wa21] 44 11,218 keystrokes
Multi-Keyboard [Wa22a] 60 14,000 keystrokes
CU Multi-modality [Ra23] 88 8,782 keystrokes
Aalto Mobile [Pa19a] 37,370 15 sentences
Aalto Desktop [Dh18] 168,000 15 sentences

Tab. 1: Public keystroke datasets, with numbers of subject and amount of data per subject.

duces a vector known as embeddings for an input vector - a lower-dimensional represen-
tation of the input. Embeddings are then compared to produce a similarity score between
the inputs. This network can be used to compute similarity scores for new subjects never
seen during training, making it an effective and scalable model in behavioral biometrics.

While it is generally known that deep learning models such as SNNs require large data
to train, there are no specific guidelines available on exactly how much data is needed to
train them. For example, as shown in Table 1, with the exception of the Aalto desktop and
mobile datasets [Dh18, Pa19a], public keystroke datasets typically consist of only a low
number of subjects, ranging from a few tens to about a hundred. Will these datasets still
be relevant for training deep learning models? Moreover, it is unclear whether the breadth
(i.e., the number of subjects) or depth (i.e., the amount of data per subject) of a dataset is
more important. This lack of a clear understanding of the nature of data needed for training
effective Siamese networks hinders the development of behavioral biometrics.

To this end, we have conducted experiments using a large publicly available keystroke
dataset known as the Aalto dataset [Dh18]. We trained with different subsets of the Aalto
dataset (breadth-wise and depth-wise) to determine the optimal training size, amount of
data per subject, and number of subjects, for achieving high performance with SNN. To
further generalize our findings beyond keystroke dynamics, we also experimented with
BrainRun [Pa19b], a fairly large mobile dataset with the gesture and motion modalities.

Our experiments provided valuable insights into the roles of dataset breadth and depth
in determining the performance of Siamese networks-based behavioral biometric. Specif-
ically, our findings showed that while larger datasets generally resulted in better perfor-
mance, the breadth of a dataset, as measured by the number of subjects, had a more signif-
icant impact on performance than depth. Furthermore, the results provide insights into the
critical aspect of determining the levels of performance that can be expected of Siamese
networks based on the dataset’s breadth and depth. They also provide guidance on which
aspect to improve first, and the level of performance improvement that can be achieved by
adding more data to the dataset.
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2 Related Work

Keystroke dynamics have used simple distance classifier and outlier detection methods.
These approaches typically involve capturing features such as monographs and digraphs.
Commonly used distance classifiers and outlier detection methods include the Manhattan
distance, euclidean distance, Mahanalobis distance, k-nearest neighbours, k-means clus-
tering, and their variants [KM09, Ay20, Wa22b, ZDJ12, ZD15].

However, the distance and outlier detection techniques rely heavily on the extracted fea-
tures and require strong domain knowledge for manual feature engineering. With the ad-
vent of deep learning, the trend has shifted towards utilizing deep neural networks for
keystroke biometrics, e.g., [DZ13, HWD10, AJT20]. Deep learning offers several advan-
tages, including the ability to automatically extract relevant features from raw keystroke
data without the need for explicit or extensive feature engineering.

Although these early work on the application of deep learning for keystroke dynamics
achieved better performance compared to the traditional distance-based or outlier detec-
tion methods, they were trained and tested on small datasets. As shown in Table 1, most
publicly available keystroke datasets are very limited in size, typically with a few tens up
to a hundred subjects. These small datasets have limited the full exploration of deep learn-
ing in keystroke dynamics until 2018 when the Aalto dataset [Dh18] was released, which
has collected 136 million keystrokes data from 168,000 subjects.

Acien et al. [Ac21] designed an SNN architecture called TypeNet, which is based on Long
Short-Term Memory (LSTM) networks. Using the Aalto dataset, the model was trained
with 68,000 subjects and tested with 1,000 subjects, achieving a 1.2% EER. Their work
showed a significant improvement over past work as it leveraged a large amount of data and
was tested on a large number of subjects unseen during training, making it more realistic.

We propose to characterize datasets by breadth and depth, where the breadth is based on
the number of subjects in the dataset, and the depth is the number of data per subject.
Despite the availability of the large keystroke dataset [Dh18] and the work done by Acien
et al. [Ac21], no previous studies have explored the impact of dataset breadth and depth
on deep learning performance in keystroke dynamics or any other behavioral biometric
modality. Our work is therefore novel in that it addresses this gap in the literature.

3 The Siamese Neural Network Architecture

SNN is used to find the similarity between inputs by comparing the output vectors (em-
beddings) of the sub-networks. As shown in Figure 1a, the Siamese sub-network includes
several layers: a masking layer that helps prevent the model from training on zero-padded
rows, batch normalization layers that normalize the input data and improve the training
speed and stability, two LSTM layers which capture the temporal dependencies in the
sequential data, and a dropout layer as regularization to prevent overfitting.

The SNN architecture in Figure 1b consists of three (triplet) sub-networks that share
weights and are trained together to learn meaningful representations of input data. Each
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(a) Sub-network Architecture (b) Siamese Network Architecture

Fig. 1: (a) The Siamese sub-network, taking a time series input (xi) of shape m×n and returning an
output vector (embeddings) of shape 1×128. (b) The Siamese network, consisting of three (3) sub-
networks. Loss is calculated from the three output vectors and are back-propagated into the network.

sub-network takes in a single input (xi) and produces an output vector (f(xi)). The ® rst
sub-network takes in an anchor sample (xA), the second a positive sample (xP), and the
third a negative sample (xN). The anchor and positive samples are drawn from genuine
user’s data, whereas the negative samples from an impostor. The three output vectors are
then passed through the triplet loss function to update the weights of the entire Siamese
network. As shown in Equation 1 the triplet loss function minimizes the distance between
anchor and positive samples while maximizing the distance between anchor and negative
samples, where α is a hyperparameter that controls the degree of separation between the
anchor and negative samples in the embedding space.

Lt = max{0, ||f(xi
A)− f(xi

P)||2−||f(xi
A)− f(x j

N)||2 +α} (1)

4 Datasets

The primary dataset used for our experiments is Aalto, a large publicly available keystroke
dataset. To generalize our ® ndings, we also utilize BrainRun, a mobile motion dataset.

The Aalto Keystroke Dataset The Aalto University desktop [Dh18] dataset is a large-
scale controlled free-text dataset collected using an online typing test on desktop com-
puters. The dataset has 136 million keystrokes collected from 168,000 subjects and for a
duration of three months, each subject transcribing 15 English sentences which were ran-
domly drawn from a set of 1,525 examples consisting of at least 3 words, and a maximum
of 70 characters per sentence. The characters typed can exceed 70 as subjects are allowed
to make typing errors, correct them or add new characters when typing. For each character,
we extracted 4 time-features (monographs and digraphs) as well as its ASCII value. We
® ltered out potential outliers by removing rows containing digraphs that exceed 5 seconds.

The BrainRun Mobile Motion Dataset The BrainRun dataset [Pa19b] collected raw be-
havioral data through the BrainRun mobile app, an educational game available on app
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stores. This app has five different game types, namely “Focus”, “Mathisis”, “Memoria”,
“Reacton”, and “Speedy”. The data were collected from over 2,000 users using their own
devices as they participated in the mini-games. The dataset consists of two behavioral
modalities, gesture and motion. The gesture data captures information such as taps and
swipes as users plays BrainRun. The motion data were collected with a sampling rate of
100 ms, directly from the built-in sensors (accelerometer, gyroscope, magnetometer) in
the smartphone, as well as from DeviceMotion, a library in the React Native framework.
For our experiments, we utilized the acceleration (along the x, y, and z axis) and rotation
data (characterized by alpha, gamma, and beta) that were collected from the React Native
framework (DeviceMotion). Although over 2,000 subjects participated in the data acquisi-
tion, only 1,132 subjects contributed motion data. The data was originally stored in a json
file per user session. To improve data quality, we removed noisy data and applied min-max
normalization on each column. Lastly, we split each user’s motion data into samples of 200
rows each. To ensure consistency in our experiments, we only considered subjects with at
least 15 samples. After the data preprocessing, only 496 out of the initial 1,132 subjects
were considered usable for our experiments.

5 Experimental Procedures and Results

We conducted multiple experiments to investigate the effect of data size on Siamese net-
works and determine the most important dimension (breadth or depth) of a dataset for
achieving optimal performance. The SNN architecture was implemented using the Ten-
sorflow library on a 24 GB Nvidia GeForce RTX 3090. All experiments were trained with
150 epochs, 150 steps per epoch, 512 sequences per batch, Adam optimizer, and a margin
(α) of 1.5. Experimental results were reported using the Equal Error Rate (EER) metric.
The primary dataset used in these experiments is the keyboard dataset (Aalto), while the
mobile motion dataset (BrainRun) was used to validate the generalizability of our find-
ings. To ensure the reliability of our results, we repeated each experiment 10 times, each
time with random subject selection. This approach minimizes any potential variation in
the results and obtains a more accurate estimate of the model performance.

5.1 Experimental Procedures
Breadth-wise Experiments: We randomly selected 1,000 out of the 168,000 subjects in
Aalto dataset for testing. To ensure that our experiments cover a diverse range of subjects,
we randomly selected 10 groups of subjects from the remaining subjects, with replace-
ment, for training. The number of subjects in each group are 125, 250, 500, 1,000, 2,000,
4,000, 8,500, 17,000, 34,000, and 68,000. For each group, we created a data generator for
generating the required input triplets for the Siamese network. Since generating all possible
triplets from the dataset will be expensive in both time and storage, we randomly generated
only 7.6 million triplets, out of the total possible triplets, for training the Siamese network.
This number was empirically selected to ensure that the training process was not exces-
sively computationally expensive, while still providing enough triplets to effectively train
the model. Furthermore, with this selection, each group of subjects has more than enough
triplets data required to train the model. For samples in the Aalto dataset, we employed
a sequence length (m) of 70, indicating the maximum number of rows of data in each
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sample. Any sample data that exceeds this limit would be truncated, while those below it
would be zero-padded.

We also conducted an additional experiment in which, instead of generating 7.6 million
triplets as described above, we generated a smaller number (120,000 triplets), but from a
larger pool of 68,000 subjects. This experiment is meant to investigate how a relatively
small amount of data but from a large number of subjects performs, compared with when
using a larger data from a smaller pool of subjects.

To further validate our findings, we conducted similar experiments using the BrainRun
dataset. The motion data in the BrainRun dataset has more intra-variance and is a less ef-
fective modality compared to keystroke data. As a result, we set the sequence length (m)
to 200, longer than the sequence length used in the Aalto dataset. We set aside 60 sub-
jects out of the 496 usable subjects in the BrainRun dataset for testing purposes. We then
randomly created three groups of subjects from the remaining subjects, with replacement,
where each group consisted of 125, 250, and 436 training subjects. We generate only 7.6
million triplets for training. With these experiments using the BrainRun dataset, our goal
was to show the generalizability of our findings beyond the Aalto dataset.

Depth-wise Experiments: The depth-wise experiments aimed to evaluate the impact of
the amount of data or samples available per subject on the performance of the Siamese
network. To achieve this, we conducted several experiments using the same group of sub-
jects as in the Breadth-wise experiments, but with different numbers of samples per user.
Specifically, we ran experiments using 5 and 10 samples per user, instead of using only the
original 15 samples in the keystroke dataset. By reducing the amount of data available for
each subject, we aimed to investigate how well the Siamese network can generalize in a
more limited depth-wise data scenario, and whether the network’s performance would be
significantly affected by this. These experiments provided insights into how much data or
samples are required per subject to achieve optimal performance in Siamese networks.

Model Evaluation: The evaluation of all models trained on the Aalto keystroke dataset,
including both the breadth-wise and depth-wise experiments, was conducted using a dedi-
cated test dataset comprising 1,000 subjects that were excluded from the training process.
That is, no overlap exists between the training and test subjects. To ensure fairness and
unbiased evaluation across all experiments, the same test users were used for all experi-
ments. Similarly, for the models trained on the BrainRun motion dataset, we conducted
testing using a set of 60 users who were not part of the training process.

To evaluate the performance of the models, we followed a standardized testing procedure.
For each subject in the T test subjects, we randomly selected one sample from each of
the remaining T − 1 subjects as impostor samples. These impostor samples, along with
the g genuine samples, make up the subject’s test samples. We computed the pairwise
Euclidean distance between the gallery embeddings (G) and the genuine query embed-
dings (Qg), resulting in genuine similarity scores. Likewise, we computed the pairwise
Euclidean distance between the gallery embeddings (G) and the impostor embeddings
(Qi), which provided impostor similarity scores. The EER was then computed based on
these scores.
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Average EER (%) for Varying Number of Subjects with 7.6M Triplets EER - 120K Triplets
Samples 125 250 500 1K 2K 4K 8.5K 17K 34K 68K 68K subjects

15 7.94 4.99 2.91 1.82 1.37 1.21 1.12 1.12 1.11 1.09 2.17
10 8.90 5.96 3.72 2.17 1.49 1.34 1.16 1.16 1.16 1.10 2.21
5 10.19 8.15 5.64 3.76 2.40 1.55 1.35 1.21 1.16 1.11 2.29

Tab. 2: Aalto Dataset: Average EERs for both the breadth-wise experiments (as seen horizontally
with varying number of subjects), and the depth-wise experiments (as seen vertically with varying
number of samples per subject) with 7.6 million triplets and 120K triplets for training.

5.2 Results for Aalto Dataset

Breadth-wise: Table 2 shows the average EERs of the SNN models with varying num-
bers of training subjects from the keystroke dataset. Horizontally the EERs reveal a clear
pattern of exponential decay, indicating that the performance of the SNN model improves
significantly as the number of training subjects increases. For instance, training the model
with 15 samples (7.6 million triplets) obtained from 125 subjects resulted in an average
EER of 7.94%. However, when the same number of triplets were obtained from 8,500 sub-
jects with the same 15 samples each, the performance improved to an EER of 1.12%. This
observation highlights the importance of increasing the breadth of the training dataset for
achieving better performance. Additionally, we observed a diminishing point of improve-
ment, where further increasing the number of subjects had little to no impact on the per-
formance. This trend is evident when comparing the results from 8,500 subjects to 68,000
subjects. Hence, we determined that, for this specific dataset, 8,500 subjects represents an
optimal number for effectively training the SNN. These findings underscore the signifi-
cance of a broader training dataset in achieving significant performance improvements.

Furthermore, we observed a noteworthy finding when training the model with a relatively
small number of triplets (120K) generated from a large pool of subjects (68,000) with
15 samples per subject. This model achieved an impressive EER of 2.17%, surpassing
the performance of models trained with 7.6 million triplets (15 samples) obtained from
125, 250, and 500 subjects, as shown in Table 2. This result provides further compelling
evidence for the significance of dataset breadth in training the SNN models.

Depth-wise: The results for the depth-wise experiments with the Aalto dataset are shown
vertically in Table 2, highlighting the impact of reducing the number of samples per subject
on the performance of SNN. As we decreased the number of samples from 15 to 10 and
further to 5, we observed a notable degradation in performance. This finding proves the
significant role of dataset depth in effectively training an SNN model. However, it is worth
noting that while these performance degradation are more pronounced for models trained
with triplets from a smaller pool of subjects (such as 125, 250 or 500 subjects), their
significance diminishes and disappears as the number of subjects increases sufficiently.
This suggests that the influence of dataset depth becomes less substantial after the number
of subjects surpasses a certain threshold, which can be observed at 4K or 8.5K.
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Avearge EER (%) with 7.6M Triplets
Samples 125 250 436

15 17.56 14.01 10.31
10 22.61 16.18 11.53
5 26.80 19.35 13.78

Tab. 3: BrainRun Dataset: Average EERs for both the breadth-wise experiments (as seen horizontally
with varying number of subjects), and the depth-wise experiments (as seen vertically with varying
number of samples per subject) with 7.6 million triplets for training.

5.3 Results for BrainRun Dataset

Breadth-wise: We extended our investigation to the BrainRun dataset, which represents an
entirely different modality compared to keystroke dataset. Despite maintaining the same
training data size, we observed that an SNN model trained with triplets obtained from 436
subjects outperformed those trained with triplets obtained from 125 and 250 subjects as
seen from the horizontal values in Table 3.

Depth-wise: A vertical look at the results in Table 3, we observed a similar trend showing
a performance degradation as the number of samples per user is reduced. While the results
of the depth-wise experiment on the Aalto dataset suggest that the influence of dataset
depth becomes less significant after a certain threshold of subjects, the limited number of
subjects in the BrainRun dataset prevented us from observing the same diminishing effect.
However, as the number of subjects increased in the BrainRun dataset, we noticed the
EERs of the different sample sizes (15, 10, and 5) converging, leading us to hypothesize
that, given a larger number of subjects in the training dataset, the degradation caused by
decreasing the dataset depth would also reduce.

6 Conclusion

This study investigated the impact of dataset breadth and depth on the performance of a
deep learning Siamese network model in the context of behavioral biometrics. The study
experimented with two datasets, the Aalto and the BrainRun. The results revealed that
both dataset breadth and depth play crucial roles in the model’s performance. Increasing
the number of subjects involved in the training dataset had a significant positive impact
on the model’s performance, demonstrating the importance of capturing a wide range of
behavioral patterns and accounting for inter-subject variability. On the other hand, the
depth of data per subject also influenced performance, but its effect was less pronounced,
particularly when a sufficiently large number of subjects were used during training. In
conclusion, although dataset depth still holds significance in capturing intricate variations
specific to individual subjects, increasing dataset breadth emerged as a more substantial
factor in improving the performance of the Siamese network model. The findings highlight
the option to increase dataset breadth by including a larger number of subjects, to enhance
model generalization and achieve superior performance. In situations where this is not
feasible, increasing the dataset depth should be prioritized.
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Cyclist Recognition from a Silhouette Set

Eijiro Makishima1, Fumito Shinmura2, Daigo Muramatsu3

Abstract: Person recognition from surveillance cameras can be useful for criminal investigations.
Currently, gait recognition technology can identify walking individuals, but recognition of people
riding bicycles has not been actively investigated, despite cycling being a popular mode of trans-
portation. In this paper, we propose a method to recognize individuals riding bicycles (cyclists)
using a silhouette set. We captured two types of cyclist data, normal and rush modes, from five dif-
ferent views, and generated silhouette image sequences from this data. We evaluated accuracy of
the proposed method on the silhouette images in identification and verification tasks. The evaluation
results demonstrate the effectiveness of our proposed method.

Keywords: Cyclist recognition, Bicycle riding person, Silhouette set, Behavioural biometrics, Crim-
inal investigation

1 Introduction

Recently, many surveillance cameras have been installed throughout the city, capturing
images of stationary or moving individuals. These captured images can provide valuable
information for criminal investigations, particularly in identifying the persons depicted. To
achieve this, it is essential to develop person recognition methods capable of operating at
a distance from surveillance camera images.

One popular approach is gait recognition [NTC05, WWP18], which focuses on recogniz-
ing individuals based on their walking patterns. Numerous gait recognition methods have
been proposed to achieve robustness against variations in observation views, belongings,
clothes [Ch21, Fa20, Hu21], and public databases such as CASIA-B [YTT06] and OUMV-
LP [Ta18] are used for accuracy evaluation. Speed-invariant gait recognition methods are
also investigated [Xu19]. These methods enable the recognition of walking individuals,
even when the resolution of the target person is low. Gait recognition techniques have
expanded the capabilities of surveillance cameras in criminal investigations and foren-
sics [Bo11, Iw13, LL14, ICH19].

