
cba doi:10.18420/sicherheit2022_07

Wressnegger and Reinhardt (Hrsg.): GI Sicherheit 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 89

SMT-Based Verification of Concurrent Critical Systems

Matthias Güdemann1

Abstract: Petri nets are a widely used formalism to describe and analyze critical systems. It is in
particular well suited for systems with concurrency like cache coherence protocols, fault-tolerant
distributed systems or security critical protocols. The verification approaches for Petri nets are most
often based on enumerative approaches which allow for analyzing complex, often temporal, properties.

Dataflow languages are widely used in safety critical systems. There are several state-of-the-art
model-checkers for these languages. While the properties that can be verified are generally limited to
invariants, it is possible to encode some interesting properties of Petri nets as invariants which makes
them accessible for powerful analysis methods based on modern SMT and SAT solvers.

The SpiNat approach transforms Petri net into synchronous dataflow language models. This allows
for using predicate abstraction and the theory of unbounded integers allows to analyze the potentially
unbounded markings of Petri nets using model-checking tools for languages like Lustre. The presented
approach is orthogonal to enumeration based approaches for Petri net analysis and allows benefiting
from any increase in efficiency of industrial strength SMT-based model-checkers like kind2 and JKind.

1 Introduction

In many critical systems there is some inherent concurrency, in particular if a system
contains distributed components or uses a protocol. The behavior of such systems is often
hard to understand as the different execution sequences make it easy to build systems
that might deadlock or have parts which are never activated. Due to the complex possible
behavior, it is most often not possible to apply testing in an exhaustive way.

To overcome these problems there are different formalisms to describe and analyze critical
systems with concurrent behavior. Process algebras like CSP [Ho78] and languages like
LNT [GLS17] are higher level description mechanisms which allow specification of
concurrent systems. Their formal analysis is often conducted via transformation into Petri
nets. Such formalisms have been used, e.g., to analyze safety of fault-tolerant distributed
systems [Am11], TLS handshake [Bo18], fault-tolerant routing on a network-on-chip
system [Zh16], system-on-chip cache coherence protocols [KS15] or autonomous cloud
coordination managers [ASDP17]. The programming language Go [La] takes its use of
channels from process algebras. The language Erlang [Er] uses a mechanism similar to
synchronization in process algebras to exchange messages between concurrent light-weight
processes. Many of the approaches to analyze such models of concurrent systems use Petri
1Munich University of Applied Science HM, Department of Computer Science and Mathematics, Lothstrasse 64,
80335 München, Germany matthias.guedemann@hm.edu

cba doi:10.18420/sicherheit2022_04

C. Wressnegger et al. (Hrsg.): SICHERHEIT 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 67

mailto:matthias.guedemann@hm.edu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2022_04


90 M. Güdemann

nets and are based on enumeration. While this allows for the analysis of complex properties
it also makes the analyses susceptible to the state-space explosion problem.

Symbolic verification based on SAT and SMT solvers has become common in HW
verification. Bounded model checking is very successful in bit-precise Software Model-
checking [KT14]. On the one hand there is the drawback that these approaches are mainly
limited to invariant properties. On the other hand, several interesting properties of concurrent
systems can be expressed as invariant or reachability problems using observers. In these
cases, it is possible to make use of the advanced algorithms, automated theorem provers
and industrial strength model-checking tools for dataflow languages.

The main contribution of this work is the SMT-based Petri Net Analysis Technique (SpiNat)
to analyze concurrent systems using synchronous languages. It is meant to be an approach
orthogonal to other analysis methods of these systems. In its current form, it could be used
in a portfolio approach to verification where different algorithms are used in parallel. The
overall result is simply the first finished analysis. The first experimental results show its
applicability to Petri net models of the Model Checking Contest (MCC).

2 Background

2.1 Petri Nets

Petri nets are a low-level formalism to describe concurrent systems. For example the
CADP [Ga13] toolbox translates the LNT [GLS17] language into Petri nets for further
analysis. Petri nets, also called place transition or P/T nets.

