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Abstract: Even though novel identification techniques like Single Sign-On (SSO) are
on the rise, stealing the credentials used for the authentication is still possible. This
situation can only be changed if we make novel use of the single cryptographic func-
tionality a web browser offers, namely TLS. Although the use of client certificates
for initial login has a long history, only two approaches to integrate TLS in the ses-
sion cookie mechanism have been proposed so far: Origin Bound Client Certificates
in [DCBW12], and the Strong Locked Same Origin Policy (SLSOP) in [KSTW07].

In this paper, we propose a third method based on the TLS-unique API proposed in
RFC 5929 [AWZ10]: A single TLS session is uniquely identified through each of the
two Finished messages exchanged during the TLS handshake, and RFC 5929 proposes
to make the first Finished message available to higher layer protocols through a novel
browser API. We show how this API can be used to strengthen all commonly used
types of authentication, ranging from simple password based authentication and SSO
to session cookie binding.
Keywords: SSL, TLS, Session Cookies, Password based Authentication, Single-Sign-
On, TLS-unique, Strong Locked Same Origin Policy

1 Introduction

Today, the most prevalent method for user authentication towards a server in a network

environment consists of a username/password combination, where the username is usually

a publicly known value and the password is a secret value known only to the corresponding

user. By providing the correct password for a given username, the user proves his identity

to the server.

After a correct initial authentication, the server issues a cookie containing a unique string

identifying an authenticated session between user and server. Subsequent queries from the

user to the server will then include this cookie and thus do not require another explicit

authentication.

Nowadays, every user is working with various services on the Web, thus, a user has to

create and manage multiple passwords. To mitigate the overhead of creating and remem-

bering multiple secure passwords, SSO systems can be utilized. These systems allow a

user to authenticate himself to an Identity Provider (IdP) which acts as a trusted third

party towards both the user and the Service Provider (SP) (the server providing the de-

sired service). After the user authenticated himself to IdP, the IdP authenticates the user

towards an SP by issuing a cryptographically secured authentication token. The user can

use this token to prove his identity to SP without requiring further explicit authentication

by username/password.

Attacks on Authentication Methods In practice, many problems can arise in such au-

thentication contexts. Passwords can be leaked, either via Phishing or during transport.
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Cookies and authentication tokens can be eavesdropped or stolen via various attack tech-

niques and used by an attacker to impersonate the user.

And even though the authentication data sent between the participants is almost always

protected by secure channels, i.e. TLS sessions, it has been shown in the past (e.g., [Mar09]

or [BDLF+14]) that TLS sessions are susceptible to Man-in-the-Middle (MitM) Attacks,

potentially enabling an attacker to steal passwords, cookies and/or authentication tokens

during transport.

Contribution Motivated by the existing threats and serious vulnerabilities found within

today’s authentication processes and the associated identity management, we propose a

novel approach to strengthen authentication and trust between the participants.

Our main goal is to use certain features of the TLS session between participants to enhance

the protection of the entire communication within the current HTTP-session. The distinct

contributions of this paper are the following:

• Introduction of a novel binding of passwords to the applied TLS session during the login

phase in order to prevent MitM attacks regarding the transmitted credentials.

• Reinforcement of the session cookies in conjunction with a TLS channel to mitigate the

theft via XSS, CSRF and UI-Redressing attacks.

• Amplification of SSO protocols by cryptographically binding the issued security tokens

to the applied TLS session.

• Only minor adjustments to the existing infrastructures are proposed, enabling an easy

implementation and integration of the introduced mechanisms.

The security mechanisms introduced in this article are based on the sole assumption that

the simple TLS-unique interface from RFC5929 [AWZ10] is implemented in the browser.

The paper is organized as follows: Section 2 discusses related work pointing other ap-

proaches and their respective differences to our approach. Section 3 explains the technical

foundations our solution is based on. We define the threat model in Section 4 and list the

technical preconditions in Section 5. Section 6 explains the theory behind our proposed

solution and Section 7 provides information regarding possible implementations of the

concept. We conclude our paper in Section 8.

2 Related Work

Several efforts have been proposed [PS00, FSSF01, LKHG05] to secure cookies by de-

ploying modern public key-based authentication mechanisms. However, neither signing

nor encrypting cookies prevents an adversary from transferring a cookie from one browser

to another, thus rendering these efforts ineffective against cookie theft and similar attacks.