However, not all individuals in surveillance camera images are walking. Some may be
running, while others may be riding bicycles. While there is existing research on recog-
nizing running individuals such as [Xu19], methods for recognizing cyclists have not been
adequately discussed to the best of the authors’ knowledge. Recently, point clouds gait
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2 Faculty of Science and Technology, Seikei University, shinmuraf@st.seikei.ac.jp
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dataset is released [Sh23], and bicycle riding individuals are included in the dataset ac-
cording to the web page 3, but methods for individuals riding bicycle are not discussed.
Therefore, this paper aims to focus on the recognition task of individuals riding bicycles,
whom we refer to as ”cyclists” throughout this paper. Examples of the target images for
cyclist recognition are shown in Figure 1.

Fig. 1: Silhouette sequences from three cyclists. All individuals are riding bicycles, but regions of
bicycles are not included in the target silhouettes.

By comparing gait recognition with cyclist recognition, several common properties can be
identified:

• Both walking and pedaling a bicycle involve periodic motion.

• The person’s image can be influenced by their shape, pose, and movement.

• Covariates such as observation views, belongings, and clothes can impact the per-
son’s images.

On the other hand, there is a significant difference between walking and bicycle riding
action. A cyclist can continue moving even without pedaling temporarily. This means that
cyclists do not need to pedal continuously to move, and if they stop pedaling, they can
still keep moving due to the law of inertia. As an extreme example, cyclist can even move
forward while pedaling in the opposite direction. In the case of walking, a person cannot
move if they stop moving their feet.

To realize the cyclist recognition, this paper focuses on the following:

Construction of multi-view cyclist dataset with different modes
We capture cyclist image data using five cameras. Data associated with two types of speed
modes: comfortable and hurry are collected. Together with the RGB images, gender and
age information are also collected.

Implementation of cyclist recognition method from silhouette set
We propose cyclist recognition pipeline. From the captured image sequences, silhouette

3 https://lidargait.github.io/ [Confirmed on 10 Jul. 2023]
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Fig. 2: Overall algorithm of proposed method. From an image, cyclist area is extracted as a silhouette.
And using key point information, the silhouette is normalized for feature extraction.

image sequences are generated using semantic segmentation method [Ba22]. These gener-
ated silhouettes are normalized using key points information obtained using OpenPose [Ca17].
Considering the properties of bicycle riding actions and inspired by GaitSet [Ch21], we
extract cyclist feature from a set of silhouettes, and realize cyclist recognition.

2 Cyclist Recognition from Silhouette Set

2.1 Overall

Figure 2 shows the overall algorithm of the proposed method. Using the semantic seg-
mentation method [Ba22], each input image is segmented, and segmented part with label
”person” is used as a silhouette of the target person of the image. Then, the silhouette
is transformed into size-normalized silhouette. These normalized silhouettes are input to
feature extractor and a cyclist feature vector is obtained as the output. This output is used
for person recognition.

2.2 Pre-processing

Silhouettes of the target person are extracted from RGB images and utilized for recogni-
tion. For this extraction, Beit [Ba22] is employed as a semantic segmentation method.

Next, the extracted silhouettes are cropped and resized. While bounding box (BB) infor-
mation of the target person is commonly used for cropping, it is not suitable for cyclist
recognition since the heights of foot points change by pedaling action. A stable reference
point is usually waist, as a person sits on the saddle, and the height of the saddle is usually
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stable against the ground. To locate the waist point, we employ OpenPose[Ca17] and de-
tect key points of the cyclist. Let pn = (xn,yn), and pw = (xw,yw) be the detected key point
of the neck and the waist, respectively. Then we compute the L-2 norm lwn = ||pw− pn||2
between two key points of the waist and neck, and set a region of interest (ROI) by two
points, the upper left point and the lower right point. The upper left point of the ROI is set
by (xw− lwn,(yw + yn)/2− c1lwn) and lower right point of (xw + lwn,(yw + yn)/2+ c2lwn).
Here, (c1,c2,c3) is a parameter set for normalization and is set by (1.5,2.7,2.1). The
cropped data is then resized to 64×64 [pixels].

2.3 Feature Extraction

A silhouette sequence of the target cyclist is input to the feature extractor. Usually, pedal-
ing is a periodic movement, and hence, order information and/or temporal information of
the silhouettes can be useful for recognition. However, unlike walking and/or running, a
cyclist can keep moving without pedaling a bicycle temporally or with pedaling in reverse
direction temporally. This means that usage of temporal information may lead to an erro-
neous decision. We therefore use silhouette images not as a silhouette sequence, but as a
silhouette set. This set means that the order of the silhouette is not used for this method.

In order to realize cyclist recognition from a silhouette set, we focus on a method named
GaitSet [Ch21]. GaitSet is proposed for cross-view gait recognition, but we think this
method is applicable to cyclist recognition because GaitSet uses a gait silhouette set for
input for person recognition and achieves reasonable accuracy.

Let x = x1,x2, · · · ,xn be a size-normalized silhouette set of cyclist composed of n pieces
of silhouette. And let f (;θ) be a network for feature extraction with parameter θ . In the
proposed method, feature v is computed by

v = f (x : θ). (1)

And the parameter θ is trained by minimizing batch all triplet loss L:

L = ReLU(ξ +Dpos−Dneg), (2)

where ξ is the margin between intra-class (same person) distance Dpos calculated using
features pairs originating from the same person, and inter-class (different person) distance
Dneg calculated using features pairs originating from the different person. And ReLU() is
the rectified linear unit function. Please see [Ch21] for detail.

2.4 Recognition

Let vG
i be the gallery features enrolled in the system associated with the i-th person. And

let vp be a probe feature extracted from an input image sequence. For the recognition, we
compute a L1 norm ||vG

i −vp||1, and use the norm for recognition.
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3 Data construction

Fig. 3: Environment for data collection

Data collection associated with this research is conducted with the approval of Seikei
University Ethics committees. Figure 3 shows the data collection environment. A bicycle
is set on the bike trainer, and five cameras are set around the bicycle at a height of about
220cm. For data collection, 38 subjects participated. All subjects pedal a bicycle for less
than 1 minute in each session, and they are requested to pedal a bicycle in three sessions.
In the first and second sessions, subjects are instructed to pedal a bicycle in a comfortable
manner (we call “normal”); on the other hand, subjects are instructed to pedal a bicycle in
a hurried manner (we call “rush”). The middle parts of the pedaling are captured for 20
seconds at 30fps and saved for the research. By this collection, cyclist image sequences
of three sessions from five views (azimuth angle of 0 (front), 45, 90 (side), 135, and 180
(back) degrees) are collected. Captured images are transformed into silhouette images as
explained in preprocessing. Figure 4 shows examples of cyclists’ silhouettes from multiple
views before size-normalization. Captured data information is summarized in Table 1.

Tab. 1: Captured data information

Subjects 38 (Male: 31, Female: 7, 20s: 36, 30s: 1, 40s: 1)
Sessions 3 (Normal, Normal, Rush)
Images/session 600 (30 [fps] × 20 [sec])
Views 5 (0, 45, 90, 135, 180 [degree])

4 Experiment

4.1 Evaluation protocols

For accuracy evaluation, the subjects are divided into two groups consisting of 19 subjects
with no subjects overlapping, and two-fold cross validations are conducted. In order to
eliminate the influence of the grouping, the two-fold cross validations were conducted five
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Fig. 4: Silhouette images of three cyclists from five views (azimuth of 0, 45, 90, 135, and 180 [de-
gree])

times with different groupings.
In each session, 600 images of each subject are available for each view. Therefore, we
divide the data into 20 sets, so that each set contains 30 images captured in one second.
And we use each set as an independent data set.

Accuracy is evaluated through two tasks: identification and verification. Twenty sets from
the first session associated with 19 evaluation subjects of one view are enrolled as the
gallery (20×19 = 380), and the 20 sets from the second and third sessions associated with
the 19 evaluation subjects from a view are used for the probe (20× 2× 19). Gallery data
are associated with normal pedaling, while the probe data are both of normal and rush
pedaling. Because data from five views are available, accuracy associated with 5×5 = 25
view-settings is evaluated.

For identification, we count the number of probes that have the same identity as the nearest
gallery for rank-1 identification rates. For verification, distances associated with all com-
binations of the gallery and the probe are computed and compared with threshold values;
then, false accept rates (FARs), false reject rates (FRRs), and equal error rates (EERs) are
measured for accuracy evaluation.

Since data from five views are available in our dataset, we consider 5 times 5 view settings
for evaluation. By this evaluation, we can evaluate accuracy of same view settings and
cross-view settings.

4.2 Experimental results

We summarize the rank-1 identification rates in Table 2 and EERs in Table 3. In these
tables, results associated with the probe of normal and the probe of rush are reported
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separately; upper parts report the accuracy of normal vs. normal, and lower parts report
the accuracy of normal vs. rush. In each part, each diagonal element shows the accuracy
with the same view setting, and the others show the accuracy with the cross-view setting.

In the same view settings with normal vs. normal, we can achieve the rank-1s of 99.29,
99.47, 99.42, 99.87, and 96.03% and EERs of 2.37, 2.07, 3.17, 1.93, and 4.51% for views
of 0, 45, 90, 135, and 180, respectively. These results show that we can achieve a reason-
able recognition accuracy in the case where the views and pedaling modes of the gallery
and the probe are the same.

Moreover, in the setting of cross-mode for rush vs. normal, the rank-1s of 86.47, 87.74,
88.40, 88.11, and 83.68% and EERs of 9.21, 9.28, 9.74, 8.30, and 12.00% for views of 0,
45, 90, 135, and 180 degree, respectively. The pose of the upper body in normal pedaling
and rush pedaling is significantly different in some cyclists. Figure 5 shows the silhouettes
of two cyclists in normal and rush modes. From these silhouettes, we can see that cross-
mode cyclist recognition is a challenging task. Considering this fact, achieved recognition
accuracy is reasonable.

Subject A

Subject B

Fig. 5: Difference between normal pedaling and rush pedaling

In the cross-view settings, accuracy greatly deteriorate. The best rank-1 accuracy is 68.74%,
and this accuracy is achieved when the view of the probe and the gallery is 135 and 90
degree, respectively. This accuracy should be improved, but it is also promising result
because 45 degree is large view difference.

5 Conclusion

We propose a cyclist recognition method using a cyclist silhouette set, in this paper. From
the image sequences of cyclist, we extract person regions and generate cyclist silhouettes.
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Tab. 2: Rank-1 in each view setting

Probe Gallery view [degree], mode=Normal
Mode View 0 45 90 135 180 Average

0 99.29 59.50 36.82 45.42 37.66 55.74
45 59.24 99.47 67.55 61.87 25.66 62.76

Normal 90 37.16 67.66 99.42 68.42 24.29 59.39
135 43.05 59.15 68.76 99.87 41.45 62.46
180 33.92 27.95 29.10 46.71 96.03 46.74

0 86.47 53.97 33.34 41.84 30.79 49.29
45 48.74 87.74 59.87 48.31 22.03 53.34

Rush 90 33.32 55.92 88.40 60.80 22.82 52.25
135 41.68 54.63 57.34 88.11 35.26 55.41
180 27.95 20.61 20.11 36.34 83.68 37.74

Tab. 3: EER’s[%] in each view setting

Probe Gallery view [degree], mode=Normal
Mode View 0 45 90 135 180 All

0 2.37 19.63 24.39 22.60 27.37 22.10
45 18.00 2.07 13.74 15.92 32.16 18.50

Normal 90 24.77 13.44 3.17 13.92 32.01 20.02
135 23.44 17.25 14.20 1.93 25.16 19.17
180 27.12 31.06 30.48 23.79 4.51 26.11

0 9.21 21.01 26.43 25.87 32.72 24.72
45 21.86 9.28 17.84 21.07 36.47 22.49

Rush 90 27.34 17.57 9.74 18.37 33.75 22.52
135 23.82 16.71 17.39 8.30 27.76 20.38
180 28.86 34.10 31.88 25.77 12.00 28.43

GaitSet [Ch21]-based feature extractor is used for feature extraction from a cyclist silhou-
ette set, and the features are used for identification and verification tasks. For cyclist recog-
nition, we collected cyclist recognition data set from 38 subjects. This is the multi-view
data set captured from 5 views, and two types of pedaling, normal and rush, are collected.
Proposed method is evaluated on the collected dataset, under the settings of cross-view,
and cross-mode. The evaluation results show the potential of cyclist recognition. Now the
size of the dataset is small and collected in an indoor environment, we will collect data in
outdoor environments from a larger number of subjects. Moreover, in this paper, only one
type of bicycle is considered. Different types of bicycles will be considered.
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LVT Face Database: A benchmark database for visible and
hidden face biometrics

Nelida Mirabet-Herranz1, Jean-Luc Dugelay2

Abstract: Although the estimation of eHealth parameters from face visuals (images and videos) has
grown as a major area of research in the past years, deep-learning-based models are still challenged
by RGB lack of robustness, for instance with changing illumination conditions. As a means to over-
come these limitations and to unlock new opportunities, thermal imagery has arisen as a favorable
alternative to solidify different technologies such as heart rate estimation from faces. However, the
reduced number of databases containing thermal imagery and the lack of health annotation of the
subjects in them limits the exploration of this spectrum. Motivated by this, in this paper, we present
our Label-EURECOM Visible and Thermal (LVT) Face Database for face biometrics. This database
is the first that contains paired visible and thermal images and videos from 52 subjects with metadata
of 22 soft biometrics and health parameters. Moreover, we establish the first study introducing the
potential of thermal images for weight estimation from faces on our database.

Keywords: Face database, Visible spectrum, Thermal spectrum, eHealth, Weight estimation.

1 Introduction

Facial processing from visual content has gained a lot of attention in the past years since it
allows for non-invasive contactless monitoring of a subject’s health status, useful in numer-
ous potential applications. Nowadays, there is a global trend to monitor eHealth parameters
without the use of physical devices enabling their estimation in at-risk situations such as
medical emergencies and road accidents besides at-home daily monitoring and telehealth.
Automatic face recognition has consistently been one of the most active research areas of
computer vision [MD18]. Beyond people identification and soft biometric prediction such
as gender, age and ethnicity, a vast amount of health information belonging to a subject has
been proved to be embedded in face visuals [RBC22]. The estimation of health indicators
such as height, weight and Body Mass Index (BMI) from a single facial shot, has been
explored in the literature by training a regression method based on the 50-layer ResNet-
architecture [DBB18]. Past them, researches have extracted the called micro-signals from
faces, information that has played important roles in media security and forensics [Wu20].
An established concept in the past fifteen years is derived from the fact that blood draws
more light than the ambient tissues therefore subtle changes in blood volume can be cap-
tured by cameras based on the above-mentioned light absorption. This has allowed for
remote photoplethysmography (rPPG). Researches have shown how a mobile phone cam-
era has enough resolution to capture rPPG signal from faces leading to a successful Heart
1 Dept. of Digital Security, EURECOM, 450 Route des Chappes, 06410 France, mirabet@eurecom.fr
2 Dept. of Digital Security, EURECOM, 450 Route des Chappes, 06410 France, dugelay@eurecom.fr
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Rate (HR) estimation [Ra16]. Following the same principle, recent works have success-
fully approximated the Blood Pressure (BP) of a subject thanks to the difference between
the times a pulse wave reaches two different parts of the face [LWM20]. In up-to-date in-
vestigations, the ratio of oxygenated hemoglobin with respect to total hemoglobin (SpO2)
has been computed from facial videos employing Convolutional Neural Networks (CNN)
that consider the direct current and alternating current components extracted from the RGB
signals of facial videos [AOI23].

Facial eHealth models traditionally based their estimations on images acquired in the vis-
ible spectrum. Despite those networks have reached a significant level of maturity with
practical success, deep learning approaches based on data images in the visible spectrum
are affected by compromising factors such as occlusion and illumination changes. Thermal
imagery has proved itself as a powerful caption tool [MD18]. Computer vision researchers
have affirmed it as superior to visible imaging in hard conditions such as the presence of
smoke, dust and absence of light sources [ED22]. Thermal imagery operates by detecting
electromagnetic radiation in the medium MWIR (3− 8µm) and long LWIR (8− 15µm)
wave infrared spectrum [RMY17] where skin heat lays within. This capability enables
thermal images to overcome the lack of illumination or some types of occlusions. However,
works have highlighted how the thermal heat captured by thermal cameras can be affected
by various factors such as ambient temperature or intense physical activity [MD18].

To enable the next step towards more accurate eHealth models and because we believe in
the potential of thermal imagery, we introduce a new database with visuals collected using
a paired thermal-visible camera and annotated with health traits from each subject. The
main contributions of this work are the following: 1) We present our Label-EURECOM
Visible and Thermal Face Database for face biometrics composed of 612 images and 416
videos from 52 different subjects and a compendium of 22 health metrics and soft biomet-
rics annotated per person. 2) We propose the first study, up to the authors’ knowledge, on
weight estimation from facial thermal imagery.

The rest of the paper is organized as follows, Section 2 lists existing databases contain-
ing thermal visuals and some descriptors of them as well as motivates the use of thermal
images for health-related applications. In Section 3, our LVT Face Database for face bio-
metrics newly collected is presented in detail. Section 4 includes a brief state-of-art on
weight estimation from facial images and the results of an up-to-date weight estimator
when re-trained with our new thermal images. Finally, Section 5 summarizes and con-
cludes with the future directions of our work. The LVT Face Database for face biometrics
is publicly available upon request.

2 Potential of visible and thermal paired data

Existing biometric systems and facial eHealth applications, are based on databases ac-
quired in the visible or, lately popular, Near InfraRed (NIR) spectrum. Particular studies
have however focused on the thermal spectrum for applications such as cross-spectrum
face recognition algorithms or HR estimation.
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Relevant thermal databases: Interest in employing thermal face images has grown in
the past years, nevertheless, this regard has been restricted mostly to tasks such as land-
marks and face detection and Face Recognition (FR) [MD18, Ku22]. A relevant subset
of FR is Cross-FR (CFR) discipline that aims to identify a person’s image in the thermal
spectrum from a gallery containing face images acquired in the visible spectrum [An21].
Only a few databases have been provided involving visuals acquired in thermal spectra
and among them, the ones covering health-related metadata are few. In Tab. 1, we present
an exhaustive selection of relevant databases that include visuals in the thermal spectrum
and some key descriptors of them including their year of release, the number of subjects,
images and videos present in the database and their initial intended purpose. One of the
first datasets containing thermal visual data was presented in 2003 [KB03]. The data was
acquired at the University of Notre Dame and contains images from 240 distinct subjects
with four views with different lighting and facial expressions with the purpose of recog-
nizing individuals. Beyond people recognition, Wang et al. establish a similar database
for expression recognition containing both spontaneous and intended expressions of more
than 100 subjects [Wa10] while Gault et al. recorded thermal videos from 32 subjects un-
der three imaging scenarios and their paired rPPG signals for HR estimation [GF13]. In
2018 two new databases were acquired for FR with multiple illuminations, pose and occlu-
sion variations [MD18] and including imagery from different modalities namely visible,
thermal, near-infrared and a computerized facial sketch and 3D images of each volunteer’s
face [Pa18]. In the same year, Barbosa et al. collected thermal videos from 20 healthy
subjects in two phases: phase A (frontal view acquisitions) and phase B (side view ac-
quisitions) and the corresponding PPG and thoracic effort simultaneously recorded for
HR and Respiratory Rate (RR) estimation [Ba18]. More recently, two large-scale visible
and thermal datasets have been assembled. Abdrakhmanova et al. gathered a combination
of thermal, visual, and audio data streams to support machine learning-based biometric
applications [Ab21] and Poster et al. presented the largest collection of paired visible
and thermal face images up to date. Variability in expression, pose, and eyewear were
recorded [Po21]. Following, a thermal face dataset with annotated face bounding boxes
and facial landmarks composed of 2556 images was introduced [Ku22].