Definition 1 (Petri Net) A Petri net is a tuple 𝑁 = (𝑃,𝑇, 𝐹) with a set of places 𝑃, a set of
transitions 𝑇 and a relation of arcs 𝐹 where 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃)

Definition 2 (Marking) For a Petri net 𝑁 = (𝑃,𝑇, 𝐹) a marking 𝑀 is a mapping 𝑀 :
𝑃 ↦→ N which represents the number of tokens at each place.

A marking of a Petri net therefore expresses the number of token on each place of the net.

Definition 3 (Pre- and post-set) For a Petri net 𝑁 = (𝑃,𝑇, 𝐹) the pre-set is •𝑥 := {𝑦 |𝑦𝐹𝑥}
and the post-set is 𝑥• := {𝑦 |𝑥𝐹𝑦}.

Definition 4 (Labelling and Enabled Transitions) A labelling is a function 𝐿 : 𝐹 ↦→ N
which assigns a natural number to each arc.

A transition 𝑡 ∈ 𝑇 is enabled iff

68 M. Güdemann



SMT-Based Verification of Concurrent Critical Systems 91

∀𝑝 ∈ •𝑡 : 𝐿 (𝑝, 𝑡) ≤ 𝑀 (𝑝)

This means that a transition 𝑡 is enabled if each incoming arc (𝑝, 𝑡) is labelled with a number
less than or equal to the marking of the place 𝑝. Informally this means that each place in the
pre-set of 𝑡 must hold enough tokens to enable the transition.

Definition 5 (Transition Firing) If a transition 𝑡 is enabled and the current marking is
𝑀 , then the transition 𝑡 can fire which changes the marking to 𝑀 ′. This is often written as
𝑀

𝑡→ 𝑀 ′, where for new marking 𝑀 ′ the following holds

∀𝑝 :(𝑝 ∈ •𝑡 → 𝑀 ′(𝑝) = 𝑀 (𝑝) − 𝐿 (𝑝, 𝑡))
∧(𝑝 ∈ 𝑡• → 𝑀 ′(𝑝) = 𝑀 (𝑝) + 𝐿 (𝑡, 𝑝))
∧(𝑝 ∈ 𝑃 \ (•𝑡 ∪ 𝑡•) → 𝑀 ′(𝑝) = 𝑀 (𝑝))

Informally this means that when a transition 𝑡 fires, the current marking changes by removing
tokens from the places in the pre-set of 𝑡 and adding tokens to the post-set of 𝑡. The number
of tokens is equal to the label of the incoming (respective outgoing) arc of 𝑡.

Every Petri net has an initial marking 𝑀𝐼 , i.e., an initial distribution of tokens on places. A
marking 𝑀 is reachable if there exists a finite sequence of transition firings such that the
initial marking is transformed into 𝑀 , i.e., 𝑀𝐼

𝑡1→ · · · 𝑡𝑛→ 𝑀 . For more details see [Re13].

2.2 Model Checking using Satisfiability

Many of the most efficient approaches to verification use satisfiability or constraint problem
formulation and rely on efficient SAT or SMT solvers to find solutions. SMT allows for
a richer modeling language and can also use higher level reasoning similar to automated
theorem provers. These tools support bit-precise formal analysis for fixed width bitvectors
as well as additional decidable theories, e.g., the theory of unbounded integers for infinite
state systems [KT14, CG12, La19].

The basic approach of bounded model-checking (BMC) unrolls the transition relation until
a state that violates the property is reached. This method is incomplete but can be made
complete using k-induction [BC00]. Newer approaches use for example the ic3/pdr [Br11]
(property directed reachability) method to strengthen the property and to make it 1-inductive.
In this paper we will use the verification of invariants or reachability checking to verify
properties of Petri nets.