In 2007, Karlof et al. [KSTW07] proposed to strengthen the web browser’s Same Origin

Policy (SOP) by taking the server’s TLS certificate into account. They recommended two

variants, called weak- and strong-locked Same Origin Policy, respectively. The weak-

locked SOP is easier to implement and enforces that web objects are sent only to servers

with valid certificate chains (e.g. certificates included in the chain can neither be selfsigned

nor expired). The strong-locked SOP tags each web object with the server’s public key and

solely returns them to a server if that public key matches the key from the TLS certificate
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of the current TLS connection to the server.

A similar approach called Web Server Key Enabled Cookies (WSKECookies) was pre-

sented by Masone et al. [MBS07]. In this concept, the browser stores cookies along with

the public key of the web server which initially set them. A WSKECookie is only returned

to a web server which proved possession of the same key pair in following TLS sessions.

In both concepts stolen web objects or WSKECookies are not cryptographically bound

in any way – neither to the TLS channel nor to the client. Therefore, the attacker can

potentially steal them and then use them to authenticate as the victim.

In 2008, Gajek et al. [GJMS08] proposed a variant of a browser-based Kerberos scheme

using TLS client certificates. The concept has been standardized as SAML Holder-of-Key

Web Browser SSO Profile by OASIS1 [KS10]. In contrast to our proposed solution, the

Holder-of-Key approach protects neither HTTP cookies nor password-based logins, but

only the SAML assertion within the Single Sign-On based authentication.

RFC 5929 [AWZ10] was published in 2010 as proposed standard. The document de-

scribes three channel binding types for TLS, namely tls-unique, tls-server-endpoint, and

tls-unique-for-telnet. TLS-unique specifies the API for our proposed binding solutions.

A solution specifically designed for channel bindings within SAML frameworks has been

described in [KSJG10].

In 2012, Dietz et al. [DCBW12] proposed a TLS channel binding called Origin-Bound

Certificates (OBC) by using a TLS extension. Their approach changes server authenticated

TLS channels into mutually authenticated channels by using client certificates created on

the fly by the browser. In consequence, their idea requires changes to the TLS protocol,

which would affect all current TLS implementations. They propose to use the issued OBC

by cryptographically binding them to HTTP cookies or SSO tokens.

Google introduced another TLS extension called Channel ID [BH12], which again re-

quires fundamental changes to underlying TLS implementations. In summary, the browser

creates an additional asymmetric key pair during the TLS handshake and uses the private

key to sign all handshake messages up to the ChangeCipherSpec message. Subse-

quently, the signature, along with the public key, is sent encrypted through the TLS channel

using the established TLS key material. This is done, before finishing the TLS handshake.

The browser uses the public key as ”Channel ID” that identifies the TLS connection.

In 2013, OASIS published the SAML Channel Binding Extensions allowing the use of

channel bindings in conjunction with SAML [Can13]. This standard allows the proposed

TLS channel bindings to be integrated in all SAML related services, e.g. SSO.

3 Technical Foundations

In order to exchange sensitive data between a client and a server, first a mutually authen-

ticated secure channel has to be established between the two communication partners.

Establishing such a channel requires multiple steps, where server side authentication and

data protection during transport are usually handled via Transport Layer Security (TLS).

Section 3.1 briefly discusses the details of a TLS handshake phase, resulting in establish-

1https://www.oasis-open.org/
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ment of a server-side authenticated secure channel between the parties. Usually, the client

then has to provide an authentication for himself. This client authentication can be done

directly towards the server by using a mutual secret, i.e. a password, between client and

server, as described in Section 3.2. Section 3.3 describes means to make this authentica-

tion persistent, so the user does not have to enter the password for every HTTP-request.

Alternatively, authentication can be done indirectly with the help of a trusted third party in

an SSO scenario, as shown in Section 3.4.

3.1 Transport Layer Security (TLS)

Transport Layer Security (TLS) [DR08] provides multiple security goals, such as

(1.) Confidentiality (2.) Authenticity (3.) Integrity and (4.) Replay protection.

These goals are achieved by different cryptographic primitives like encryption, Keyed-

Hash Message Authentication Codes (HMACs), sequence numbers and nonces. However,

TLS protects data only during transport and does not provide any end-to-end payload

security. Thus, message level security requires additional mechanisms at a higher level in

the protocol stack.

TLS consists of a two-phase architecture: The handshake phase and the application phase

(see Figure 1).
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Figure 1: TLS Handshake Phase and Application Phase.