Year Dataset # of subjects # of images # of videos Objective
2003 UND-X1 [KB03] 241 4584 - FR

2010 NVIE [Wa10] 215 Not provided Not provided
Expression
recognition

2013 TH-HR [GF13] 32 - 96 HR
2018 VIS-TH [MD18] 50 2100 - FR
2018 TUFTS [Pa18] 113 Over 10000 113 FR
2018 TH-HR-RR [Ba18] 20 - 40 HR, RR

2021
Speaking

faces [Ab21]
142 - 45 hours

Biometric
Authentication

2021 ARL-VTF [Po21] 395 549712 - Cross-FR
2022 SF-TL54 [Ku22] 142 2556 - Landmarks detection
2023 Ours: LVT 52 612 416 FR, Soft biometrics, e-health

Tab. 1: Relevent face databases containing visuals in thermal spectra.
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Thermal data for eHealth: Although the use of facial thermal imagery has traditionally
focused on face recognition tasks, some researchers have intended for eHealth parameter
estimation in the thermal spectrum showing the potential of this type of data. In 2017, Rai
et al. suggested that thermal imaging systems have the prospective of providing details
regarding physiological processes using skin temperature distributions due to processes
such as blood perfusion. Indeed, cameras are often used to observe minute variations in
temperature in the medical field in applications including the detection of malignant tu-
mors [RMY17]. The assessment of eHealth parameters such as heart rate from face videos
has been studied in depth in recent years. Up to the authors’ knowledge, all methods need
proper illumination difficult to achieve in uncontrolled environments. In 2018, Barbosa et
al. presented a new method for remote HR monitoring based on periodic head movements
caused by the cyclical ejection of blood flow from the heart to the head. This new algo-
rithm was based on the use of thermal images as input data [Ba18]. Moreover, they proved
possible the evaluation and measurement of a subject’s RR by using temperature fluctua-
tions under the nose during the respiratory cycle. Thermal imagery proved itself of high
value to overcome illumination constraints since thermal images are light invariant. In the
same line, other works continue investigating the future of heart rate and blood pressure
extraction from thermal images through deep-learning approaches [NS21].

To the best of our knowledge, current literature focuses on HR, RR and BP from thermal
face data. The estimation of other health traits such as SpO2 or weight from thermal images
remains untouched by the community. The collection of a new database of visible face
visual data and their thermal counterpart is motivated by the potential that thermal images
and videos as input data have shown and by the limited number of publicly available
databases containing this type of data and their associated health parameters annotation.
Moreover, existing databases are limited to visual face information content and one or two
parameters. We believe in the value that a database composed of more than 20 different soft
biometric and health measures can add to the biometric and health research community.

3 Database description

In this section, we first introduce the recording setup of the database and the characteris-
tics of the acquisition devices. We detail the data collection methodology as well as the
database design and associated subjects’ metadata.

Acquisition material: The visible and thermal face visual data was acquired with the
dual sensor from the camera FLIR Duo R developed by FLIR Systems. The camera was
designed for capturing simultaneously visible and thermal visuals by unmanned aerial ve-
hicles. FLIR Duo R dual camera has been used in recent researches due to its suitability
in data collection for different tasks such as face recognition and cross-spectrum applica-
tions [ED22, MD18]. The visible and thermal sensors of this camera are a CCD sensor
with a pixel resolution of 1920×1080 and an uncooled VOx microbolometer with a pixel
resolution of 640×512 respectively. Various devices were used for a health status assess-
ment of the subjects. A contactless infrared thermometer with a precision of±0.2° Celsius
(C) between 34°C and 42.0°C and a precision of±0.3°C in the range of 42.1°C and 43.0°C
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was used for computing the user’s body temperature. For calculating the BP, an OMRON
HEM-7155-E tensiometer was employed together with a LED finger oximeter for SpO2
measurement with a precision of ±2%. For HR tracking, the subjects were asked to wear
a Garmin Vivoactive®4 smartwatch that embeds an optical PPG sensor able to detect the
heart rate by shining a green light through the subject’s skin thus reflecting the red cells
in the skin’s blood vessels. For quantifying bodyweight related measures, we rely on the
RENPHO®Body Fat Smart scale. When a subject steps on the device and after entering in
the system their gender, age and height, the scale returns 13 metrics including weight and
BMI.

Visuals collection protocol: Image and video acquisition were performed in an indoor
environment where the ambient temperature was set to 25°C. In Fig. 1 we present the
arrangements. The acquisition setup included a white wall acting as background, a chair
at a fixed distance of 0.25 m from the camera which is placed at a height of 1 meter
from the ground, and a two-point lighting kit placed to limit shadows allowing and eas-
ing segmentation of the subject from the background. Each volunteer participated in two
separate acquisition sessions, with an average time interval of 6 weeks. Before the acqui-
sition process, volunteers were asked to fill out and sign consent forms. The visual data
includes 6 images per person (3 visible and their associated thermal pair) in each session
with 3 different conditions, Neutral (N), Ambient light(A) and an occlusion in the form of
eyeglasses (O) resulting in a total of 612 images. Fig. 2 illustrates example images of an
individual from the database. In addition, four 60-second videos are recorded per subject
in each session with N conditions. The first pair of videos (one in visible spectrum and its
paired thermal) are taken after the subject has been resting for at least 5 minutes and the
second pair follows moderate exercise in the form of climbing up stairs to increase their
HR values making a total of 408 60s videos.

Fig. 1: Flir Duo R camera (left) and acquisition setup (right).

Subjects’ metadata: Several metadata pieces of information were collected to describe
the subject: gender, age and height. Other parameters were quantified to assess their health
status: body temperature, HR, BP, SpO2, weight and BMI. In addition to weight and BMI,
the smart scale provided other 11 variables: body fat and body water percentages, skeletal
muscle, fat-free weight, muscle mass and bone mass, protein, subcutaneous and visceral
fat, Basal Metabolic Rate (BMR) and metabolic age. Image and video filenames are con-
structed by indicating the visual data spectrum, subject id, session id (1 or 2) and in the
case of the images the conditions at the time of acquisition (N, O or A).
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Fig. 2: Example images obtained with Flir Duo R camera. The three variations are displayed in
visible (upper row) and thermal (bottom row) spectra, from left to right: N, O and A.

Summary: The introduced database is devised as a compendium of images, videos, soft
biometrics, and health parameters recorded from 52 different subjects in two sessions. It is
composed of 612 and 416 face and shoulders images and 60-second videos respectively,
corresponding to a total disk space of about 285 GB. The 52 recorded participants, 38
male and 14 female are from 13 different countries from 4 continents and their ages range
between 22 and 51 years. An executive summary of the dataset is presented in Tab. 2.

Identities Metadata

52 subjects
Soft

biometrics
Health

parameters
2 sessions Gender Body temperature BMI Body mass

Age SpO2 Body fat (%) Bone massVisuals
(Thermal and visible) Height HR resting Body water (%) Proteins

6 paired images in
three conditions (N, O, A)

Weight HR activity Skeletal muscle Subcutaneous fat

1 paired 60s videos
subject rested

Biometric BP maximum Fat-free weight Visceral fat

1 paired 60s videos
after physical activity

ID BP minimum BMR Metabolic age

Tab. 2: Summary of the information contained in the LVT Face Database.

4 Preliminary assessment of the database

In this Section we present a preliminary evaluation of thermal data for eHealth parameters
estimation to assess the applicability of the database. The suitability of thermal imagery
for a subject’s weight estimation from face images is tested.

Weight estimation from face images: Weight is a soft biometric trait and its estimation
from a single facial shot has attracted interest in the research community in the latest
years [MHMD23]. Besides being a soft biometric trait, weight is an indicator of a per-
son’s health condition, and unlike other biometric traits such as gender and height, body
weight fluctuates during a person’s life and needs to be periodically re-assessed. Remote
estimation of this trait has been signaled of special interest in scenarios when a subject
cannot be moved onto a scale due to different disabilities or in the case of road acci-
dents. In such cases, estimating a person’s weight from facial appearance allows for an
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inexpensive and contactless measurement [MHMD23]. Although some researchers have
intended to reduce the error presented by AI-based contactless weight models, existing
methods still present several kilograms (kg) of error. Weight estimation models from face
data are typically evaluated on the public dataset VIP attribute consisting of 513 female
and 513 male face images of different celebrities and their associated height, weight and
BMI metadata [DBB18]. In 2018, Dantcheva et al. conducted for the first time a study on
the possibility of estimating bodyweight from a subject’s face by implementing a ResNet
architecture with 50 layers [DBB18] and reported a Mean Absolute Error (MAE) of 8.15
kilograms (kg) of error and a Pearson’s correlation coefficient (ρ) of ρ = 0.77. In 2020,
Han et al. presented an auxiliary-task learning framework for weight estimation [HZS20]
with gender and age as auxiliary traits obtaining in the same dataset a MAE of 7.20
kg. In 2023 Mirabet-Herranz et al. defined an optimal transfer learning protocol for a
ResNet50 architecture and experimented with different in¯ uencing factors such as hair
occlusions [MHMD23] achieving a MAE of 6.91 kg and a ρ = 0.78.

Implementation details: Weight estimation from face images has proved to be possible
using deep learning structures known as Residual Neural Networks (ResNet) with 50 lay-
ers and a final regression layer [DBB18, MHMD23]. We selected likewise to those studies
a ResNet50 structure and we carry out a two-step Transfer Learning (TL) protocol as il-
lustrated in Fig. 3. From a largely trained model intended for age estimation from face
images, we complete TL using the visible images in our LVT training set. In the second
part, we continue with the pipeline by performing once more TL this time with the ther-
mal images belonging to the LVT training set. Finally, each weight network is tested in the
images of the same spectrum found in the LVT test set. Each weight model was re-trained
during 10 epochs and the final regression layer during 10 more epochs. The first 20 layers
in each TL step were fixed to be frozen. Adam optimizer was adopted, with a learning rate
of 0.01 and Huber loss as selected in [MHMD23] with δ = 1.

Fig. 3: Transfer learning protocol for weight estimation from visible and thermal images.

Visible-thermal experimental results: It is known in the research community that bone,
muscle and body fat do not conduct equally temperature [Mo66]. Heat emission patterns
can be used to characterize a person since they give information about the location of
major blood vessels, skeleton thickness, amount of tissues, and muscle and fat amount 3.
Therefore we believe thermal imagery will access crucial information for weight estima-
tion from faces neglecting skin tissues-related noise and the impact of certain occlusions
namely hair. The weight distribution associated with the subjects present in our database

3 https://biometrics.mainguet.org/types/face.htm#thermogram
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has a maximum value of 116.2 kg, a minimum value of 52.3 kg, a Mean=73.54 kg and a
STD=14.03 kg. We perform a subject-exclusive split of the training set (480 images from
40 subjects) and the testing set (120 images from 12 remaining subjects). Several metrics
are reported in our experiments: the above-mentioned correlation coefficient ρ and the
MAE in kg, which are the most common units of measurement in weight estimation re-
search; the root-mean-square error (RMSE) and the Percentage of Acceptable Predictions
(PAP) used in [MHMD23] representing the percentage of the prediction whose error is
smaller than 10% of the initial weight, i.e. a reasonable error in medical applications. In
Tab. 3 the results of the weight network are presented. The metrics show that ResNet50
has a small advantage in the performance of weight estimation when re-trained using ther-
mal data. Both the MAE and RMSE are lower for the thermal network at around 0.3kg.
Moreover, the correlation coefficient between the predicted and original weight from the
subjects is slightly higher for the thermal spectrum. This confirms the potential of thermal
imagery for capturing hidden and more detailed information from human faces.

Spectrum MAE RMSE Correlation PAP
Visible 8.31 15.03 0.43 61.6%

Thermal 7.98 14.73 0.49 61.6%

Tab. 3: Comparison of weight estimation from faces between thermal and visible spectra images.

5 Conclusion

This paper presents the novel LVT Face Database for face biometrics. This database con-
tains visuals from 52 subjects under different conditions, resulting in a total of 306 visible
and 306 thermal images in addition to 204 visible and 204 thermal videos collected simul-
taneously using a paired camera (FLIR Duo R) allowing comparison or fusion of those
different data types. The visuals acquired are associated with metadata belonging to the
subjects both biometric- and health-related. To the best of our knowledge, this is the first
database to provide visible-thermal face images and recordings with accompanying gen-
der, age, body temperature, SpO2, BP, HR (resting and after physical activity), height,
weight, BMI and 11 additional health metrics. We believe the extensive amount of param-
eters annotated by every subject will help unlock the potential of thermal data for assessing
a person’s health status. In addition, we provide preliminary experimental results of weight
estimation from facial images using a baseline algorithm with ResNet50 architecture as a
backbone, pre-trained with visible images. Results exhibit the potential of thermal data for
contactless weight estimation. Based on this promising outcome, future work will focus on
considering thermal imagery not only as an alternative to visible but also as a complement.
The estimation of other parameters such as SpO2 or height from thermal depictions will
be explored.
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Remote Cancelable Biometric System for Verification and
Identification Applications

Hatef Otroshi Shahreza1,2, Amina Bassit3, Sébastien Marcel1,4, Raymond Veldhuis3,5

Abstract: Cancelable biometric schemes protect the privacy of biometric templates by transform-
ing them, with the help of a key, into an irreversible form that can be replaced if compromised.
While these schemes provide more advantages in the user-specific key setting, their application with
the user-specific key setting is limited in the identification scenario. Alternatively, the application-
specific key setting can be used to employ cancelable biometric systems for the identification sce-
nario. However, in an application-specific key setting, cancelable biometric schemes become static
with respect to the protected template replacement; if a protected template or the key is compro-
mised, then the replacement of all the protected templates stored within the same application is
mandatory. In addition, experimental results show a degradation of performance for the application-
specific key setting in cancelable biometric systems. In this paper, we consider a remote recogni-
tion protocol based on cancelable biometric schemes in the identification and verification scenarios
so that trusted users can generate protected templates and send them to a server. The server can
compare the protected query with the protected templates enrolled in the database for recognition.
We investigate the user-specific key setting for cancelable biometric schemes for both verification
and identification scenarios, which provides those systems with a dynamic replacement of compro-
mised templates. In our experiments, we analyze different cancelable biometric schemes, including
BioHashing, Multi-Layer Perceptron (MLP) Hashing, and Index-of-Maximum (IoM) Hashing. We
evaluate their performances when applied within our proposed protocol for face recognition and
speaker recognition on the IARPA Janus Benchmark C (IJB-C) and NIST-SRE04-16 datasets for
user-specific key and application-specific key settings. The source code of all our experiments is
publicly available to facilitate the reproducibility of our work.

Keywords: biometric template protection, cancelable biometric, face recognition, identification,
speaker recognition, user-specific, verification.

1 Introduction

Biometric recognition systems became wildly deployed in authentication and identifica-
tion solutions. However, in practice, the constant use of biometric data raises serious se-
curity and privacy concerns. In particular, it has been shown that the stored templates in
the database of a biometric system can be used to reconstruct the underlying biometric
data [OSM23b, Ma18a, OSM23c, OSKHM22a, OSM23a], which can lead to a crucial
privacy threat for the enrolled users. Data regulations, such as EU General Data Protec-
tion Regulation (GDPR) [Re16], consider biometric data as sensitive information, which
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2 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzeralnd
3 University of Twente, Enschede, Netherlands
4 Université de Lausanne (UNIL), Lausanne, Switzeralnd
5 Norwegian University of Science and Technology, Gjøvik, Norway
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must be protected. To address privacy-related issues in biometric systems, several biomet-
ric template protection (BTP) methods have been proposed in the literature. The ISO/IEC
24745 standard [ISO22] has also defined four requirements for each BTP scheme, includ-
ing renewability, unlinkability, irreversibility, and performance preservation.

In general, BTP methods can be categorized into cancelable biometrics and biometric
cryptosystems. In cancelable biometric schemes, a transformation function, dependent on
a key, is used to generate protected templates, and the recognition is based on the com-
parison of protected templates [JLG04, OSKHM22b, RBB13, Ji17, Ot23]. In biometric
cryptosystems, a key is either bound with (i.e., key binding schemes) or generated (i.e.,
key generation schemes) from the unprotected template, and then the recognition is based
on correct generation or retrieval of the key [Ul04, Ra22, JW99, JS06].

In general, cancelable biometric schemes involve the use of a key in the process of gener-
ating protected templates. This key can either be application-specific, where the same key
is used to protect all the templates within the same application, or user-specific, where a
different key is used to protect the template of each user, even within the same application.
However, in an application-specific key setting, if the key is compromised, then all the
protected templates are affected. Moreover, a compromised template can affect the protec-
tion of the other protected templates within the same application, with an overwhelming
probability the key can be recovered from that compromised template. Since the same key
was used, then these require the replacement of all protected templates stored within the
same application, which affects the dynamism of such cancelable systems. This limitation
does not appear in the user-specific key setting because it only affects the compromised
template and the compromised key of the same subject. This motivates us to investigate
the user-specific key setting for cancelable biometric schemes specifically for the identifi-
cation scenario.

In this paper, we focus on cancelable biometric methods and explore the application of
user-specific key and application-specific key settings in these methods for identification
and verification scenarios. While most works in the literature focus on the application of
cancelable biometrics in the verification scenario, few works studied their application for
the identification purposes [BG22, BCK09, Mu19, Os22]. In [BCK09], a fingerprint iden-
tification method is proposed in which each user has a sensor that has a symmetric key and
is time-synchronized with the server. In [BG22], a format-preserving encryption method
is used along with Bloom filters [Ra14], as a cancelable biometric, with an application-
specific symmetric key in the identification scenario. In [Mu19, Os22], authors proposed
indexing protected cancelable templates to accelerate the identification process. The main
limitation of applying cancelable biometric systems for the identification scenario is that
these systems are often employed in a centralized configuration, and thus the application
of user-specific key setting in a centralized system is more suitable for verification, where
each subject provides their own key and the system verifies the identity accordingly. Nev-
ertheless, the user-specific key setting in a centralized system has limited application for
identification in practice. Alternatively, the application-specific key setting can be used
to employ cancelable biometric systems for both identification and verification scenarios.
However, compared to user-specific key setting, application-specific key setting suffers
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Figure 1: Enrollment in the Remote Cancelable Biometric System.

from security concerns in case the key or a template is compromised and also has inferior
performance than the unprotected system.

In this paper, we present a remote recognition protocol, where trusted users can gener-
ate canceblable protected templates and send to the server. The server can compare the
protected query with the templates enrolled in the database and return recognition re-
sult. In contrast to most cancelable biometric methods which are used for verification
scenario in centralized systems, our remote protocol can be used for both identification
and verification applications and can be used with both user-specific and application-
specific key settings. In particular, our protocol enables application of user-specific key
setting for identification scenario. In our experiments, we consider different cancelable
biometric methods, including BioHashing [JLG04], Multi-Layer Perceptron (MLP) Hash-
ing [OSKHM22b], and Index-of-Maximum (IoM) Hashing [Ji17] (i.e., Gaussian random
projection-based hashing, shortly IoM-GRP). We evaluate the performance of each scheme
in our proposed protocol for face recognition and speaker recognition in identification and
verification scenarios on the IARPA Janus Benchmark C (IJB-C) [Ma18b] dataset (face
recognition) and NIST-SRE04-16 [Sa17] dataset (speaker recognition) for user-specific
key and application-specific key setups.