SMT-Based Verification of Concurrent Critical Systems 69



92 M. Güdemann

2.3 Lustre Dataflow Language

Dataflow languages are well studied and widely used for safety critical systems modeling
and implementation. Lustre is a synchronous dataflow language which has a long history of
use in safety critical systems in both commercial applications and academia. A program is
built from hierarchical nodes. Special temporal operators allow the use of state variables
with a defined initial value and a function to calculate the value for the next time step.
At each time step the outermost node reads its inputs and uses these values to calculate
simultaneously all values of each inner node and the output value of the outermost node.
For details see [JRH16].

Several verification tools for Lustre have been developed, including commercial ones. There
are modern open source industrial grade model checkers, kind2 [Ch16] and JKind [Ga18].
These tools allow for using different state of the art SMT engines, e.g., Z3 [DMB08] or
CVC4 [Ba11] and use different algorithms in parallel in a portfolio approach to verification.

3 Expressing the Semantics of Petri Nets in Lustre

Here, the expression of Petri net semantics in Lustre follows an example driven explanation.
A fully formal specification is under current development. In the SpiNat approach, Lustre
state variables are used to encode the places of Petri nets. Every state variable is of type
integer (unbounded) and holds the number of tokens at the corresponding place. Transition
firing changes the marking of the Petri net, adjusting the value of the state variables
corresponding to the impacted places.

Two transitions are independent if their post-sets (or pre-sets) have no common element.
If progress is possible, then at least one transition of a set of independent transitions fires.
This is ensured by defining one Boolean activation input parameter for each transition. This
uses the assert mechanism of Lustre to add the constraint that if progress is possible, then
exactly one transition set can have activated transitions. Each activated transition in a set of
independent transitions fires if it is enabled, i.e., its incoming places hold enough tokens.
Via an additional assert it is ensured that at each step if there is a transition that is enabled
there also exists an activated and enabled transition, guaranteeing progress if possible.

3.1 Example Petri Net

Figure 1 shows an example Petri net [wi]. In the initial marking the place 𝑝1 contains
one token. All other places are empty, each arc is labelled with a weight of value 1. The
encoding of the Petri net in Lustre works as follows. For each of the four transitions the
main node of the Lustre model has one Boolean input parameter in the form of 𝑎𝑐𝑡_𝑡 for
a transition 𝑡. Each of these parameters models the potential activation of a transition, an

70 M. Güdemann



SMT-Based Verification of Concurrent Critical Systems 93

activated transition can fire if it is enabled, too. In the later analysis, a model-checker can
used non-deterministic values for each activation input parameter of the transitions. The
output of the main node is the content of the three places modeled as integers and the
information which transition fires.
node main(act_t0, act_t1, act_t2, act_t3 : bool)

returns (p1,p2,p3 : int; firing_t0,firing_t1,firing_t2,firing_t3 : bool);

For each transition there exists a Boolean flag which is true iff the transition is enabled. For
𝑡0 for example this means that 𝑝1 and 𝑝3 hold at least one token.
enable_t0 = p1 >= 1 and p3 >= 1;

Fig. 1: Example Petri Net

As no transitions are independent, each transition set
only contains a single element and each transition set is
activated iff the contained transition is activated. Correct
transition firing is modelled as follows via Lustre assert.
This ensures that if a transition is enabled, then exactly one
set of independent transitions has activated transitions. It
also ensures that at least one activated transition is also
enabled.
trans_set0 = act_t0;

trans_set1 = act_t1;

trans_set2 = act_t2;

trans_set3 = act_t3;

assert (not (enable_t0 or enable_t1 or enable_t2 or enable_t3)

or (bool2int(trans_set0) + bool2int(trans_set1) +

bool2int(trans_set2) + bool2int(trans_set3) = 1));

assert ((enable_t0 or not act_t0) and (enable_t1 or not act_t1)

and (enable_t2 or not act_t2) and (enable_t3 or not act_t3));

The first constraint models that if at least one transition
is enabled, then exactly one independent set can contain
activated transitions. In this example each transition set contains exactly one transition, the
bool2int function equals 1 for true and 0 for false. Note, that if no transition is enabled a
deadlock is reached and no progress is possible any more. The second constraint models
that if there is an activated transition there is also enabled transition which fires.