The handshake phase includes multiple messages sent between client and server and serves

to establish algorithms, cryptographic primitives and an authenticated agreement on a

shared secret between the participants. All key material required for a secure commu-

nication is derived from this secret.

Handshake messages are exchanged unencrypted until the ChangeCipherSpec proto-

col is invoked to activate cryptographic protection at the corresponding party (thus, after

both parties sent their corresponding ChangeCipherSpec messages, all communica-

tion between the two parties will be encrypted). All handshake messages may only occur
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in an exactly specified order and must follow the predefined workflow.

A parameter of interest for the concept of TLS Unique is the first Finished message (Fin-

ished) message. This Finished message is the first message encrypted with the negotiated

keys and contains a hash value of all handshake messages previously exchanged between

client and server. The hash especially includes all random values exchanged within the

handshake, thus, the Finished message can be seen as a unique fingerprint of the TLS

session in use.

After both parties have established the shared secret and confirmed this by sending the

proper Finished message, the protocol continues with the application phase where the

actual payload data is exchanged via the secure communication channel.

3.2 Initial Client Authentication

The initial client authentication describes authentication of a user against a server by prov-

ing the possession of a shared secret. The authentication process in most cases is visible

to the user and requires interaction.

For our approach, we focus on Form-based Authentication, where the server provides an

HTML form with one or more input fields into which the user enters his credentials. Then

the form including the user’s input is sent to the server for validation. On client side,

e.g., JavaScript could be utilized to provide protection of integrity, authenticity and/or

confidentiality, before sending the data. On server side, any application logic designed to

validate authentication data, can read and process the received data. No specific client side

enhancements have to be performed to support this authentication type.

Our approach could also be used in conjunction with either HTTP Basic Authentication

or HTTP Digest Authentication (both described in [FHBH+99]), but this would require

several client side modifications.

3.3 Persistency of Authentication

HTTP is a stateless protocol. Without additional mechanisms, a user would be forced

to re-enter his login information for each HTTP request. Cookies [Bar11] are used to

transform stateless HTTP requests into stateful user sessions by explicitly linking them

together. They are sent with every HTTP request from the browser to the web server.

Cookies consist of name-value pair containing session information. A web server can

instruct a browser to store a cookie by sending an additional HTTP header, embedded in

an HTTP response, as follows:

Set-Cookie: SessionID=280-9757248-2350101;

domain=docs.foo.com; path=/accounts;

expires=Sun, 30 Mar 2015 05:23:00 GMT

A cookie can have further attributes, such as domain and path that define the scope of

a cookie (e.g. docs.foo.com/accounts). The expires attribute indicates when a

cookie expires.

Stored HTTP cookies are automatically sent back to the server by adding the additional

HTTP header Cookie containing the set cookie(s). This simple mechanism is supported

by all browsers. HTTP cookies are often used to store the result of an initial authentication;

we will call such cookies Session Cookies.
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SP.

We further assume, the attacker does not have direct access to the victim’s device or ac-

tual servers (other than those possibly created by himself). This means the attacker cannot

simply read out and steal the secrets shared between the victim and his communication

partners, e.g., by utilizing a keylogger or manipulating the victim’s browser’s DOM. Simi-

larly, we assume the victim is not prone to Phishing attacks intended to steal his password.

5 Technical Preconditions

In addition to the abilities and limitations of the attacker stated previously, several technical

preconditions must be fulfilled for our approach to be feasible:

• The user’s User Agent (UA) must provide an interface to access the first Finished mes-

sage of each TLS connection.

• Client and server share a symmetric secret in form of a password. This password has

been exchanged beforehand via a secure channel and is stored in a secure way.

• The optional TLS features TLS session resumption and TLS renegotiation must be dis-

abled on client as well as server side. The usage of any of these features will automati-

cally result in a Finished message differing from the one originally used for the binding.

This will invalidate all previous channel bound authentication information.

6 TLS Unique

In this section we describe our solution by applying a secure cryptographic binding using

TLS Unique to three practical use cases: (1) Password-Based Login, defined in Section 6.1.

(2) HTTP cookies, described in Section 6.2. And finally (3) SSO, shown in Section 6.3.

In this section, we also put these building blocks together and present a novel holistically

secured browser-based SSO protocol.

6.1 Password-Based Login

As already discussed, authentication using passwords can be unsafe for many reasons. In

order to strengthen the password-based login, we propose a novel approach binding the

credentials to the TLS session. The protocol run is sketched in Figure 3.