In the rest of the paper, we first present the protected remote biometric recognition protocol
in Section 2. Next, we present our experiments in Section 3. Finally, the paper is concluded
in Section 4.

2 Remote Cancelable Biometric System
In this section, we present our proposed protocol for a remote cancelable biometric system,
which is illustrated in Figure 1 (enrollment) and Figure 2 (recognition) for both one-to-one
(i.e., verification) and one-to-many (i.e., identification) comparison scenarios. We assume
that each user is able to generate their own key that is safely kept with the user (e.g., as a
token, or a seed stored at the user’s device, etc.). This key is used to generate its protected
reference during the enrollment phase (respectively registration phase) and its protected
probe during the verification phase (respectively identification phase).
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Figure 2: Recognition (identification/verification) in the Remote Cancelable Biometric
System.

For the one-to-one comparison, the protected probe needs to be compared to the corre-
sponding protected reference, and based on the comparison score a decision is made. For
the one-to-many comparison, the protected probe needs to be compared to all protected
references stored in the database, and based on the identification scenario (closed-set or
open-set based) decision is made. In the case of closed-set identification, the rank of refer-
ences is considered and the identity of the reference with the highest similarity is returned.
In the open-set scenario, in addition to the value of the highest similarity is also compared
to the threshold to avoid false identification.

In order to show the difference between the application-specific and user-specific scenar-
ios, Figure 1 and Figure 2 present an overview of the system in both application-specific
and user-specific key settings. In the application-specific key setting, we consider that for
the same application, the users are sharing the same key that was distributed among the
users during the setup phase. The risk of doing so is that this multiplies the chances of get-
ting this key exposed. Therefore, for a remote biometric recognition scenario, it is safer to
consider a user-specific key setting instead of an application-specific key setting in order
to restrict the impact of the damage resulting from a leaked key.

3 Experiments

3.1 Experimental Setup

To evaluate the performance of the remote cancelable biometric system presented in Sec-
tion 2, we consider face and speaker recognition in our experiments. For the face recog-
nition system, we use ArcFace [De19] as our feature extractor and use the IARPA Janus
Benchmark C (IJB-C) [Ma18b] dataset. The IJB-C dataset, which is one of the most chal-
lenging evaluation datasets in face recognition research, contains 31,334 images of 3,531
subjects. We use the test4-G1 protocol in our experiments. For speaker recognition, we
use ECAPA-TDNN [DTD20] as our feature extractor and use the NIST-SRE04-16 [Sa17]
dataset. We use the development set of this dataset, which includes 1407 samples from 85
identities.
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In our experiments, we consider different cancelable biometric methods, including Bio-
Hashing [JLG04], Multi-Layer Perceptron (MLP) Hashing [OSKHM22b], and Index-of-
Maximum (IoM) Hashing [Ji17] (i.e., Gaussian random projection-based hashing, shortly
IoM-GRP). We apply these schemes for face recognition and speaker recognition for
both verification and identification scenarios. We should note that we do not evaluate
the security aspect of this system (such as irreversibility and unlinkability) since the se-
curity of the mentioned cancelable biometric methods have been studied in the litera-
ture [JLG04, OSKHM22b, Ji17, OSSM23].

We use the Bob3 toolbox [An12, An17] for implementation of the biometric pipeline in
our experiments. To implement the cancelable biometric methods (i.e., BioHashing, MLP-
Hashing, and IoM-GRP), we use the open-source implementation of these BTP schemes
in Bob [OSM21, OSKHM21, OSKHM22b, Ot23]. The source code from our experiments
is publicly available to facilitate the reproducibility of our results4.

3.2 Analaysis

In order to evaluate the effect of the key with respect to the protected template generation,
we compare the biometric performances of both application-specific key and user-specific
key settings. We consider verification and identification (both open-set and closed-set) for
the above scenarios in our experiments, and distinguish between the following experimen-
tal scenarios for verification (and respectively for identification):

• Unprotected scenario (baseline): an unprotected probe Pi is compared against an
unprotected reference R j (respectively references {R j} j).

• Application-specific key scenario: a protected probe Pi generated with the key K is
compared against a protected reference R j (respectively references {R j} j) generated
with the same key K.

• User-specific key scenario: a protected probe generated with a key Ki is compared
against a protected reference (respectively references {R j} j) generated with its cor-
responding key K j.

We consider verification and identification (both open-set and closed-set) for the above
scenarios in our experiments.

3.2.1 Verification Evaluation

Figure 3 shows the Detection Error Tradeoff (DET) curves for evaluation of the remote
cancelable biometric system using different BTP schemes for face and speaker recognition.
As the results in this figure show the user-specific key achieves superior performance than
the application-specific key and unprotected settings.
3 Available at https://www.idiap.ch/software/bob/
4 Source code: https://gitlab.idiap.ch/bob/bob.paper.biosig2023_remote_cb
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Figure 3: DET curves of remote cancelable biometric system for face recognition (first
row) and speaker recognition (second row) using (a) BioHashing, (b) MLP-Hashing, and
(c) IoM-GRP schemes.
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Figure 4: CMC curves (closed-set identification) of remote cancelable biometric system for
face recognition (first row) and speaker recognition (second row) using (a) BioHashing,
(b) MLP-Hashing, and (c) IoM-GRP schemes.

3.2.2 Identifi cation Evaluation

Figure 4 and Figure 5 show the Cumulative Match Characteristics (CMC) plots (closed-set
identification) and Detection and Identification Rate (DIR) plots (open-set identification)
for face and speaker recognition in our remote cancelable biometric system using different
BTP schemes. Similar to the verification scenario, these results also show that the user-
specific key can lead to superior performance. We should highlight that as also discussed
in Section 2, in application-specific key setup, the system is at risk that if the key is leaked
all the templates need to be replaced with new protected templates. However, the use of
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Figure 5: DIR curves (open-set identification) of remote cancelable biometric system for
face recognition (first row) and speaker recognition (second row) using (a) BioHashing,
(b) MLP-Hashing, and (c) IoM-GRP schemes.

a user-specific key can enable dynamic management of protected template storage. In the
event that the key for one template is leaked, the revocation of that specific template is
sufficient, preserving the protection of the remaining protected templates.

4 Conclusion

In this paper, we presented a remote cancelable biometric system and investigated its ap-
plication for verification and identification (open-set or closed-set) applications. In the pro-
posed protocol, trusted users can use a key to generate and send the protected templates
to the server, and the server can use the protected template for comparison and decision
making for recognition. We explored both user-specific and application-specific key sce-
narios in our remote cancelable biometric system. In contrast to the application-specific
key setting, our experiments demonstrate that the user-specific key setting enhances bio-
metric performance and mitigates the spread of damage caused by a compromised user’s
key. In addition to the application-specific key setting, our remote cancelable biometric
system enables employing the user-specific key setting for verification and identification
scenarios.
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[BCK09] Bringer, Julien; Chabanne, Hervé; Kindarji, Bruno: Anonymous identification with
cancelable biometrics. In: 2009 Proceedings of 6th International Symposium on
Image and Signal Processing and Analysis. IEEE, pp. 494–499, 2009.

[BG22] Bansal, Vidhi; Garg, Surabhi: A cancelable biometric identification scheme based
on bloom filter and format-preserving encryption. Journal of King Saud University-
Computer and Information Sciences, 34(8):5810–5821, 2022.

[De19] Deng, Jiankang; Guo, Jia; Niannan, Xue; Zafeiriou, Stefanos: ArcFace: Additive
Angular Margin Loss for Deep Face Recognition. In: Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 4690–4699, 2019.

[DTD20] Desplanques, Brecht; Thienpondt, Jenthe; Demuynck, Kris: ECAPA-TDNN: Em-
phasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker
Verification. In: Proc. of Interspeech 2020. pp. 3830–3834, 2020.

[ISO22] ISO/IEC 24745:2022(E) Information technologyy, cybersecurity and privacy protec-
tion – Biometric information protection, February 2022.

[Ji17] Jin, Zhe; Hwang, Jung Yeon; Lai, Yen-Lung; Kim, Soohyung; Teoh, Andrew
Beng Jin: Ranking-based locality sensitive hashing-enabled cancelable biometrics:
Index-of-max hashing. IEEE Transactions on Information Forensics and Security,
13(2):393–407, 2017.

[JLG04] Jin, Andrew Teoh Beng; Ling, David Ngo Chek; Goh, Alwyn: Biohashing: two fac-
tor authentication featuring fingerprint data and tokenised random number. Pattern
Recognition, 37(11):2245–2255, 2004.

[JS06] Juels, Ari; Sudan, Madhu: A fuzzy vault scheme. Designs, Codes and Cryptography,
38(2):237–257, 2006.

[JW99] Juels, Ari; Wattenberg, Martin: A fuzzy commitment scheme. In: Proceedings of the
6th ACM Conference on Computer and Communications Security. pp. 28–36, 1999.

[Ma18a] Mai, Guangcan; Cao, Kai; Yuen, Pong C; Jain, Anil K: On the reconstruction of
face images from deep face templates. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41(5):1188–1202, 2018.

[Ma18b] Maze, Brianna; Adams, Jocelyn; Duncan, James A; Kalka, Nathan; Miller, Tim;
Otto, Charles; Jain, Anil K; Niggel, W Tyler; Anderson, Janet; Cheney, Jordan et al.:
Iarpa janus benchmark-c: Face dataset and protocol. In: 2018 international confer-
ence on biometrics (ICB). IEEE, pp. 158–165, 2018.

[Mu19] Murakami, Takao; Fujita, Ryo; Ohki, Tetsushi; Kaga, Yosuke; Fujio, Masakazu;
Takahashi, Kenta: Cancelable permutation-based indexing for secure and efficient
biometric identification. IEEE Access, 7:45563–45582, 2019.

292



Remote Cancelable Biometric System for Verification and Identification Applications
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Facial image reconstruction and its influence to face
recognition

Filip Pleško1, Tomáš Goldmann2, Kamil Malinka3

Abstract: This paper focuses on reconstructing damaged facial images using GAN neural networks.
In addition, the effect of generating the missing part of the face on face recognition is investigated.
The main objective of this work is to observe whether it is possible to increase the accuracy of face
recognition by generating missing parts while maintaining a low false accept rate (FAR). A new
model for generating the missing parts of a face has been proposed. For face-based recognition,
state-of-the-art solutions from the DeepFace library and the QMagFace solution have been used.

Keywords: Face reconstruction, Face recognition, GAN, ArcFace, SFace, QMagFace

1 Introduction

Can reconstructing a corrupted facial image improve facial recognition accuracy? Image
reconstruction is a challenging task, in which it is necessary to be sure that the drawn
missing part blends well with the known environment and at the same time that the re-
sulting image is not blurred. This paper focuses on the reconstruction of the face image,
which adds even more difficulty to this task as the face contains many unique key features.
Suppose a key feature such as an eye, nose, or mouth is covered. In that case, generating
this feature in the correct location is necessary, as even a slight deviation can cause the
resulting face to be deformed and easily recognizable as the generated one.

Current existing solutions try to solve this problem using different GAN architectures.
This model architecture contains two other models competing against each other, playing
the adversarial game in which they are trying to beat each other and, by doing so, improve
the quality of the output. Initially, the generated images are blurry, and it is easy for the
Discriminator to detect them. The Generator gradually improves and generates sharper
images which are much more difficult to tell apart from real.

This paper further studies the effect of face reconstruction on face recognition tasks. We
compare several state-of-the-art solutions for the face recognition task to study whether the
reconstruction helps increase recognition precision while maintaining a low rate of false
accept rate.
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The main contributions of this paper may be stated as follows:

• We study how different layers of a neural network affect the reconstruction of a
corrupted facial image.

• We perform experiments to evaluate the influence face reconstruction algorithm to
face recognition performance.

2 Related works

A task such as facial reconstruction has been studied in several different papers. Each
of them has developed a unique way of approaching the problems inherent in this task.
In designing our solution, we came across approaches such as Generative face comple-
tion [Li17a], G-NST [ZHZ20] and DFNet [Ho19]. The Generative face completion is spe-
cific by using two discriminators and a semantic parsing network. One discriminator is
used as a local loss for generating the missing parts and the other one is used as a global
loss to check whether the generated parts fit into the whole image. The G-NST method
uses an additional application of neural style transfer to achieve visual coherence. The
method first performs image style clustering using a special model that recognizes dif-
ferent facial features. Then the style transfer is performed using VGG-16, which ensures
visually pleasing results. DFNet is based on the well-known U-Net network, into which
they designed a special fusion block that they connected to several decoder layers. This
approach is designed to focus mainly on filling in the missing parts, as opposed to other
solutions that try to generate the image as a whole.

In the last 10 years, face recognition possibilities have improved enormously. In 2014,
an algorithm called DeepFace [Ta14] was introduced, which can be considered as the
initiator of using a neural network approach to solve the face recognition problem. Con-
sequently, FaceNet outperformed the algorithm. During this time, researchers are making
efforts to obtain larger datasets of face images. Moreover, one potential way to improve
the algorithms is by modifying the loss function. Modern loss functions for training neural
networks in face recognition utilize the angle distribution of feature vectors, such as A-
Softmax [Li17b], AM-Softmax [Wa18a], CosFace [Wa18b], ArcFace [De22], and SFace
[Zh21]. In addition to the existing algorithms, a new approach utilizing feature distribu-
tion, similar to the previous algorithms, was published in 2021 [Me21]. This approach
also takes into account the magnitude size of the feature vectors, known as MagFace. Fur-
thermore, in [Te21], the algorithm was extended by adding the Quality Aware Metric as
a comparison metric. Overall, for our experiments, we chose SFace and ArcFace as rep-
resentatives that utilize feature distribution and Magnitude-Aware Loss function based on
both angle distribution and magnitude size of the feature vector.

In our approach to corrupted image reconstruction, we have explored several different
modifications of the neural network architecture. Our final model is different in that it
uses strided convolutions for downsampling instead of pooling layers. We replaced fully
connected layers with convolutions and added skip connections between the encoder and
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decoder. All these modifications prove their ability to improve the final reconstruction
results.

Nowadays, we focus on improving face recognition specifically for special cases of facial
images, including damaged images, images with occlusions on the face, faces captured in
difficult poses, and face images affected by varying lighting conditions. However, the im-
age reconstruction algorithms are evaluated by image quality metrics that do not consider
the ability to improve face recognition.

3 Face reconstruction

This section proposes our approach to reconstructing a corrupted facial image. First, we
created a baseline model for image reconstruction. Then, we identified suitable modifica-
tions that could positively impact the credibility of the facial reconstruction. When design-
ing the individual modifications, we were inspired by the paper from 2015 by Alec Rad-
ford, et al. [RMC16]. We individually investigated each modification, and the successful
modifications were combined together. Finally, we applied those modifications to existing
architectures and selected the best-performing one for face recognition experiments. At
the end of the section, we introduced a dataset to simulate corrupted face images.

3.1 Architecture of proposed neural network

In our efforts to create a model that would best reconstruct the damaged areas in the image,
we first created a base model to which we added various modifications and investigated
how each affected the quality of the result. We assembled the final model from the modi-
fications that helped the model improve the quality of the result.

The base model generator consisted of four encoder blocks and four decoder blocks, where
each of the encoder blocks contained a convolutional layer followed by a MaxPooling
layer. The encoder was ended by two dense layers, after which the decoder was connected.
The decoder combined convolutions and transpose convolutions sequentially to produce
the reconstructed image.

In the first modification, we tried to remove the fully connected layers from the generator
model and replace them with convolutional layers. The network modified in this way has
significantly fewer parameters, which allows more filters to be added to the convolutions.
Adding more filters to each convolution aims to improve the model’s ability to extract
spatial features.

The second change focuses on replacing pooling layers with convolutional layers. If we
properly set strides parameters we can retain the down-sampling functionality while pre-
serving important information. The use of these so-called strided convolutions, as opposed
to deterministic pooling layers, allows the network to learn its own spatial down-sampling.
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In one of the modifications, we also tried to increase the number of convolutional layers
in each encoder block to improve feature extraction. However, this modification decreased
the final quality and was not used in the final model.

In the last modification of the model design, we observed the effect of adding skip connec-
tions to the generator on the image reconstruction quality. Direct skip connections between
encoder and decoder layers can be used to preserve information about important details
during data encoding and decoding. This allows the network to retain detailed information
from higher resolutions.

Prior designs have aimed to improve the generator by presenting several architectural
changes. These changes have been proposed as solutions to the challenges associated
with the generator’s performance. Some of the modifications were found to be suitable
for face reconstruction. The following proposal investigates whether combining the in-
dividual modifications into a single model can improve the results even further. It also
examines whether the combination of the individual modifications can work together. The
combined model architecture is shown in Figure 1.
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Fig. 1: Architecture of generator using all modifications together.

To find the best working architecture, we tried several different ones. We used models from
the keras unet collection [Sh21], updated them with previously mentioned modifications,
and tested their performance. The architecture with the best results will be selected for the
face recognition experiments.

An important part of the GAN model is the discriminator. Discriminator has original and
generated images on its input. Its task is to determine which image was generated and
which is real. The harder it is for the discriminator to determine the difference between
those two images, the better the generator results are. This feedback is used in the generator
to improve the generation. For this task, we used a convolution neural network that extracts
input features and classifies them into two classes. The architecture of this discriminator
is shown in Figure 2.
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Fig. 2: Discriminator architecture
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3.2 Training dataset

In this paper, we used CelebA [Li15] dataset for image reconstruction and face recognition
tasks. This dataset does not contain damaged images, so some modification was necessary.
Therefore, we created the working dataset that we called CelebA-C. This dataset was cre-
ated by randomly drawing 30 lines of width 8− 10 px and length 10− 20 px filled with
RGB Gaussian noise over the face in each image from the original CelebaA dataset. Fig-
ure 3 shows an example of corrupted images.

Fig. 3: Example of damaged images.

4 Experiments

First, we evaluated and compared the face reconstruction algorithm using PSNR and
SSIM, see Section 4.1. Although metrics are commonly used to evaluate the performance
of image reconstruction algorithms, these metrics do not consider the impacts on biometric
recognition. Due to this drawback, we employ face recognition algorithms to analyze the
influence on the accuracy of face recognition.

4.1 Performance metrics

Nowadays, the most commonly used metrics to determine the quality of a reconstructed or
compressed image are PSNR (Peak Signal to Noise Ratio) (Eq. 1) and SSIM (Structural
Similarity Index) (Eq. 2) [HZ10]. Both metrics are commonly used in image comparison to
determine how much the modified image has changed from the original image. Calculating
these metrics allows us to compare our solution to existing ones.

PSNR = 10× log10

(
(2n−1)2

MSE

)
, (1)

where MSE is the average squared difference between corresponding pixels of the original
and processed images, and n represents the number of bits per pixel in each image, most
commonly 8.

SSIM(I, I′) =
(2µI µI′ +C1)(2σII′ +C2)(

µ2
I +µ2

I′ +C1
)(

σ2
I +σ2

I′ +C2
) , (2)

where µI and µI′ are mean values of the images, σII′ stands for the covariance of the
images and σ2

i and σ2
I′ are differences between two images. C1 = (k1L)2, C2 = (k2L)2 are

constants where k1 = 0.01, k2 = 0.03, L = 255 [WSB03].
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4.2 Face reconstruction

We trained and tested the base architecture and all modifications individually. This allowed
us to select modifications that improved the final quality and create the architecture that
pushed the quality further. The comparison of individual modification to the base model is
shown in Table 1.

Tab. 1: Comparison of individual modifications with the base model.