For each transition 𝑡 there exists a Boolean flag which represents that 𝑡 fires, e.g., for
transition 𝑡0 in the example:
firing_t0 = act_t0 and enable_t0;

Places are modelled as state variables. The initial value of 𝑝1 is 1, the value of 𝑝1 in the
next time step is defined by the expression after the arrow operator ->. The pre operator
represents the value in the previous time step. A firing of transition 𝑡3 removes a token from
𝑝1 and adds a token to it. Therefore, in that case the change is the difference between the
weight of the incoming arc and the weight of the outgoing arc which is 0. For the place 𝑝1
in the example this translates to (cf. Def. 5):

SMT-Based Verification of Concurrent Critical Systems 71



94 M. Güdemann

p1 = 1 -> if pre firing_t0 then pre p1 - 1

else if pre firing_t1 then pre p1 - 1

else if pre firing_t3 then pre p1 - 0

else pre p1;

3.2 Petri Net Properties for SpiNat

There are some standard properties of Petri nets which can be directly expressed as invariants.
For other properties full temporal logic is necessary and those are not yet supported in
SpiNat.

• no dead transition / quasi-liveness in a marking is a transition property which states
that every transition can be enabled eventually.

• no dead places is a property on places which states that no place exists which never
holds a token.

• deadlock in a marking states that no transition is enabled and no more progress is
possible.

• n-safety is a property on the number of tokens at each place. A net is called n-safe if
there are at most n tokens on each place for each reachable marking. An often used
special case of this property is 1-safety.

Quasi-liveness is checked via recording whether at least one transition is never enabled. Any
counterexample to this invariant proves quasi-liveness. Dead places exist if the invariant
holds that at least one place has value zero in all reachable markings. This requires observing
whether each place holds a non-zero value of tokens eventually. A deadlock corresponds to
observing that no transition is enabled.

enabled_t0 = false -> if enable_t0 then true else pre enabled_t0;

marked_p1 = false -> if 0 < p1 then true else pre marked_p1;

deadlock = not (enable_t0 or enable_t1 or enable_t2 or enable_t3);

The n-safety property is the conjunction of the boundedness of the places. In the example
1-safety of the net is formulated as follows:

prop_oneSafe = 1 >= p1 and 1 >= p2 and 1 >= p3;

In the example no dead places exist, i.e., for each place 𝑝 there is a reachable marking where
𝑝 holds at least one token. The net is not 1-safe because after two firings of the transition 𝑡3
there are 2 tokens at place 𝑝2. There exists a deadlock, i.e., if 𝑡1 fires in the initial marking,
no other transition can fire afterwards. The transition 𝑡0 can never be enabled, either 𝑝1 or
𝑝3 holds a token, but never both. For the example net in Fig. 1 we get the following analysis
results for the above properties.

<Failure> prop_noDeadlock is invalid by PDR for k=1 after 0.035s.

<Failure> prop_oneSafe is invalid by BMC for k=2 after 0.035s.

<Failure> prop_deadPlaceExists is invalid by BMC for k=2 after 0.035s.

<Success> prop_deadTransExists is valid by PDR after 0.100s.

72 M. Güdemann



SMT-Based Verification of Concurrent Critical Systems 95

The above properties are generated automatically. This is done by generating the necessary
observers states and the necessary Boolean variables during the transformation from the
Petri net description to Lustre. Obviously there can be other interesting properties, but most
often application and net specific properties which can be modelled manually.

4 Model Checking Examples

The Model Checking Contest (MCC) [mc] provides example Petri nets in the XML-based
Petri Net Modeling Language (PNML) [Hi10] format. Many of the models are parametric
and can therefore be analyzed in different sizes and/or difficulties. For this experimental
study, a small subset of the available models and their parametric variants was selected and
analyzed. It it interesting to compare different analysis tools for Lustre among each other
and then also compare SpiNat with an analysis tool for Petri nets.