(1.) The user requests a restricted resource on the Web server through his UA.

(2.) The server redirects the user to the authentication module via an HTTP Redirect. In

addition, the HTTP Redirect message contains the HTTP-Header tls-unique-auth:

true, which triggers the TLS Unique module in the UA.

(3.) The TLS channel between UA and server is established.

3.1) The UA extracts the first Finished message fin via the RFC 5929 interface

and stores it.

3.2) The server acts accordingly on his end of the TLS connection and extracts and

stores the first Finished message fin′.

Note: If no MitM attack between UA and the server is active, it should hold

that fin == fin′.

(4.) The user enters his user id into the corresponding form field provided by the server.

(5.) The server provides the corresponding salt which was used to build the stored pass-

word hash on server side.

(6.) The user enters his password pw. Consequentially, the TLS Unique module in the
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Figure 3: Password-Based Login bound to TLS Unique.

UA computes a hash value of the concatenation of the received salt and the user’s

provided password: pwh = hash(salt||pw).
(7.) The TLS Unique module then computes an HMAC loginfin = HMACpwh(fin),

which is transmitted to the server.

(8.) After receiving this value the server computes loginfin′ = HMACpwh(fin
′).

Only if loginfin == loginfin′ , the server will accept the credentials and success-

fully authenticate the client.

(9.) The server grants access to the requested resource.

Note 1: Management of passwords on server side is out of scope of this paper. Thus,

for the purpose of the protocol described here, usage of salts is optional (see steps 4 and

5). However, based on existing incidents, we highly recommend their usage within the

authentication process.

Note 2: Using the TLS Unique binding during the login phase does not prevent the inter-

ception of the packages and their analysis by the given adversary controlling the network

traffic. However, the loginfin token contains only an HMAC over the related credentials

and does not reveal the used password. Due to the TLS Unique binding, loginfin can only

be used in the TLS session uniquely identified by fin (resp. fin′); an adversary trying to

use the stolen token in his own TLS session with the server will fail to authenticate himself

as the victim because the Finished message fin′′ on server side will not match the token.

Note 3: The security of loginfin against brute-force attacks depends on the complexity of

the chosen password. By this means, the password should have high entropy.

6.2 HTTP Session Cookies

Next, we extend the TLS Unique binding of the password based login protocol from Sec-

tion 6.1 to HTTP cookies to maintain the authentication state in subsequent HTTP re-

quests. Since session cookies are set and read by the server, a cookie binding to the TLS

session has to take place at the server side of the communication.
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We propose the following procedure to bind the HTTP session cookie to the TLS channel:

(1.) Secure user authentication: The user authenticates using the TLS Unique Password-

Based Login protocol as described above.

(2.) Set TLS Unique cookie: After successful authentication, the server immediately

sets an HTTP cookie ckybound = hash(fin′) with the value of the Finished mes-

sage of the TLS session used in step 1. The value of this cookie serves as a session

identifier on server side3.

(3.) Verifying the Session cookie: In all subsequent HTTP requests the browser auto-

matically provides the ckybound by adding it to the HTTP header of the request.

The server accepts the cookie if the following comparison holds: ckybound ==
hash(fin′). Thus, the server verifies that the session cookie belongs to the corre-

sponding TLS channel.

Note: Even if the attacker is able to steal the session cookies of the user, he cannot establish

a parallel TLS session to the server with the same Finished message fin == fin′. As

a result, using the stolen cookies to authenticate through a different TLS channel is not

possible.

6.3 Single Sign-On (SSO)

A major problem of SSO protocols are MitM attacks on involved TLS connections [SB12].

If TLS is badly configured, or if the adversary succeeds to mount a DNS/PKI spoofing

attack, he may read authentication credentials from the network. The TLS Unique binding

from RFC 5929 offers a way for the authenticating party to check if there is a malicious

MitM on the network. A usage scenario for a TLS Unique binding within general SSO

protocols is sketched in Figure 4.
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Figure 4: TLS-unique usage scenario in SSO.

In an SSO protocol, typically at least two TLS sessions are involved: TLS1 between UA

and SP, and TLS2 between UA and IdP. Often the first request to SP is not protected by

3Additional cookie properties (e.g., confidentiality or integrity protection) can also be applied in the sense

of [LKHG05].
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TLS, but in order to be able to apply the TLS-unique binding, setting up a TLS channel

immediately in response to Step 2 is essential: After receiving the authentication request

from SP, the User Agent (UA) extracts the first Finished message fin1 (Step 3.1) from

TLS1, using the API described in RFC 5929. This value is added as a parameter to the

authentication request and forwarded to the IdP in Step 6.