Model PSNR SSIM

Base model 22.641 0.710
No Dense layers 28.814 0.893
Strided convolutions 24.015 0.751
Skip connections 25.227 0.916

Using modifications that improved the generated image quality, we created a new model
based on the base model but containing all those modifications. At the same time, we ap-
plied all those modifications to several architectures from the keras unet collection library
and tested what architecture performed the best on image reconstruction. Of all the ar-
chitectures we tested, U-net and V-net performed best, with V-net leading. Architecture
performance comparison is shown in Table 2 with state-of-the-art solutions included as
well. Examples of generated images by combined, U-net, and V-Net models are shown in
Figure 4.

Input U-Net V-Net Mod. combination GT

Fig. 4: Comparison of 3 different generators for generating damaged facial parts. We compare our
combined model with tested modifications implemented into U-Net and V-Net architectures.

4.3 Face recognition

The second goal of the research is to evaluate the influence of face reconstruction on
face recognition. For this purpose, we choose three different algorithms among which the
QMagFace [Te21] algorithm is considered the most recent state-of-the-art algorithm for
face reconstruction. In the case of ArcFace [De22] and SFace [Zh21], we used L2-distance
as a distance metric to determine matches and non-matches. The embeddings generated by
QMagFace are compared using the quality-aware score function.
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Tab. 2: Comparison of performance of our model with existing solutions.

Model PSNR SSIM

Updated U-Net 33.736 0.968
Updated V-Net 34.326 0.972
Modification combination 33.659 0.969
Generative face completion 19.500 0.784
G-NST 29.655 0.937
DFNet 31.662 0.965

In Table 3, the accuracy is shown for the original CelebA dataset, CelebA-C, and for
three datasets obtained by individual face reconstruction algorithms. It is obvious that
face reconstruction based on the V-Net (#2) architecture provides the best accuracy for all
selected face recognition algorithms.

Tab. 3: Summary of face recognition accuracy on the variants of CelebA dataset.

CelebA CelebA-C U-Net (#1) V-Net (#2) Proposed (#3)

SphereFace 0.795 0.681 0.757 0.758 0.756
ArcFace 0.864 0.602 0.819 0.824 0.810
QMagFace 0.977 0.909 0.964 0.966 0.964

In addition, to better visualize the score distributions, the impostor and genuine density
distributions were generated for the CelebA dataset, CelebA-C, and reconstructed images
using the V-Net face reconstruction algorithm (#2). Due to the similarity between SFace
and ArcFace, we introduced the score density distributions only for ArcFace and QMag-
Face, see Figure 5. As can be seen in Figure 5, the distribution of match pairs produced
by the ArcFace algorithm after reconstruction resembles the distribution in the original
dataset. However, in the case of the QMagFace algorithm, we can see the discrepancy be-
tween the distribution obtained from the original CelebA dataset and the distribution from
reconstructed images. This may be due to the use of a quality-aware algorithm that takes
into account the quality of the face images.

We found that face reconstruction has a positive effect on face recognition. It is evident that
for all three recognition algorithms, the use of the reconstruction algorithm had a positive
impact on accuracy.

5 Conclusion

In this work, we have explored various modifications to the neural network architecture
to ascertain their positive impact on the reconstruction of the corrupted face image. Based
on the findings, we have developed and trained a novel model capable of high-quality
reconstruction. When comparing the PSNR and SSIM metrics of our solution with the
existing ones, we can see that our solution is as good as the others and even slightly bet-
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(a) CelebA dataset - QMagFace (b) CelebA dataset - ArcFace

(c) CelebA dataset consists of corrupted images -
QMagFace

(d) CelebA dataset consists of corrupted images -
ArcFace

(e) Reconstructed CelebA images using V-Net (#2) -
QMagFace

(f) Reconstructed CelebA images using V-Net (#2)
- ArcFace

Fig. 5: Genuine and impostor score distributions obtained using QMagFace (a,c,e) and ArcFace
(b,d,f).

ter. We then used this model to investigate how the reconstruction of a corrupted image
affects face recognition. We have found from the results that the use of neural networks
can signi®cantly improve the ability of face recognition. The accuracy obtained by evalu-
ating the matched pairs produced by QMagFace applied on CelebA is 97.7 % and for the
CelebA-C is only 90.9 %. After reconstructing dataset images, the QMagFace accuracy is
96.4 %. Overall, the recognition accuracy using FaceQMag on the CelebA-C test dataset
after image reconstruction was only 1.3 % lower than in the case of the original CelebA.
A disadvantage of this solution is that the damage on the image must be masked with
Gaussian noise.
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Human-centered evaluation of anomalous events detection
in crowded environments

Giulia Orrù1, Elia Porcedda1, Simone Maurizio La Cava1, Roberto Casula1, Gian Luca
Marcialis1

Abstract: Anomaly detection in crowd analysis refers to the ability to detect events and people’s be-
haviours that deviate from normality. Anomaly detection techniques are developed to support human
operators in various monitoring and investigation activities. So far, the anomaly detectors’ perfor-
mance evaluation derives from the rate of correctly classified individual frames, according to the
labels given by the annotator. This evaluation does not make the system’s performance appreciable,
especially from a human operator viewpoint. In this paper, we propose a novel evaluation approach
called “Trigger-Level evaluation” that is shown to be human-centered and closer to the user’s per-
ception of the system’s performance. In particular, we define two new performance metrics to aid
the evaluation of the usability of anomaly detectors in real-time.

Keywords: crowd, anomaly detection, human-centered, evaluation.

1 Introduction

Anomaly detection in crowd analysis is the process of identifying unusual or unexpected
behaviours within a group of individuals [SSM17]. This analysis is widely utilized in se-
curity settings, where it can aid in identifying potential threats or incidents that require
human intervention [Cr13]. The research community has proposed various methods for
detecting irregularities, anomalies, or, in general, patterns that are not representative of
expected behaviours in crowded environments. Among the techniques, it is possible to
distinguish between methods relying on hand-crafted features and methods relying on
deep learning features [AA22]. The textural and spatio-temporal features based on Ga-
bor filters [Ha19] and Optical Flow [Zh15] and methods based on motion information,
such as the speed of groups aggregation and disintegration [Or21], are examples of hand-
crafted descriptors. However, designing an effective hand-crafted descriptor is not easy.
As in other research fields, devoting the feature extraction step to deep classifiers raised
the research community’s attention. The most common approaches are based on ensemble
[Si20], spatio-temporal CNNs [Zh16], and LSTM networks [SV22]. Consequently, data
labelling has become increasingly important for machine learning algorithms to learn rel-
evant information from annotated data. Despite the crucial role of labelling, there is no
standard methodology nor an agreement on how to proceed [Wa22]. This is partially due
to the multitude of tasks that can be included in crowd analysis, such as anomaly recog-
nition and crowd density assessment [AA22]. However, even when the task is common,
in addition to the annotator subjectivity, there may be differences in labelling approaches,
leading to difficulty in comparing state-of-the-art (SOTA) methods [Be21]. In the detec-
tion of anomalous events in crowded environments, the predominant evaluation is at the

1 University of Cagliari, DIEE, Piazza d’Armi, I-09123 Italy, {giulia.orru, simonem.lac, roberto.casula, mar-
cialis}@unica.it, e.porcedda3@studenti.unica.it
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frame-level, whereby the detection models ¯ ag each video frame as normal or anoma-
lous, and the percentage of correctly classi®ed frames is assessed [Lu20]. This evaluation
does not consider the correct detection of the anomaly onset; therefore, it cannot assess
the system’s usefulness in real-time applications. In other words, we believe that a most
appropriate, human-centered approach to evaluate the performance of crowd anomaly de-
tection systems is necessary. We propose a novel one that allows the system’s evaluation at
the trigger level. This means that the proposed approach’s purpose is to evaluate the proper
detection of the onset of the anomaly. With onset, we refer to the time instant of the begin-
ning of the anomalous sequence. In fact, in real-time applications, promptly detecting the
start of the anomaly is essential to ensure effective intervention. From the point of view of
the human operator, the system works correctly if it alerts him/her of an anomaly in a rea-
sonable time window and does not raise false alarms. With this aim, the proposed approach
led to the de®nition of two new performance metrics, which we assessed by experiments
on two SOTA anomaly detection systems [Ko19, Or21]. Therefore, after overviewing the
standard evaluation metrics (Section 2), we describe our human-centered approach leading
to two new ones (Section 3). Experiments showing the pros and cons of our contributions
are reported (Section 4), and the paper concludes accordingly (Section 5).

2 Common evaluation metrics for crowd anomaly detection

Detecting anomalies in crowded environments is commonly treated as a two-class classi®-
cation problem [Ma10]. The Frame-Level (FL) evaluation criterion is the most commonly
employed for video surveillance applications where a time frame sequence is available
[RJV22]. A label for each video frame indicates whether or not it contains an anomaly
(Figure 1). This criterion is useful for assessing the performance of these systems for of-
¯ ine analysis, as in calculating the duration of an anomalous event present in a video. This
is achieved by providing the probability of the presence of an anomaly in a frame at a
certain instant t or in a time interval including it, then thresholding such a probability to
decide whether the sample has to be considered normal or anomalous. It describes how to
count true positives (TP), that is, anomalous frames correctly detected, and false positives
(FP), that is, normal frames incorrectly classi®ed as abnormal, at a given anomaly score
threshold. Based on this count, it is possible to obtain various performance metrics such as
accuracy, AUC, ROC curves, confusion matrices, F1-score, precision and recall [Je23].

Figure 1: The FL evaluation criterion allows evaluating the duration of an anomaly: in the
ground truth, all frames containing an anomaly are labelled with label 1 (positive sample).

However, these metrics allow for evaluation of the classi®er used as an anomaly detector,
but from a human operator’s point of view, they may not be entirely meaningful. In fact,
the operator’s interest is to be promptly noti®ed when the anomaly occurs. For this rea-
son, the Frame-Level evaluation does not allow the assessment of the responsiveness of
the anomaly detection system effectively and, thus, whether the system is able to warn a
human operator in a timely fashion. Some SOTA works evaluate the state changes, i.e. the
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onset and the end of the anomaly [Br18, SCS18]. However, the evaluation criterion is not
standard: in [Br18], the authors evaluate the state change detection error on the total num-
ber of frames; in [SCS18], the false alarms percentage is instead calculated. Other temporal
metrics for video anomaly detection have been defined in [DY22]. In particular, the De-
tection Delay, which describes the time between an anomaly and a subsequent alarm, the
Alarm Precision, which evaluates the start number of anomalies detected correctly, i.e. in
a time window following the actual onset, and the Average Precision Delay, a combination
of the previous two have been proposed. These metrics constitute a first step for evalu-
ating the real-time use of a crowd anomaly detector. However, they evaluate an alarm as
correct only if subsequent to the ground truth, while as incorrect even if it is raised imme-
diately before the occurrence of the trigger. Therefore, these performance metrics could be
strongly influenced by the human operator’s subjectivity in labelling the occurrence of the
trigger since, if it is considered to be delayed with respect to the actual trigger, the alarm
triggered by the system could be wrongly considered incorrect. Hence, they still do not
take into account the subjectivity of the labelling, making it not human-centered.

3 Trigger-Level evaluation

While designing a real-time crowd anomaly detector, it is essential to determine if the
system warns the human operator in time for an intervention. This determination can be
made by assessing whether each video frame or batch of frames contains the start of the
anomaly or not. Starting from the classification at the frame-level and exploiting the tem-
poral continuous information of the video frames, it is, in fact, possible to obtain further
characterizations of the analyzed scene, including the trigger of the anomaly. A sequence
of frames classified as anomalous in the frame-level evaluation can be considered as a sin-
gle anomalous sequence in the trigger-level (TL) evaluation. In this case, the initial frames
of the sequence correspond to the trigger (Figure 2). From the human operator’s point of
view, knowing when to act is crucial. The duration of the anomalous event is much less
critical, especially when the priority is to act fast. The TL evaluation measures the number
of alarms successfully generated during an anomalous event onset versus the number of
false alarms. Since this evaluation criterion is proposed to highlight the system’s function-
ing in support of the human operator, we propose a parameter called “reaction window”
r. The reaction window sets the time frame for which the human interprets two or more
consecutive alarms as a single alarm. Consequently, we can evaluate the system’s ability to
successfully detect the anomaly trigger through the Trigger-Level Detection Rate (TLDR).
In particular, it is possible to calculate the TLDR relative to a given reaction window r as:

TLDR(r) =
# detected anomaly onsets

# ground truth anomaly onsets
=

∑N
i=1 doi

N
where doi =

{
0, if ∑M

j=1 A j ∈ [oi− r
2 ,oi +

r
2 ] = 0

1, if ∑M
j=1 A j ∈ [oi− r

2 ,oi +
r
2 ] ̸= 0

(1)

and N is the number of anomaly onsets o = o1, ...oN in the ground truth, while M is the
number of output alarms A = A1, ...,AM of the detection system. doi is 1 only when the
number of alarms A that fall in the oi onset reaction window is equal to or greater than 1.
It is important to point out that the sample of the onset of anomalous events can consist of
a single frame or a batch of frames.
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Another parameter of fundamental importance is the False Trigger Detection Rate (FTDR):

FTDR(r) =
# false detected anomaly onsets
duration of the sequence (time)

=
∑M

j=1 FA j

time
(2)

where FA j =

{
0, if ∑N

i=1 A j /∈ [oi− r
2 ,oi +

r
.2 ] ̸= 0

1, if ∑N
i=1 A j /∈ [oi− r

2 ,oi +
r
2 ] = 0 & (∑ j−1

k= j−r Ak = 0)
(3)

thus, FA j is a trigger that falls outside any reaction window associated with ground truth
onsets o and such that there are no triggers between the previous r samples. In fact, two or
more consecutive triggers in the same reaction window are considered a single false alarm.

Figure 2: The proposed TL criterion allows using the detection system in a real-time con-
text to intervene promptly: in the ground truth, only the frames relating to the anomaly
onset are labelled with label 1 (positive sample).

The TL evaluation criterion, therefore, allows the evaluation of the usability of the detector
in real time. A high TLDR indicates that the system can detect the onset of anomalies. A
low FTDR indicates that the system does not trigger the human operator unnecessarily.
Moreover, the TL evaluation criterion overcomes another limitation of the FL criterion
given by comparing models that analyze an input of different sizes: if these take a different
number of frames as input, then the number of analyzed samples is different, making the
comparison unfair. The TL evaluation, instead, considering a single batch of frames as the
beginning of the anomaly, allows for a more balanced comparison.

4 Experimental analysis

The models tested in this analysis are two: (i) a 3D-Shuf¯ eNet network (abbreviated SNet)
[Ko19], trained to perform human action recognition and ®ne-tuned on FL crowd anomaly
detection. This model returns the probability that each input sequence of 16 frames con-
tains an anomaly; (ii) an SVM (abbreviated GC SVM) that classi®es the features obtained
by analysing the speed dynamics of group disruptions and aggregations [Or21]. This model
returns the probability that each input sequence of 15 frames contains an anomaly.

Both models were trained in FL mode and we considered a batch of frames as anomalous
whenever the probability predicted by the model is greater than 50%. Therefore, we added
a module that converts the predicted FL labels into TL labels. Hence, the models can
operate in both modes. In particular, we decided to consider as a trigger the ®rst anomalous
prediction of a series of at least ®ve anomalous FL predictions. This conversion module
can also be implemented with different approaches and can be incorporated into any crowd
anomaly detection model that generates FL outputs.

To evaluate the proposed evaluation criteria, we employed the Motion Emotion dataset
(MED), representing a fully controlled scenario, and the UFC-Crime dataset, representing
an uncontrolled scenario. MED has 31 video sequences totalling around 44000 frames (30
frames per second) acquired with a ®xed camera at a height overlooking individual paths.
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The videos include normal and abnormal scenarios, with various crowd densities, labelled
frame by frame as one of 5 classifications (panic, fight, congestion, obstacle, and neu-
tral). For this work, starting from the TL labels produced in [Or21], we extracted the FL
labelling. The UCF-Crime dataset contains 1900 surveillance videos containing normal
events and 13 anomalies, including arrest, explosion, fight, and shooting. Due to the miss-
ing FL labels, we selected and labelled 240000 frames of 29 videos containing anomalous
events more related to crowd analysis, namely fights and shootings.

Following [Or21], in this study, we considered non-overlapped groups of 20 frames, con-
sidering each of these batches of frames as an anomalous sample whenever one or more
of the frames contains any event considered an anomaly, a normal sample otherwise. For
the TL evaluation, we considered as triggers the first batch of frames of a sequence of con-
secutive batches classified as anomalous. In particular, we assessed the performance with
both the FL and the TL criteria through a leave-one-out cross-evaluation. Thus, starting
from N videos of each dataset, we excluded a single video at a time and tested the model
trained on the N-1 videos with it for each repetition of the evaluation. We performed the
experiments separately for the two datasets. For each repetition, we trained the model for
60 epochs with a learning rate of 0.01, reduced by a factor of 0.1 after epochs 30 and 45,
employing batches of size equal to 128.

4.1 Results

In this Section, we point out the information we may obtain by Trigger-Level evaluation,
comparing such information with the Frame-Level evaluation, and how they can be con-
sidered “complementary”. The results showing the difference between the two evaluation
criteria are summarized in Table 1.

Frame Level Trigger Level
Dataset Method Accuracy Precision Recall F1 EER TLDR FTDR

MED SNet 73.89% 59.91% 62.65% 61.25% 28.12% 85.19% 0.45
GC SVM 57.27% 53.35% 56.79% 55.02% 54,86% 77.78% 1.01

UCF-C SNet 65.41% 50.00% 49.00% 51.00% 26,99% 53.00 % 0.75
GC SVM 51.33% 61.04% 29.07% 39.39% 41.80% 46.67% 0.52

Table 1: FL and TL evaluations. The two criteria should be read as complementary.

The MED dataset simulates a controlled context with fixed-position cameras and sparse
crowds. In the FL classification mode, SNet correctly classifies 73.89% of the batches,
whereas the GC SVM correctly classifies just 57.27% (Figure 3). The difference in per-
formance is further highlighted by the ROC curves, representing the discrimination ca-
pability of the models at various thresholds, from which it is possible to observe higher
overall performance with the SNet (AUC = 0.78) than with the GC SVM (AUC = 0.52).

In the FL evaluation, the recall indicates the detectors’ ability to recognise abnormal
frames. For both models, the recall is less than 65%. A high percentage of anomalous
frames are therefore not detected by the system: this results in a low precision in estimat-
ing the duration of the anomaly.

To evaluate whether the system is responsive, we should analyze the results with the TL
evaluation. The TLDR, equal to about 85% for SNet and 78% for the GC SVM, gives
us a precise indication of the number of anomalous sequences correctly signalled to the
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(a) (b) (c) (d)

Figure 3: Confusion matrix (CF) and ROC curves of the FL evaluation for the SNet (a-c)
and the GC SVM (b-d) approach on the MED dataset.

operator. The FLDR enables us to determine whether the detector can be utilised in real-
time: we obtained a false alarm every two minutes for the SNet method and one per minute
for the GC SVM. This frequency of false alarms could represent a limit for many real-
world applications since it could make the human operator lose trust in the detector.

We can inspect and discuss the reasons behind TL results through plots showing the ground
truth and the alarms generated by the system of some test videos (Figures 4 and 5). The
green areas of length equal to 40 batches related to the reaction window within which a
trigger, produced by the system and marked with a red line, is considered correct. These
areas are placed before and after the anomaly ground truth labels, marked with a green
line. Among all the videos, three of them have been chosen which are signi®cant due to the
model behaviour (Figure 4): Video 003- In this panic situation, the SNet precisely detects
the anomaly without any delay. Instead, the GC SVM generates two false alarms, probably
due to variations in the speed of disintegration of the groups that the system detects as
anomalous. From the SNet FL evaluation, we obtained that 87.50% of the samples are
correctly recognized for this video. The TL evaluation shows clearly and precisely that the
SNet would be of fundamental importance in signalling this anomaly to a human operator.