4.1 SpiNat Variants and Results

There exist different model checkers which can check Lustre programs. The most modern
versions of these are JKind and kind2. JKind is written in Java and allows for using the
built-in SMTInterpol [CHN12] SMT solver or an external one based on the standardized
SMTLIB2 format [BFT17]. kind2 is a reimplementation of the pkind model checker. It is
written in OCaml and supports several SMT solvers with Z3 being the standard choice. Both
model checkers implement different analysis engines with the main ones being bounded
model-checking, k-induction, invariant generation and pdr/ic3.

The analysis runs were executed with a 5-minute timeout using JKind version 4.4.4 using
Z3 version 4.8.12 as external solver and kind2 1.4.0 with Z3 version 4.8.12 on a quad-core
i7-8665U with 1.90 GHz. Timeouts are marked with —, X marks a valid property and ∅
marks an invalid property. The elapsed time is shown in parentheses after the result. The
numbers beside the name indicate the variant of the model. For the no dead transitions / no
dead places properties, a validity means reaching a marking and an property corresponds to
an invariant. For no deadlock and 1-safety a valid property is proven as an invariant and an
invalid one via reaching a marking.

Table 1 shows the results for some selected model variants, comparing the results of JKind
and kind2. Both analysis tools implement a portfolio approach for their analyses and are
capable to use multiple processors. Neither tool is strictly superior to the other. For each
one there are models where it is better than the other and vice-versa. For example, JKind is
significantly faster for the referendum-10 model whereas kind2 is significantly faster for
the 2 PhaseLocking model. For the viral 03 1 1 2 model JKind manages to strictly analyze
more properties than kind2, while for the satellite 100-3 model the opposite is true.

2 More recent versions of Z3 are currently not supported because of a format change.

SMT-Based Verification of Concurrent Critical Systems 73



96 M. Güdemann

Name no dead transitions no dead places no deadlock 1-safety

JKind
GPU FP 40 a ∅2𝑚8.686𝑠 ∅4𝑚1.755𝑠 ∅23.715𝑠𝑠 —
CloudOps ∅1.355𝑠 ∅1.355𝑠 — ∅0.329𝑠
Satellite 100-3 — X0.298𝑠 — ∅0.235𝑠
Referendum 10 ∅6.587𝑠 ∅12.533𝑠 ∅0.336𝑠 X12.533𝑠
Election 2020 X0.754𝑠 X1.358𝑠 — ∅0.429𝑠
2 PhaseLocking X0.321𝑠 X0.321𝑠 ∅1𝑚5.75𝑠 ∅0.228𝑠
Raft 02 ∅2𝑚50.069𝑠 ∅2𝑚50.069𝑠 — —
viral 03 1 1 2 ∅1𝑚25.486𝑠 4𝑚40.131𝑠 ∅1.271𝑠 —

kind2
GPU FP 40 a — — ∅51.575𝑠 —
CloudOps ∅1.915𝑠 ∅1.915𝑠 — ∅0.083𝑠
Satellite 100-3 — X0.183𝑠 X22.284𝑠 ∅0.053𝑠
Referendum 10 ∅39.335𝑠 ∅39.335𝑠 ∅0.224𝑠 X3𝑚34.42𝑠
Election 2020 X1.429𝑠 X3.345𝑠 — ∅0.517𝑠
2 PhaseLocking X0.242𝑠 X0.242𝑠 ∅23.010𝑠 ∅0.054𝑠
Raft 02 ∅3𝑚9.877𝑠 ∅3𝑚9.877𝑠 — —
viral 03 1 1 2 — — ∅2.388𝑠 —

Tab. 1: Results for different SpiNat solver variants

4.2 Comparing SpiNat to TINA

Here we present more results with different models, comparing the results of an analysis
using SpiNat with TINA [BRV04], a specialized Petri Net analysis tool which has been
successful in the MCC.