Note: Technically, SP could immediately include the corresponding value fin′

1 into the

authentication request in Step 5. However, it is important that this value is included on

client side, as fin1 is intended to be checked against fin′

1 in Step 10 by SP.

The link between UA and IdP can also be protected by TLS Unique: If fin2 is included

into the authentication process in Step 7 (e.g., like described in Section 6.1), IdP can check

whether an MitM is present or not. Alternatively, authentication methods may range from

password based authentication as described to arbitrary cryptographic protocols [JKSS10].

After successful authentication of the user, IdP will include fin1 into the issued authenti-

cation token (Step 8). This token is cryptographically secured – either by a digital signature

or by an HMAC. Thus, the content of the token cannot be altered by an MitM.

In Step 9, the UA forwards the token to the SP through the previously opened session

TLS1.

Note: TLS1 has to be kept active between UA and SP all the time. This is important, so

the Finished message of the current TLS connection is still the same as was extracted as

fin′

1 in Step 3.2. The TLS connection can, e.g., be preserved by sending keep-alives on

the TCP connection below.

When SP receives the authentication token in Step 10, he compares fin′

1 to the value fin1

read from the token. Access is granted in Step 11 if and only if both the authentication

token is valid and fin1 == fin′

1.

Based on the modification, the protocol can resist network based attacks, e.g. MitM. In

this case, an attacker can act undetected until after Step 9 in Figure 4, because SP only sees

a TLS connection with an anonymous browser up until then, and the MitM has tricked the

UA into accepting a TLS connection with him.

Nevertheless, the Finished messages for the TLS sessions between UA and MitM and

between MitM and SP differ from each other. Even if the attacker is able to intercept the

authentication token during Step 9, he is not able to redeem it, because the token will be

issued for finUA,MitM , whereas the MitM attacker is connected to SP via a TLS session

described by finMitM,SP .

7 TLS Unique Implementation

This section provides an overview of necessary changes to client software and required

Application Programming Interfaces (API) for successful integration of the proposed con-

cept. As the solution has to be implemented at client side, it is necessary to modify the

user’s client software, such as the browser. For convenience, the solution can be provided

as a browser plugin, integrating seamlessly and without user interaction. The plugin per-

forms all required steps and only becomes visible in case of failures.
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Additional Header-Fields To simplify HTTP message processing, it is beneficial to
introduce a new HTTP Headers:

• tls-unique-auth: {boolean} – initiates the password-based login via TLS Unique.

• tls-unique-sso: {boolean} – initiates SSO via TLS Unique.

• tls-unique-sp fin: {char[]} – contains the value of the Finished message.

The integrated browser plugin only activates if this particular HTTP Header-Field is en-

countered, otherwise it remains inactive as a background process.

API Implementation Unfortunately, the plugin requires additional APIs for access to

lower SSL/TLS functionality - the SSL/TLS PreMasterSecret, MasterSecret and derived

key material MUST be kept secret and unaccessible. We propose an API that provides

low-level access to all SSL/TLS handshake messages - this MUST only include access

to raw messages, as they are supposed to be sent over the network, explicitly excluding

outputs of decryption processes and access to internal states.

With direct access to the necessary TLS messages, it is possible to extract the information

needed for channel binding (eg. encrypted Finished message).

8 Conclusion

Current authentication mechanisms are prone to a variety of attacks, e.g., cookie theft or

MitM. This way, an attacker may steal credentials or authentication tokens and use them

to impersonate the victim.

The introduced TLS Unique approach holistically secures the whole login and/or SSO pro-

tocol flow by binding the authentication information to specific TLS sessions. We use the

first Finished message to uniquely identify a TLS session and then cryptographically bind

this identifier to the authentication data. Our approach covers the transport of credentials

(e.g. a username/password combination), session cookies, and SSO authentication tokens.

By using this approach, the exploit of a large number of previously found authentication

flaws can be prevented.

TLS Unique can be implemented as a browser plugin, provided that the corresponding

API is available to allow access to the required parameters (especially the first Finished

message) from the TLS handshake. A few new HTTP headers have to be provided by the

server to activate and trigger the plugin. Our solution describes a generic approach which

can be easily adapted to other SSO protocols (e.g. OAuth and OpenID).
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