(a) 003 SNet (b) 003 GC SVM (c) 009 SNet (d) 009 GC SVM

(e) 022 SNet (f) 022 GC SVM

Figure 4: Trigger evaluation of video 003 (a-b), 009 (c-d) and 022 (e-f) of the MED dataset.

Video 009- This video contains only two groups of people who quickly disintegrate after
a shot: both detectors do not work properly, the GC SVM does not detect any anomaly,
while the SNet detects the anomaly too early, generating two false alarms. Analyzing the
FL classi®cation for the SNet, we noticed that 90% of the frames are classi®ed as anoma-
lous and only 30.91% of the samples are correctly classi®ed. This is because the network
considers the overall behaviour of the crowd to be anomalous: indeed, such an arrange-
ment is unusual and typical of speci®c contexts such as demonstrations or rallies. Unlike
the FL evaluation, the TL evaluation allows the simulation of a real application in which
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the operator would be warned immediately of the unusual behaviour of the crowd and
would have shifted his/her attention to it.Video 022- This video depicts a normal situation
with individuals walking down the street. The SNet correctly classifies the scene, while
the GC SVM leads to two false alarms. It is important to highlight that three out of four
MED videos that do not contain anomalies are correctly classified by the SNet. The overall
FTDR of 0.45 alarm/min is probably due to scenarios like the last one, in which the video,
initially tagged as normal, exhibits unexpected activity, and the model tends to anticipate
the detection. This aspect is of fundamental importance since many false alarms in normal
situations make the detection system unreliable.

As shown in Table 1, the results obtained with the UFC-Crime dataset are worse than those
obtained with the previous dataset. This is also confirmed by the confusion matrix for the
FL classification (Figure 6). The ROC curves also confirm the performance deterioration,
with an AUC value equal to 0.66 for the SNet and 0.44 for the GC SVM. For this dataset,
both evaluation criteria highlight the difficulty of anomaly detection. We have therefore
selected, also in this case, some significant videos to better explain the network output
and the consequent results (Figure 5): Video 007- In this representation of a sparse crowd
relating to a fight in prison, the SNet detects any anomaly present but produces many false
alarms. Analyzing the FL classification, we noticed that many false positives fall into the
anomalous sequence broken up by single batches of frames, where the anomaly probability
decreases. This highlights a limit of a TL evaluation: in long anomalous sequences, the nor-
mal fluctuations of the network probability are interpreted as new anomalous sequences.
However, in FL mode, only 64.17% accuracy is achieved for this video, and, therefore, the
two criteria agree in negatively evaluating the model’s functioning. Video 009- This fight

(a) 007 SNet (b) 007 GC SVM (c) 009 SNet (d) 009 GC SVM

Figure 5: Trigger evaluation of video 007 (a-b) and 009 (c-d) of the UFC-Crime dataset.

in the street is a case where the operator’s sensibility strongly influences the labelling. The
SNet does not detect the first anomaly as the approach of two people to a third could also
be mistaken for an affection gesture and shows no abrupt or suspicious movements. When
the fight begins, the model manages to identify the anomaly. Also, in this case, the final
false alarm is related to the probability fluctuation during the anomaly. This behaviour oc-
curs in several UCF-Crime videos, which present many long-lasting anomalies. In a real
application context, it does not affect the use of the system as the operator has already been
correctly alarmed by the initial trigger.

These described cases exemplify the functioning of the SNet on the UCF-Crime dataset. It
is characterized by a correct anomaly classification but by fluctuations of the output during
it. This leads to a malfunction in FL mode which is reflected in the TL mode.

These analyses highlighted the complementarity of the two evaluation approaches, namely
FL and TL, since they provide different types of clues about the analyzed scenario, static
and dynamic information, respectively. In particular, while the FL indicates whether a sin-
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(a) (b) (c) (d)

Figure 6: Confusion matrix and ROC curves of the FL evaluation for the SNet (a-c) and
the GC SVM (b-d) approach on the UCF-Crime dataset.

gle frame (or batch of frames) is anomalous or not, the TL can determine the change of the
state from a normal context to an anomalous one. However, among the two approaches, the
TL evaluation is of fundamental utility for a human operator in interpreting the behaviour
of a detector and, thus, for assessing its applicability in a video surveillance context.

5 Conclusions

Crowd anomaly detection is crucial in supporting the human operator in many video
surveillance tasks. To our knowledge, no standard way is followed to evaluate the system’s
performance. The most common approach is to assess the rate of (un)correctly classi®ed
frames over the length of the video sequence. However, this does not allow the assessment
of the responsiveness from the human-operator viewpoint. Therefore, in this work, we
proposed a novel temporal evaluation criterion, called Trigger-Level, that aims to assess
the ability of a crowd anomaly detection system to trigger an alarm to a human operator
correctly. This evaluation focuses on the system’s ability to detect the anomaly promptly,
i.e. before it signi®cantly impacts the crowd. In particular, two new performance evalua-
tion metrics which allow a better analysis of the responsiveness of an anomaly detection
system and its tendency to give false and late alarms were described. The analyses on
two datasets and with two detection models demonstrated that the proposed labelling and
evaluation approach allowed the assessment of whether the system is able to signal during
operation when a human operator should intervene and to evaluate the number of false
alarms. This analysis effectively highlights which detector is more suitable for real appli-
cations according to the requirements. Finally, we pointed out the complementarity of the
frame-level and trigger-level evaluation criteria. Therefore, the two approaches can reveal
different properties of the same system: the ®rst provides valuable hints about the proba-
bility that the single frame represents an anomalous behaviour, while the second indicates
when such an event starts and, thus, a human operator’s intervention is required.
Acknowledgments: This work is supported by the Italian Ministry of Education, Univer-
sity and Research (MIUR) within the PRIN2017 ª BullyBuster - A framework for bullying
and cyberbullying action detection by computer vision and arti®cial intelligence methods
and algorithmsº (CUP: F74I19000370001). The project has been included in the Global
Top 100 list of AI projects addressing the 17 UNSDGs (United Nations Strategic Devel-
opment Goals) by the International Research Center for Arti®cial Intelligence under the
auspices of UNESCO.

312



Human-centered evaluation of anomalous events

References

[AA22] Aldayri, Amnah; Albattah, Waleed: Taxonomy of Anomaly Detection Techniques in Crowd
Scenes. Sensors, 22(16):6080, 2022.

[Be21] Bendali-Braham, Mounir; Weber, Jonathan; Forestier, Germain; Idoumghar, Lhassane;
Muller, Pierre-Alain: Recent trends in crowd analysis: A review. Machine Learning with
Applications, 4:100023, 2021.

[Br18] Briassouli, Alexia: Unknown Crowd Event Detection from Phase-Based Statistics. In: 2018
15th IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS). pp. 1–6, 2018.

[Cr13] Cristani, Marco; Raghavendra, Ramachandra; Del Bue, Alessio; Murino, Vittorio: Human
behavior analysis in video surveillance: A social signal processing perspective. Neurocom-
puting, 100:86–97, 2013.

[DY22] Doshi, Keval; Yilmaz, Yasin: Rethinking Video Anomaly Detection - A Continual Learning
Approach. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). pp. 3036–3045, 2022.

[Ha19] Hao, Yu; Xu, Zhi-Jie; Liu, Ying; Wang, Jing; Fan, Jiu-Lun: Effective crowd anomaly de-
tection through spatio-temporal texture analysis. International Journal of Automation and
Computing, 16(1):27–39, 2019.

[Je23] Jebur, Sabah Abdulazeez; Hussein, Khalid A.; Hoomod, Haider Kadhim; Alzubaidi, Laith;
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Automatic validation of ICAO compliance regarding head
coverings: an inclusive approach concerning religious
circumstances

Carla Guerra1, João Marcos2, Nuno Gonçalves3

Abstract: This paper contributes with a dataset and an algorithm that automatically verifies the
compliance with the ICAO requirements related to the use of head coverings on facial images used
on machine-readable travel documents. All the methods found in the literature ignore that some
coverings might be accepted because of religious or cultural reasons, and basically only look for the
presence of hats/caps. Our approach specifically includes the religious cases and distinguishes the
head coverings that might be considered compliant. We built a dataset composed by facial images of
500 identities to accommodate these type of accessories. That data was used to fine-tune and train a
classification model based on the YOLOv8 framework and we achieved state of the art results with
an accuracy of 99.1% and EER of 5.7%.

Keywords: Facial Images, ICAO, ISO/IEC 19794-5, Head Covering Detection, Deep Learning

1 Introduction

Photographs used in identification documents must comply with certain requirements that
guarantee standardization, in addition to allowing the person represented in the portrait to
be properly identified through this image. Compliance with these requirements is based
on quality metrics that measure, for example, the framing of the head in the photograph,
the contrast with an homogeneous background, the restriction on the use of sunglasses or
glasses whose lenses or frames partially or completely cover the eyes, among many others.

Two of the most relevant and extended public documents related to quality assessment in
biometrics are the ISO/IEC 19794-5 standard [IS] and Doc 9030 [IC], created by the In-
ternational Civil Aviation Organization (ICAO) based on that standard. These documents
are actually a series of guidelines for the acquisition of high quality images, i.e., portrait-
like images, for their inclusion in machine-readable travel documents like passports and
ID cards. These guidelines are based on the typical impact that certain features like blur,
occlusions, and resolution have in the quality of facial images and are intended to preserve
the performance of Facial Recognition Systems (FRS). However, these reports do not spec-
ify the method to measure each of the features. In order to implement their recommended
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guidelines it becomes necessary to develop algorithms to automatically verify the compli-
ance with the requirements. All of them can be verified using image processing techniques,
combined with geometric measurements of elements detected in the photograph or with
more sophisticated methods including deep learning.

In this work we focus on a specific requirement related to the use of head coverings in the
photograph. Head coverings should not be accepted except in circumstances specifically
approved by the Issuing State of the Machine Readable Travel Document (MRTD). Such
circumstances may be religious, medical or cultural.

However, the work already found in the literature regarding this requirement ignores the
case when veils, scarves or head coverings cannot be removed for religious reasons. Basi-
cally, it just looks for the presence of hats or caps.

Our main contribution in this paper is, thus, the proposal of an algorithm that automati-
cally verifies the compliance with the requirements related to the use of head coverings,
specifically considering religious cases.

To do so we built our own dataset for training and testing the algorithm, given the fact
that none of the public dataset found on the literature considers the relevant particularities
needed to verify ICAO compliance when in the presence of religious coverings.

We reached a very satisfactory performance, with an accuracy of 99.1% and an Equal Error
Rate (EER) of 5.7%, which competes with the state of the art results.

2 Related Work

The University of Bologna’s Biolab group played a significant role in popularizing meth-
ods adhering to the ISO/IEC 19794-5 standard. In 2009, they introduced the Biolab-ICAO
framework [Ma09], which served as a benchmark tool for assessing the compliance of face
images with ICAO requirements. Subsequently, in 2012, the benchmark underwent further
refinement, leading to the presentation of an official database and testing protocol [Fe12].
Additionally, the authors proposed the BioLabSDK, the first documented method in the
literature capable of evaluating 23 scene requirements.

Today, the Biolab-ICAO framework is used to evaluate algorithms via an online public
competition called Face Image ISO Compliance Verification (FICV), hosted at the FVC-
onGoing website [FV]. The FICV is considered the official evaluation tool for ISO/IEC
19794-5 standard and is used by most relevant works presented in the literature or com-
mercial products. 23 scene requirements are evaluated individually in terms of EER. The
EER is a standard metric to evaluate the performance of biometric systems and can be
defined as the point where the False Acceptance Rate (FAR) and False Rejection Rate
(FRR) curves intercept each other. Therefore, the EER represents the rate at which both
acceptance and rejections errors are equal, i.e., FAR = FRR.

Notice that out of those 23, we focus particularly on the ’Hat/Cap’ requirement which is
a reduced version of what we called in this work ’Head Coverings’ to accomodate many
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more options, including religious cases that should be treated in a different way than just
hat and caps.

To date, there are four published algorithms in the FVC-onGoing platform regarding the
’Hat/Cap’ requirement: BioTest, BioPass Face, id3, and ICAONet [eSGB22]. Their results
are summarized on Table 1.

Algorithm EER

ICAONet 5.7%
id3 6.8%
BioPass Face 9.8%
BioTest 16.5%

Tab. 1: Published results on the FVC-onGoing platform regarding the ’Hat/Cap’ ICAO Requirement.

Three of the algorithms are own by private companies, therefore there is no detailed expla-
nation about their methods. ICAO Net makes use of the significant advancements observed
in deep learning over the past decade, which have notably improved accuracy compared
to traditional hand-crafted methods. This progress has prompted researchers in the field of
ICAO compliance verification to adopt deep learning techniques with remarkable success.

We point also the recent work by Hernandez-Ortega et. al [He22], who proposed the algo-
rithm FaceQvec for evaluating the conformity of facial images with the same 23 algorithms
defined by BioLab plus two regarding white-noise estimation and expression. The one re-
garding the head coverings in particular, also only considering Hats/Caps and no religious
circumstances that might be considered compliant, looks for pixels with unnatural colour
in the upper forehead region. However, the authors do not show results regarding that re-
quirement in particular because of the lack on negative samples for the development and
testing.

What we conclude is that there is some work already on the head coverings requirements
but there is the need to extend these methods to consider more than just hats/caps. Also,
facial images that can be used to train and test algorithms considering these particular
concerns are lacking.

3 Data

To overcome the lack of available datasets to train and test algorithms to validate the
compliance with ICAO requirements and, in particular, the ’Head Coverings’ requirement,
we built our own dataset. We collected facial images from people in controlled conditions,
using many different accessories on the head, including religious options that could be
considered compliant or not.

ICAO states that if head coverings are allowed, they shall be firm fitting and of a plain
uniform colour with no pattern or no visible perforations and the region between hair lines,
both forwards of the ears and chin including cheeks, mouth, eyes, and eyebrows shall be
visible without any distortion or shadows [Wo18].
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Our dataset is composed by 3500 images of 500 subjects gathered across volunteers from
different ages, genders and origins. Table 2 shows the demographic distribution of identi-
ties.

Caucasian African Asian
Female Male Female Male Female Male

Children/Teen [0,20] 62 61 11 14 2 1
Young Adult ]20-35] 61 61 13 14 17 17
Adult ]35-50] 25 45 4 2 3 1
Senior Adult ]50-65] 16 26 1 0 0 1
Senior ]65-inf] 17 25 0 0 0 0

Tab. 2: Demographic distribution of identities in the built dataset.

Each volunteers takes 7 pictures:

· 2 with no head coverings at all;

· 3 with non-compliant head coverings (hat, caps, ribbons, etc);

· 1 with religious coverings that might be considered compliant;

· 1 with non-compliant religious coverings.

Samples of each picture taken can be seen in Figure 1.

Fig. 1: Samples of the pictures taken by each identity on the dataset. Top 3 are compliant, the bottom
4 are non-compliant.
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In total, 1500 images are (potentially) compliant and 2000 images have one or more re-
quirements that are non-compliant in terms of head coverings. We divided the dataset into
training, validation and testing samples, randomly chosen.

4 Methods

In the field of object detection, the YOLO (You Only Look Once) network model [Re16] is
well known for having the capability of detecting multiple objects in real-time. Therefore,
we use YOLOv8 as our framework and we fine-tune the network parameters to achieve
real-time performance and high accuracy on classifying facial images into ICAO compliant
or non-compliant.

YOLOv8 was released on January 2023 by ultralytics and gives better results than its
predecessor versions [To].

It has two parts: Head and Backbone. Backbone is responsible for generating feature pyra-
mids after feature extraction. Head is responsible for identification and displaying bound-
ing boxes along with objectness score [TCE23].

We trained our YOLOv8 model with the dataset specifically created for this purpose by
us. The parameters chosen for training were:

• Model: yolov8s-cls.pt;

• Epochs: 10;

• Batch Size: 64;

• Image Size: 224 (pixels);

• Workers: 8;

• PreTrained: True;

• Optimizer: Adam;

• Initial Learning Rate: 0.001;

• Weight Decay: 5x10−5;

• Label Soothing Epsilon: 0.1;

• Model Layer Cutoff: None;

• Dropout (fraction): None.

Furthermore, YOLOv8 employs image augmentation techniques during training to en-
hance its performance. In each epoch, the model encounters slightly varied versions of
the provided images. Notably, YOLOv8 utilizes mosaic augmentation, which involves
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Fig. 2: Resulting confusion matrix. Class 0 stands for ’Non-compliant’ and class 1 stand for ’Com-
pliant’.

stitching together four training images to create a new composite image. This augmen-
tation technique significantly contributes to the model’s efficiency and learning capabili-
ties [HZ20]. Compared to previous iterations, YOLOv8 demonstrates superior efficiency,
thanks to its use of a larger feature map and a better optimized convolutional network
[To]. For a deeper understanding of YOLOv8’s functioning and detailed insights into its
architecture, comprehensive information can be found in [Ro].

5 Results

The results obtained have shown that our method to automatically verify the compliance
with the head coverings requirements can achieve very high accuracy levels (99.1%), fail-
ing only on 0.9% of the compliant samples - see Figure 2. The resulting loss curves during
train and validation stages are shown in Figure 3. The tests were performed over a set of
randomly chosen samples that represent 20% of dataset, making sure that all categories
of images are balanced. The corresponding EER equals 5.7%, which is the same as the
best performing algorithm already present in the literature, but now extended to be able
to distinguish when a head covering might be considered compliant because of religious
circumstances, which per se is an improvement.

6 Conclusions and Future Work

This work makes significant contributions in the form of a dataset and an algorithm aimed
at automating the verification of compliance with ICAO requirements concercing the pres-
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Fig. 3: Train and validation loss curves along the epochs.

ence of head coverings in facial images used in machine-readable travel documents. The
existing methods fails to consider the acceptance of certain head coverings based on reli-
gious or cultural reasons, focusing primarily on the detection of hats or caps. In contrast,
our approach specifically extends these considerations to include cases of religious cover-
ings that can be accepted. To support our approach, we created a dataset consisting of 500
facial images representing diverse identities and accommodating the inclusion of more ac-
cessory types such as compliant and non-compliant religious coverings. Using this dataset,
we fine-tuned and trained a classification model based on the YOLOv8 framework, result-
ing in a state-of-the-art performance with 99.1% of accuracy and an Equal Error Rate
(EER) of 5.7%. These work highlights the lack of inclusion of religious factors when ver-
ifying compliance with head covering requirements, and demonstrates the efficacy of our
approach in accurately identifying compliant head coverings. In the future we would like
to consider also the case when there is a head covering that cannot be removed because of
medical reasons, extending our dataset to include examples of it.
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Generalizability and Application of the Skin Reflectance
Estimate Based on Dichromatic Separation (SREDS)

Joseph Drahos, Richard Plesh, Keivan Bahmani, Mahesh Banavar, Stephanie Schuckers 1

Abstract: Face recognition (FR) systems have become widely used and readily available in recent
history. However, differential performance between certain demographics has been identified within
popular FR models. Skin tone differences between demographics can be one of the factors contribut-
ing to the differential performance observed in face recognition models. Skin tone metrics provide
an alternative to self-reported race labels when such labels are lacking or completely not available
e.g. large-scale face recognition datasets. In this work, we provide a further analysis of the gen-
eralizability of the Skin Reflectance Estimate based on Dichromatic Separation (SREDS) against
other skin tone metrics and provide a use case for substituting race labels for SREDS scores in a
privacy-preserving learning solution. Our findings suggest that SREDS consistently creates a skin
tone metric with lower variability within each subject and SREDS values can be utilized as an alter-
native to the self-reported race labels at minimal drop in performance. Finally, we provide a publicly
available and open-source implementation of SREDS to help the research community. Available at
https://github.com/JosephDrahos/SREDS

Keywords: Face Recognition, Privacy-Preserving, Feature Unlearning, Skin Reflectance.

1 Introduction

Face recognition systems are increasingly used as a form of biometric authentication for
many new and existing systems. Research on the differential performance between de-
mographics is an important topic of study to mitigate bias and ensure fairness [dFPM22,
Ho22]. Modern facial recognition systems use deep learning pipelines to take an image of
a person’s face and create a unique template for that person. In such systems, the demo-
graphic information of a dataset is needed to assess or mitigate the differential performance
of a particular face recognition algorithm. However, many of the large-scale datasets which
have been aggregated from public images on the internet and used to train and benchmark
face recognition networks lack self-reported race labels. Additionally, the large scale of
such datasets makes it impractical and expensive to efficiently label demographics by hu-
man annotators. As a result, methods to automatically label a dataset can provide a valuable
asset.

Our research focuses on the intersection of privacy preservation, bias mitigation, and skin
tone metrics. We present our analysis of the Skin Reflectance Estimate based on Dichro-
matic Separation (SREDS) skin tone metric from [Ba21]. SREDS is a continuous skin
1 Department of Electrical and Computer Engineering, 8 Clarkson Ave, Potsdam, NY,
{drahosj, pleshro, bahmank, mbanavar, sschucke} @clarkson.edu
This material is based upon work supported by the Center for Identification Technology Research and the
National Science Foundation (NSF) under Grant No.1650503.
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tone metric that can be used to automatically label skin tones on face datasets. Our goal
is to evaluate SREDS’ ability to label datasets compared to other skin tone metrics, assess
the generalizability of SREDS on unseen data, and demonstrate an application of SREDS
using a sensitive information removal approach when race labels are not available.

2 Background

2.1 Skin Tone Metrics

Previous methods formulated for generating a metric for subject skin tones to more accu-
rately describe skin color are listed as follows: Fitzpatrick Skin Type (FST), Monk Skin
Tone (MST) Scale, Individual Typology Angle (ITA), and Relative Skin Reflectance (RSR)
[Fi88, Mo19, CCH91, Co19]. FST and its successor MST require a manual calculation
from a survey of the subject, while ITA and RSR can be computed automatically via an
algorithm. RSR was created to analyze skin tone for a specific dataset by fitting a Principal
Component Analysis (PCA) model to the RGB space of the dataset. RSR is not resistant
to changes in lighting and is specific to a particular dataset. The need for a skin tone metric
that can be computed automatically and is more resistant to changes in lighting prompted
the research that led to the Skin Reflectance Estimate based on a Dichromatic Separa-
tion (SREDS) [Ba21]. SREDS aims to decompose patches of skin into specular and dif-
fuse components using the dichromatic reflectance model. A Kernal Principal Component
Analysis (KPCA) is fit onto the diffuse components extracted from the dataset, resulting
in a data-driven skin tone metric.

2.2 Bias Mitigation

The inclusion of demographic information in a dataset is to observe and attempt to elim-
inate the differential performance between demographic groups in FR models. Differing
methods of bias mitigation have been attempted and documented at the feature, compar-
ison, and post-comparison levels. A method of bias mitigation at the feature level is the
triplet mining approach of [Se22] which used a triplet loss for discrimination-aware learn-
ing. Closely related triplets are mined based on race information to try and train a new
representation that mitigates biased learning within the face embedding space of a pre-
trained model. At the comparison level, a learning classifier method reduces ethnic bias by
introducing group and individual fairness to the decision process at the cost of matching
performance [Te20c]. At the post-comparison level, an unsupervised method of score nor-
malization has been presented to reduce bias between ethnic groups while increasing the
performance of the system [Te20b].

2.3 Soft Biometric Privacy Preservation

Soft biometric information such as gender, race, age, etc. is stored within the templates
created from FR systems and can be extracted without the user’s consent [Te20a]. Meth-
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ods of privacy preservation have been studied and introduced to protect users’ sensitive
information. The efforts in[OR15] produced a technique that morphed the input face with
another face to mask the soft biometrics while maintaining matching performance. An-
other technique that added a perturbing element to the initial face image that would mask
sensitive information while maintaining performance is [MR17]. Information removal net-
works attempt to remove sensitive information from the feature embedding space of the FR
deep network. These methods require complex loss functions to maintain the performance
accuracy of the network while also suppressing the racial information from the learned
space, as performed in [Xu18]. A method that combines the methods from [Se22, Xu18]
and was used within this research is [Mo20], which attempts to maintain the inter-identity
distance using triplet loss and simultaneously unlearn2 the facial features used to differen-
tiate between demographic classes.

(a) Intra-subject variation between diffuse and specular com-
ponents extracted using SREDS.

(b) SensitiveNets model implementation

Figure 1

3 Methodology

3.1 Skin Tone Metrics Assessment

The skin tone metrics outlined in section 2.1 will be used as a baseline to compare the
previously developed methods to the performance of the SREDS measure. Individual ty-
pology angle (ITA) is a type of colorimetric analysis designed to measure acquired tanning
[CCH91]. An RGB image is converted into CIE-Lab space [CF97], as follows: (1) the ‘L’
component which quanti®es luminance, (2) the ‘a’ component - absence or presence of
redness, and (3) the ‘b’ component - yellowness. Using the ‘L’ and ‘b’ components, Pixel-
wise ITA value, in degrees, can be estimated throughout an image as:

ITA =
arctan(L−50)

b
∗ 180

π
. (1)

To ®nd suitable skin pixels in the image, a landmark extractor based on Dlib is used to de-
tect the forehead, left cheek, and right cheek facial regions [Ki06]. For each facial region,
2 The term unlearn will be used throughout the paper in the same context as introduced in the literature [Mo20].

325



J Drahos, R Plesh, K Bahmani, M Banavar, and S Schuckers

ITA is computed over each pixel and smoothed using an averaging filter. The mode from
each region’s resulting values is averaged to result in a single skin tone estimate for a face.

Relative Skin Reflectance (RSR) is a process designed to relate the physical properties of
the skin to the performance of facial recognition [Co19]. The pipeline works by removing
the confounding effects of imaging artifacts on skin pixels and fitting a line in the direction
of the greatest variance in the RGB color space using PCA. The resulting metric is related
to the skin tone of each subject relative to the rest of the photos in the dataset. Assump-
tions include consistent lighting, the same acquisition camera, and constant background.
As a further limitation, the metric only indicates where a subject lies regarding net skin
reflectance relative to the other subjects in the dataset, rather than an absolute measure.

The process to compute SREDS begins by extracting patches of skin from the forehead,
right, and left cheeks using Dlib landmarks of each face image. Using the dichromatic re-
flection model as a guide, Non-Negative Matrix Factorization (NNMF) is used to estimate
the diffuse and specular components of the selected skin patches. KPCA is utilized on the
extracted diffuse components to learn a skin tone gradient across the dataset. The averaged
value of the first principal components of the extracted diffuse bases for a particular face
defines that person’s SREDS score. The KPCA model used for SREDS is data-driven, so
the generalizability of the KPCA model onto unseen datasets is a point of interest within
this study. A full description of the extraction of SREDS is found in [Ba21].

3.2 Datasets

For our experiments, we selected datasets that included demographic information of sub-
jects across race, age, gender, orientation, and lighting. We utilized CMU Multi-PIE,
MEDS-II, and Morph-II datasets [SBB03, Fo11, RT06]. Multi-PIE contains 750,000 sam-
ple images from 337 subjects images under 15 viewpoints with 19 illumination conditions.
We selected three viewpoints (14 0, 05 1, 05 0) where full views of the face were captured
for our testing, which reduced our sample images to 150,668 from 314 subjects. MEDS-II
contains only 836 sample images from 425 subjects imaged in a controlled mugshot set-
ting. Morph-II is a dataset from a longitudinal study that contains 55,063 sample images
from 13,000 subjects within a controlled setting over 5 years. While MEDS-II and Morph-
II datasets include uncontrolled illumination, Multipie includes controlled illumination
samples. ITA, RSR, and SREDS scores were generated for all samples of each dataset.

3.3 Cross-Dataset Analysis

In prior work [Ba21], the intra-subject variance was used as a metric to describe the vari-
ance of a specific subject’s skin tone score across multiple samples. The low intra-subject
variance shows the metric can produce a consistent value of the same subject independent
of external conditions. An example of intra-subject variation can be seen in figure 1a. We
evaluate and compare the intra-subject variance across all of our evaluation datasets and
compare it to other methods. In addition, we test the generalizability of the SREDS metric
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SREDS: -2.0 SREDS: 2.0

SREDS: 0.0

SREDS: -1.0 SREDS: 1.0

Figure 2: Distribution of SREDS Scores for Morph-II dataset separated by Race. Subjects
with speci®c SREDS scores are shown for the range across the distribution.

by calibrating the skin tone gradient on one dataset and applying it to another, thereby
testing its robustness to unseen datasets. The same experiment is run using the RSR PCA
models for comparison. ITA does not have a training component and is only reported per
dataset.

3.4 SREDS Agnostic Facial Recognition Model

To show the potential of SREDS for use in the replacement of race labels, we compared the
outcome performance of SREDS versus ground-truth race labels when incorporated into
SensitiveNets, a sensitive information removal network [Mo20]. SensitiveNets provides
a novel privacy-preserving neural network feature representation to suppress the sensitive
information of a learned space while maintaining the utility of the data. We reimplemented
the sensitive removal network as our model for analysis of the suppression of race and
skin tone. A diagram of our model is seen in ®gure 1b. SensitiveNets contains sensitive
information removal dense layers added on top of a pre-trained face recognition backbone.
Within our testing, we used a Resnet50 model pre-trained on VGGFace2 as the backbone,
consistent with the cited literature [Mo20, Ca18, Xi]. The model’s loss function requires a
race classi®er that acts as the sensitive information detector. The softmax probability from
this detector describes the amount of racial information present within a subject’s template
and the goal of the loss function is to remove the sensitive race information and trend the
classi®er towards 50% accuracy. In our experiments, this classi®er is either trained on
race labels or SREDS scores binned into predetermined groups. The sensitive information
removal ϕ layers are then added and trained sequentially using an adversarial approach
of triplet loss and an adversarial sensitivity regularizer loss which reduces the amount of
sensitive race information from the embedding space. An in-depth look at the model and
loss function can be found in the SensitiveNets literature [Mo20].
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4 Experiment Results

Our experiments were performed to analyze how the consistency of SREDS performed
relative to other skin tone metrics and the outcome of replacing race labels with SREDS-
generated labels in a privacy preservation method.

4.1 Cross-Dataset Analysis Results

We performed the cross-dataset analysis of the two skin tone metrics described in Section
2 and SREDS across the three datasets listed in Section 3. We generated ITA, RSR, and
SREDS for all subjects from the mentioned datasets. As part of background normalization,
RSR assumed consistent lighting, the same acquisition camera, and a constant background.
Only the Multi-PIE dataset meets all conditions. However, due to the lack of constant
background in MEDS-II and MORPH-II, the background normalization step was bypassed
for these datasets. ITA is a non-trainable method so we collected the ITA values from each
subject of each dataset. To test SREDS consistency on unseen data we used the Kernal
Principal Component Analysis (KPCA) fit to one dataset’s diffuse components and used it
to transform another dataset’s diffuse components. The same process was recreated using
the RSR PCA models on the same datasets’ selected skin pixel values in order to compare
these two methods.

Testing Dataset
Morph-II MEDS-II Multi-Pie (Mugshot)

Training Dataset SREDS RSR ITA SREDS RSR ITA SREDS RSR ITA
Morph-II 0.419 0.539 0.645 0.681 0.493 N/A 0.157 0.468 N/A
MEDS-II 0.457 0.540 N/A 0.463 0.493 0.448 0.186 0.470 N/A

Multi-Pie (Mugshot) 0.399 0.538 N/A 0.674 0.493 N/A 0.138 0.304 0.401

Table 1: Cross dataset intra-subject variability analysis between SREDS, RSR, and ITA
skin tone metrics. Bolded values are the lowest recorded intra-subject variability in that
testing dataset. SREDS scores result in the least variable metric from Morph-II and Multi-
Pie datasets and the second least variable metric in MEDS-II, behind ITA.

We computed the intra-subject variability of each dataset’s skin tone metrics by calculat-
ing the standard deviation of each subject’s individual skin tone measures and averaging
across the dataset. The results of this analysis are seen in Table 1 and suggest that the
learning-based algorithms (RSR and SREDS) perform better than ITA when evaluated on
the dataset they are calibrated on. Viewing our cross-dataset results, we observe that in
larger datasets (Morph, Multi-pie), SREDS outperforms both ITA and RSR even when
calibrated on a different dataset, suggesting the generalizability of this approach.

4.2 Distribution of SREDS

To utilize SREDS by replacing race labels we needed a process to convert continuous
SREDS scores into discrete labels. To understand the distribution of scores, the SREDS
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Figure 3: SensitiveNets Sensitive Information Classi®er ROCs for both race labels and
SREDS scores before and after training on Morph-II dataset. The goal of SensitiveNets
training is for 50% classi®cation accuracy. The unlearned classi®er accuracy for both the
RDM and SDM is nearly 50%, which shows SREDS scores and race labels perform simi-
larly in this experiment.

scores across the Morph-II dataset were plotted within Figure 2. We split the dataset in half
by the median SREDS score of -0.01 and binned the subjects into low and high SREDS
scores to create a discrete labeling of the Morph-II dataset.

4.3 Comparison of Race Labels and SREDS in Sensitive Feature Unlearning

To see the effects of SREDS scores being used in place of self-reported race labels, we
implemented two SensitiveNets models. One model is trained using the black and white
subject race labels from the Morph-II dataset while the second model is trained using the
binned SREDS value for the same subjects.

Backbone Classi®er Trained On Tested On ICA FCA

Resnet50 Race Race Triplets Morph 0.985 0.47
Resnet50 SREDS SREDS Triplets Morph 0.937 0.48

Table 2: Sensitive Information Removal Network Experiment Results
ICA: Initial Classi®cation Accuracy, FCA: Final Classi®cation Accuracy (Goal of

sensitive information removal is for FCA to be 0.50)

The ®rst model trained on race labels and the second model trained on SREDS scores will
be referred to as the Race Unlearned Model (RUM) and the SREDS Unlearned Model
(SUM) respectively. An outline of this testing plan is seen in Table 2 with the initial and
®nal classi®cation accuracy of the SensitiveNets classi®ers. For both models, the sensitive
information classi®er ROCs were calculated and shown in Figure 3.

The two trained SensitiveNets models matching performances are compared to the base-
line Resnet50 matching performance to evaluate the results of the training on matching
performance in Figure 4. The feature unlearning experiments to preserve privacy show a
similar drop in performance between training with race labels and training with SREDS
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(a) ROC comparison for baseline
(Resnet50), RUM, and SUM mod-
els

(b) ROC comparison between
baseline and RUM model for
White and Black subjects.

(c) ROC comparison between
baseline and SUM model for
White and Black subjects.

Figure 4: Comparison of biometric performance (matching) ROCs of baseline, RDM, and
SDM, categorized by race labels on Morph-II dataset. Shows RDM and SDM suffer from
a similar drop in matching performance when race or skin tone information is removed,
respectively.

scores. The results suggest only a small (0.027) difference between the True Positive Rate
(TPR) of RUM and SUM at 10−3 False Positive Rate (FPR).

5 Conclusions

The existing feature unlearning methods in FR rely on large-scale and expensive-to-collect
demographically-labeled datasets. Within this study, we demonstrate the ability of SREDS
to mitigate this reliance by automatically extracting consistent skin tone information from
face images. We have shown that SREDS outperforms other available skin tone metrics
in producing continuous and less-variable skin tone estimates while generalizing well to
unseen data. We have presented an application of extracted SREDS scores in the absence
of race labels in a feature unlearning method and shown that SREDS could be used as a
replacement.

5.1 Limitations and Future Work

Limitations of this work include our analysis of only black and white subjects due to the
under-representation of other races in our datasets. This led to us only using two SREDS
bins when categorizing our datasets to match the binary race labels. We tested using only
one face matcher within our privacy-preserving method and have not seen how different
networks affect our results. A limitation of using skin tone as a way to label datasets is that
skin tone does not encapsulate the entirety of a self-reported race label. Skin tone is one
physical characteristic that makes up race and cannot be used as an exact replacement.

Future work planned includes further analysis of the mapping of SREDS to multi-race de-
mographic information and its use in different downstream biometric tasks, recreating our
experiments with addition face matches [De22], and attempting a bias mitigation solution
using SREDS scores and evaluating using fairness metrics [dFPM22, Ho22] on an even
larger scale dataset (BUPT-Globalface) [WZD21].
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Abstract: We present a Diffuse Optical Tomography (DOT)based biometric system that uses in-
terior anatomical information for better privacy and security instead of external traits such as face
or fingerprint. The DOT system has a wearable form factor covering the lower forearm and the
wrist, where anatomical structures in the optical path of the DOT optodes capture the unique inter-
nal patterns used for biometrics. Our DOT scanner is low-cost, using COTS near-infrared LEDs and
sensors. Our design also incorporates wrist vein imaging as a secondary modality to supplement the
DOT. This paper details the design of the DOT system and the ensuing machine-learning pipeline.
We demonstrate the utility of the DOT as a stand-alone biometric modality and the efficacy of its
fusion with wrist vein patterns. Our early experimental findings show promising results, using a pilot
dataset to achieve an area under the receiver operating characteristic curve (ROC AUC) of 0.999138
and an equal error rate (EER) of 1.27% for the DOT modality. The AUC and EER were 0.999655
and 0.48% for the wrist vein imaging modality only and 0.99989 and 0.21% for the fusion of both
modalities.

Keywords: Biometric authentication, Vein imaging, Diffuse optical tomography (DoT), Perfor-
mance evaluation

1 Introduction

Biometric traits such as fingerprints, iris patterns, voice, and facial features are among the
most popular, each with its own pros and cons. Different biometric modalities have also
been combined to enhance recognition accuracy and robustness and to deter presentation
attacks, giving rise to multimodal biometric systems [USJ20, Ga06]. This paper proposes a
new multi-modal wrist-worn biometric system using Diffuse Optical Tomography (DOT)
as the primary and vascular imaging as the secondary modality. The combination pro-
vides a simple unitary user experience while leveraging the near-infrared imaging of the
deep structural elements of the forearm using a novel application of DOT in biometrics.
While DOT [BCH16] is a known method and has been widely applied in various medi-
cal applications, to the best of our knowledge, we are the first to apply it to the wrist and
lower forearm for biometric identification [Di05]. The addition of vascular arcades as a
supplementary modality and the blending of the two using machine-learning techniques
are among the other highlights of this work. Vascular patterns have long been known to
exhibit distinct characteristics, even among identical twins [Kr20]. The introduction of
forearm/wrist DOT, besides providing a new and powerful source of entropy, significantly
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boosts the security of the system. The combination of vascular and DOT imaging as an
internal biometric source is inherently harder to attain surreptitiously and harder to tamper
with. Unlike the ubiquitous face biometrics, altering or replicating such internal structures
raises the bar for potential attackers [Du08] [TY13].

To summarize our unique contributions, we demonstrate the feasibility of forearm DOT
as a biometric modality and show the utility of simultaneously adding captured vein pat-
terns from the same area to the mix through a pilot study. We also present our scanner
design innovations, employing a multi-path continuous-wave DOT scanning using a near-
infrared (NIR) sensor-illuminator mesh made out of affordable commercial off-the-shelf
(COTS) components. Data pre-processing, fusion, and machine learning analytics are also
presented as a part of the pipeline. The resulting hardware-software POC is capable of
real-time, end-to-end enrollment and matching, providing a new secure biometric identifi-
cation solution [HB09]. The rest of this paper is organized as follows: section 2 details the
hardware setup, section 3 presents the methodology for hardware usage, section 4 presents
data collection and evaluation, and Sections 5 and 6 outline the conclusion and acknowl-
edgments.

2 DOT Wristband Design

The optical system employed in the DOT wristband design consists of NIR LEDs as the
illumination source[Ch04] and NIR detector/sensor arrays. The LEDs and sensors are ar-
ranged in blocks for uniformity, as depicted in Figure 1. The selection of the 870 nm wave-
length was based on the absorption coefficients for both oxygenated and deoxygenated
hemoglobin[Ch14][Hi02].

Fig. 1: DOT Wristband Setup

Several configurations of Infrared (IR) emitters and receivers were examined during the
DOT design process. Experiments were conducted to explore distance ratios ranging from
1:1 to 1:6 between the IR receivers and emitters. Through these experiments, it was de-
duced that a 1:6 ratio with a 1.5cm gap between the components resulted in the best out-
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comes. The final arrangement was determined to consist of one IR receiver and six IR
emitters.

The setup shown in Figure 1 was finally selected. It consists of four units, namely S1,
S2, S3, and S4. Each unit is comprised of a central IR sensor (100F5T-IR-JS-940NM)
surrounded by six MTE8760N5 IR LEDs. The units were arranged linearly, with a 5 cm
separation between the centers of adjacent units, as depicted in Figure 1. In the experimen-
tal setup, the control and communication of the sensors were facilitated by a Raspberry Pi
(R Pi) device. The R Pi was the central controller and established a connection with an
external host compute node. This arrangement enables the R Pi to exercise selective acti-
vation of pairs of blocks within the system.

In order to convert the analog signals received by the sensor into digital voltage values,
an Adafruit ADS1115 Analog-to-Digital Converter (ADC) with a precision of 16 bits was
employed. The utilized ADC can support sampling rates ranging from 8 to 860 samples
per second and can be configured for 1 to 4 channels. It incorporates a programmable gain
amplifier with a maximum gain of 16, which facilitates signal amplification. Communica-
tion with the ADC was established through I2C. The ADC can address up to 4 ADS1115
devices on a single 2-wire I2C bus, thereby allowing for a total of 16 single-ended inputs.

3 Methodology

This section describes the procedure for readings the DOT wristband signals. The DOT
captures optical properties related to absorption and scattering, providing insights into
tissue structure and function, with the former carrying the information of interest. The
DOT method offers advantages in imaging deep tissue structures at shallow to medium
depths. The positioning of Sensor-1 (S1), centrally on the palmar side of the hand near the
nerve, with the wristband securely wrapped around the hand as shown in Figure 2(A), is
the basis of the data collection apparatus. A 480-second data collection super-session was
carried out, followed by the precise placement of the wristband 5 cm below the initial S1
location on the same hand to gather additional readings (in the future, the replication of the
S1 optode array at multiple locations will obviate the need for this step). Given the proof
of concept (POC) nature of this study[Yu05] [Hi02], the setup focuses on capturing data
from two sensors (S1 and S2), despite the capability to capture data from four sensors.
Consequently, two distinct files are obtained, with file-1 containing data from sensors S1
and S2 when the wristband is centered on the palmar side of the hand, and file-2 containing
data from sensors S1 and S2 with the wristband positioned 5 cm below the previous hand
location.

Our continuous-wave DOT specifically focuses on spatial patterns of absorption and scat-
tering. The readings from the 16-bit ADC, Adafruit ADS1115, were converted to voltage
values as follows:

Voltage = ADCReading∗Full Scale Voltage
(216∗PGA)
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The frequency of anatomical DOT signals[HY16] are about zero given their permanence,
however our sensors were capable of capturing higher-frequency biological signals [Xi19]
[BS11], including heart rate (about 1 Hz), given that our ADC was operating at a sampling
frequency of 128 Hz. The ADC device, configured with 2 channels and a programmable
gain amplifier (PGA) setting of 2/3, facilitated the capture of signals within an absolute
range of 0 to 43690. During the 480-second period ideally DOT should capture a total of

Fig. 2: (A) Setup to collect DOT signals and (B) Setup to collect IR vein images

30720 samples. However, factors such as the utilization of the Python spidev library and
the limited processing speed of the Raspberry Pi as the master device introduced some
overhead. As a result, approximately 25,000 readings, representing around 83.33 % of the
original sensor data, were captured and saved. This data loss was considered negligible
since the biological signals of interest (structural) exhibit significantly lower frequencies
compared to the 128 Hz sampling rate. Section 4.2 details how this data was processed.

4 Data Collection and Evaluation

This section presents the methods used to evaluate the data collected with the experimental
setup. The hardware captures DOT data and vein images. The data is then arranged as
mated and unmated pairs and evaluated using a variety of metrics, including the false
acceptance rate (FAR), the genuine acceptance rate (GAR), and the receiver operating
characteristic (ROC) curve.

4.1 DOT and Vein Image Data Collection

This section shows samples of data that were collected. In Figure 3, images labeled A-1, A-
2, A-3, and A-4, correspond to sensors S1, S2, S3, and S4, placed on different parts of the
wrist. Images in 3A correspond to subject 1 and 3B correspond to subject 2. The placement
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of the sensors is carefully considered to ensure accurate measurements, with Sensor S1
near the wrist providing potentially more precise readings than Sensor S4 positioned 5cm
below the wrist on the dorsal side. Fig. 3 shows S1 - S4 readings for two subjects.

Fig. 3: DOT Readings A-x belongs to Subject 1, and B-x belongs to Subject 2, A-1, A-2, A-3, and
A-4 belongs to sensors S1, S2, S3, and S4, respectively. S1 is placed on the palmar side near the
wrist, S2 on the dorsal side near the wrist, S3 on the palmar side 5 cm below the wrist, and S4 on
the dorsal side 5 cm below the wrist

The employed setup for IR imaging is depicted in Figure 2(B) and consists of a Customized
IR camera hood and IR wristband. The IR Camera hood accommodates the NIR camera
and is positioned 5 cm above the palmar side of the hand. The IR wristband comprises
of three zones with a total of seven units interconnected in parallel, each unit containing
10 IR LEDs. These MTE8760N5 model IR LEDs operate at a wavelength of 870nm with
a maximum power rating of 180mW. A regulated power supply maintains a consistent
current of 50mA to the IR LEDs. When all three zones of the wristband are activated,
IR light passes through the hand, making veins rich in deoxygenated hemoglobin visibly
darker [Ji18] in the NIR image. The NIR camera used in this study is the Alvium 1800 U-
501 NIR [Al], and the captured images are processed using the Vimba tool on a Windows
PC. Adjustments to exposure and gain compensate for inter-subject variations and ensure
consistent image quality, as shown in Figure 4. IR images labeled A and B demonstrate
vein patterns under different configurations, including all LED zones, center zone only,
sides only, and around the NIR camera.

Fig. 4: IR images A-x belongs to Subject 1, and B-x belongs to subject 2, (A-1, B-1) - All LED zones
on wristband turned on, (A-2, B-2) - Only Center zone LED’s turned on, (A-3, B-3) Only LED’s on
either side turned on, (A-4, B-4) LED’s around the NIR camera turned on.
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4.2 Data Analysis

This section delves into the computations performed to process the raw data. The discus-
sion covers data preprocessing, analysis, and interpretation, providing a comprehensive
account of the computational procedures adopted.

Data Preprossessing: The data were acquired from 15 individuals with 9 trials per identity
using the proposed DOT-vein scanner. The participants stayed still and breathed normally
during the captures. Signals close to 1 Hz are primarily from the heartbeat. Thus Butter-
worth low pass filter with a 0.5Hz cut-off frequency was employed to filter out such non-
structural DOT signals, followed by an outlier removal using the quantile techniques to en-
sure data quality. The DOT signal from each trial was segmented into multiple sub-signals
and extracted the basic statistical features for each segment: the minimum, maximum,
mean, and slope. This feature extraction reduced the time-dependent signals per channel
to lower dimensions without losing the critical information that depends on the tempo-
ral signals. Table 1 shows the data preprocessing results. Feature extraction increased the
feature space by approximately 12 folds, improving the subsequent comparisons and the
machine learning algorithms.

Raw Data Processed Data

Number of Identities Features Trials Identities Features Trials

15 4 9 15 48 9

Tab. 1: Summary of Raw and Processed Data

(a) UMAP for Visualizing DOT
Data Separability

(b) ROC Curve for DOT Modality
(all 9 trials)

Fig. 5: Visualizations of DOT data from 9 participants using tSNE and UMAP dimensionality reduc-
tion techniques.

Data Separability: The visualization in Figure 5a illustrates the application of visualiza-
tion dimensionality reduction techniques on the feature-extracted DOT Data with 12 fea-
tures per channel for all individuals and reveals partial clustering of identities in UMAP
[MHM20] spaces. This confirms the separation of identities by the DOT signal, but some
overlaps exist. Thus other approaches, such as distance-based matchers over various higher-
dimensional feature spaces and other machine learning-based learners, were used to clas-
sify the DOT data better.
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Similarity-based DOT Matching: This section presents the results of DOT verifications
using cosine similarity as the similarity metric [Ib21] over 48 extracted features per iden-
tity. Figure 5b illustrates the Receiver Operating Characteristic (ROC) curve for 9 trials
per individual, exhibiting an impressive AUC exceeding 0.99, indicating the accuracy of
our DOT modality using a simple cosine similarity matcher, Whereas for the fusion 3 trials
per each vein image were used to to be able to demonstrate the results with fusion.

4.3 Vein Image Matching

Datasets Used: As we mentioned earlier, our experimental hardware can also capture wrist
vein patterns using incident and IR illumination. To create the vein matchers to go with
the DOT, we utilized the publicly available finger vein dataset, the SCUT FV Presentation
Attack Database (SCUT FVD) [Qi18]. Permission was obtained to use the dataset. The
SCUT FVD dataset consists of vein images from 100 participants, with six fingers per
individual and six vein images per finger, resulting in a total of 600 unique fingers and
3600 captures. By incorporating this dataset in our experiments, we aimed to evaluate the
effectiveness of our proposed method in a challenging cross-dataset scenario.

Data Preprossessing and augmentation: The data pre-processing steps include random
rotation up to 10 degrees), random horizontal flip, and color jittering. The latter involves
making random modifications to the original image’s brightness, contrast, saturation, and
hue. This data augmentation step helps the model understand different representations of
the data and increases the size of the pretraining dataset, enhancing the generalization
capability of the model. A resizing step ensures that all input images have a uniform size
of 224x224 pixels, matching the required input volume of our deep-learning models.

Deep Feature Extraction: We fine-tuned a ResNet50 pre-trained on ImageNet using the
SCUTFVD dataset of finger vein images. We used the cross-entropy loss function for fine-
tuning. Features are extracted from the ‘flatten’ layer of the model. We obtained features of
2048 dimensionality. Since the proposed experiment focuses on vascular veins, this model
is fine-tuned further using the data captured with our experimental setup (See Section
3.). We captured the forearm and wrist area vein images for 15 subjects, 6 images from
each, for 90 images. This dataset was further divided into the training set and test set
with 3 images per subject in each subset, i.e., 50% split for train and test. Only a subject-
dependent test has been demonstrated as the dataset collected is insufficient to demonstrate
subject-independent results. The model discussed earlier was fine-tuned using the training
subset data for 10 epochs. The features were then matched using cosine similarity; the
ROC curve presents the verification performance over the test set.

4.4 DOT-Vein Fusion

The scores from the vein image features and the DOT data were averaged to obtain a
single fusion score for each trial per individual. Fig 6c represents the ROC curve of this
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(a) Vein Image Modality (b) DOT Modality (3 trails only) (c) Fusion of both Modalities

Fig. 6: Receiver Operating Characteristic Curves for Biometric Data

fusion technique. Note that the results for vein image feature matching represent a subject-
dependent protocol, where the identities (but not the images) used in training the models
also appear for testing. But as the UTFVP dataset’s experiment shows, with enough data,
we can fine-tune the model to be able to extract quality features for subject-independent
data as well.

5 Conclusion

Our pilot study shows that DOT of the forearm, as captured by our experimental wrist-
worn scanner, has promise as a stand-alone biometric modality. We also showed that the
secondary modality, wrist veins, can be fused with DOT to produce higher accuracy when
compared to each modality by itself. The ROC AUC for the well-known vein image match-
ing using deep features was 0.99965, yet a competitive 0. 99914 for the experimental DOT
modality. The fusion of both modalities demonstrated an even better AUC of 0.99989.
The vein image template matching technique exhibited a false acceptance rate of zero up
to a genuine acceptance rate of 98.51%. Similarly, DOT data achieved a FAR of zero up
to 74.81%. When both modalities were fused, the system achieved a zero FAR up to a
GAR of 98.51%. This is a more desirable operating point, as operating at a low FAR is
crucial for maintaining security and minimizing unauthorized access. We note that these
results come from a very small pilot study, and thus a high observational variance must be
considered. Our follow-up studies will be carried out using a larger data collection.
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21.–22. Februar 2022 Agroscope, Tänikon, 
Ettenhausen, Schweiz

P-318 Andreas Helferich, Robert Henzel, 
Georg Herzwurm, Martin Mikusz (Hrsg.)
FACHTAGUNG SOFTWARE 
MANAGEMENT 2021 
Fachtagung des GI-Fachausschusses 
Management der Anwendungsentwicklung 
und -wartung im Fachbereich Wirtschafts-
informatik (WI-MAW), Stuttgart, 2021

P-319 Zeynep Tuncer, Rüdiger Breitschwerdt, 
Helge Nuhn, Michael Fuchs, Vera Meister, 
Martin Wolf, Doris Weßels, Birte Malzahn 
(Hrsg.) 
3. Wissenschaftsforum:
Digitale Transformation (WiFo21)
5. November 2021 Darmstadt, Germany

P-320 Lars Grunske, Janet Siegmund, 
Andreas Vogelsang (Hrsg.))
Software Engineering 2022
21.–25. Februar 2022, Berlin/Virtuell

P-321 Veronika Thurner, Barne Kleinen, Juliane 
Siegeris, Debora Weber-Wulff (Hrsg.)
Software Engineering im Unterricht der 
Hochschulen SEUH 2022
24.–25. Februar 2022, Berlin

P-322 Peter A. Henning, Michael Striewe, 
Matthias Wölfel (Hrsg.))
DELFI 2022 Die 20. Fachtagung 
Bildungstechnologien der Gesellschaft für 
Informatik e.V.
12.–14. September 2022, Karlsruhe

P-323 Christian Wressnegger, Delphine 
Reinhardt, Thomas Barber, Bernhard C. 
Witt, Daniel Arp, Zoltan Mann (Hrsg.)
Sicherheit 2022 
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 11. Jahrestagung des 
Fachbereichs Sicherheit der Gesellschaft 
für Informatik e.V. (GI)
5.–8. April 2022, Karlsruhe
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P-324  Matthias Riebisch, 
Marina Tropmann-Frick (Hrsg.)
Modellierung 2022
Fachtagung vom 27. Juni - 01. July 2022, 
Hamburg

P-325 Heiko Roßnagel, 
Christian H. Schunck, 
Sebastian Mödersheim (Hrsg.)
Open Identity Summit 2022
Fachtagung vom 07. - 08. July 2022, 
Copenhagen

P-326 Daniel Demmler, Daniel Krupka, Hannes 
Federrath (Hrsg.)
INFORMATIK 2022
26.–30. September 2022 
Hamburg

P-327 Masud Fazal-Baqaie, Oliver Linssen, 
Alexander Volland, Enes Yigitbas, 
Martin Engstler, Martin Bertram, 
Axel Kalenborn (Hrsg.) 
Projektmanagement und 
Vorgehensmodelle 2022
Trier 2022

P-328 Volker Wohlgemuth, Stefan Naumann, 
Hans-Knud Arndt, Grit Behrens, 
Maximilian Höb (Editors)
Environmental Informatics 2022
26.–28. September 2022, 
Hamburg, Germany

P-329 Arslan Brömme, Naser Damer, 
Marta Gomez-Barrero, Kiran Raja, 
Christian Rathgeb, Ana F. Sequeira, 
Massimiliano Todisco, Andreas Uhl (Eds.)
BIOSIG 2022
14. - 16. September 2022, 
International Conference

P-330 Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Fokus: Resiliente Agri-Food-Systeme
Referate der 43. GIL-Jahrestagung
13.–14. Februar 2023Osnabrück

P-331 Birgitta König-Ries, Stefanie Scherzinger, 
Wolfgang Lehner, Gottfried Vossen 
(Hrsg.)
Datenbanksysteme für Business, 
Technologie und Web (BTW 2023)
06.–10. März 2023, Dresden

P-332 Gregor Engels, Regina Hebig, 
Matthias Tichy (Hrsg.)
Software Engineering 2023
20.–24. Februar 2023, Paderborn

P-333 Steffen Becker & Christian Gerth (Hrsg.)
SEUH 2023
23.–24. Februar 2023, Paderborn

P-334 Andreas Helferich, Dimitri Petrik, 
Gero Strobel, Katharina Peine (Eds.)
1st International Conference on Software
Product Management 
Organized by „GI Fachgruppe Software
Produktmanagement im Fachbereich
Wirtschaftsinformatik (WI PrdM )“,
Frankfurt, 2023

P-335 Heiko Roßnagel, Christian H. Schunck, 
Jochen Günther (Hrsg.)
Open Identity Summit 2023
15.–16. June 2023, Heilbronn

P-336 Lutz Hellmig, Martin Hennecke (Hrsg.)
Informatikunterricht zwischen 
Aktualität und Zeitlosigkeit
20.-22. September 2023, Würzburg

P-338 René Röpke und Ulrik Schroeder (Hrsg.)
21. Fachtagung 
Bildungstechnologien (DELFI)
11.-13. September 2023, Aachen

P-339 Naser Damer, Marta Gomez-Barrero, 
Kiran Raja, Christian Rathgeb, 
Ana F. Sequeira, Massimiliano Todisco, 
Andreas Uhl (Eds.)
BIOSIG 2023
20.-22. September 2023, Darmstadt

P-340 Axel Kalenborn, Masud Fazal-Baqaie, 
Oliver Linssen, Alexander Volland, 
Enes Yigitbas, Martin Engstler, 
Martin Bertram (Hrsg.) 
Projektmanagement und
Vorgehensmodelle 2023
16. und 17. November 2023, Hagen

P-341 Gunnar Auth und Tim Pidun (Hrsg.)
6. Fachtagung Rechts- und 
Verwaltungsinformatik (RVI 2023)
26.–27. Oktober 2023, Dresden
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�e proceedings of the BIOSIG 2023 include scienti�c contributions of the annual inter-
national conference of the Biometrics Special Interest Group (BIOSIG) of the Gesellscha� 
für Informatik (GI). �e conference was held in Darmstadt on 20.-22. September 2023. 
�e advances of biometrics research and new developments in the core biometric applica-
tion �eld of security have been presented and discussed by international biometrics and 
security professionals.
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