The set of generated models for different examples of Petri nets from MCC is available3.
The computer setup is the same as for the analyses in the previous section and used the
same timeout of 5 minutes. The times reported for SpiNat are the minimum of runs with
kind2 and JKind. The reasoning here is that using both solvers and keeping the first result is
easy to do in a portfolio approach.

Whether it takes longer to prove an invariant or compute a reachable marking depends
on how the net is structured. Generally SAT / SMT based analysis is well suited to prove
invariants via inductive arguments and finding reachable markings which are not far from
the initial marking. Deep markings which require a specific, long sequence of transition
firings can be costly to compute, either in terms of memory for BMC or in terms of time for
pdr.

3 https://guedemann.org/downloads/pnml_in_lustre.zip

74 M. Güdemann

https://guedemann.org/downloads/pnml_in_lustre.zip


SMT-Based Verification of Concurrent Critical Systems 97

TINA has direct support for 1-safety and deadlock freeness, other properties need to be
expressed explicitly in its modeling language. Table 2 shows the comparison of analysis
results using TINA and SpiNat for deadlocks and 1-safety. For TINA this was done using
the sift tool using the -dead and -f safe option.

no deadlock 1-safety

Name valid SpiNat TINA valid SpiNat TINA

GPU FP 24 a ∅ 8.073𝑠 0.013𝑠 — — —
GPU FP 28 a ∅ 15.27𝑠 0.017𝑠 — — —
GPU FP 32 a ∅ 13.643𝑠 0.029𝑠 — — —
GPU FP 36 a ∅ 18.204𝑠 0.067𝑠 — — —
GPU FP 40 a ∅ 23.715𝑠 0.071𝑠 — — —
CloudOps — — — ∅ 0.083𝑠 0.00𝑠
Satellite 100-3 X 22.284𝑠 0.160𝑠 ∅ 0.053𝑠 0.00𝑠
Satellite 1000-32 X 28.325𝑠 25.791𝑠 ∅ 0.053𝑠 0.00𝑠
Satellite 1500-46 X 27.352𝑠 1𝑚2.946𝑠 ∅ 0.084𝑠 0.00𝑠
Satellite 3000-94 X 27.159𝑠 3𝑚36.982𝑠 ∅ 0.074𝑠 0.00𝑠
Satellite 65535-2048 X 28.814𝑠 — ∅ 0.074𝑠 0.00𝑠
Referendum 10 ∅ 0.224𝑠 0.349𝑠 X 12.533𝑠 0.361𝑠
Referendum 15 ∅ 0.307𝑠 2𝑚13.568𝑠 X 34.352𝑠 2𝑚15.971𝑠
Referendum 20 ∅ 0.417𝑠 — X 1𝑚12.267𝑠 —
Referendum 50 ∅ 1.036𝑠 — — — —
Noc3x3 1 a X 3𝑚24.345𝑠 — — — —
Election 2020 — — — ∅ 0.429𝑠 0.00𝑠
2 PhaseLocking ∅ 23.01𝑠 0.002𝑠 ∅ 0.054𝑠 0.00𝑠
Raft 02 X — 0.045𝑠 X — 0.026𝑠
viral 03 1 1 02 ∅ 2.388𝑠 3.851𝑠 — — —
viral 04 1 1 02 ∅ 2.858𝑠 — — — —
viral 04 1 1 03 ∅ 27.464𝑠 — — — —
viral 08 1 1 02 ∅ 1𝑚52.008𝑠 — ∅ 1.375𝑠 0.00𝑠

Tab. 2: Comparing SpiNat and TINA on Selected Petri Net Models

It is clear that in some cases TINA is more efficient in its analysis and in other cases SpiNat
is faster. If a counterexample can be found close to the initial marking TINA is efficient,
almost independent of the size of the model variant, e.g., as seen for the GPU model variants.
In contrast, for the satellite model the whole state space must be constructed for the valid
deadlock property. The state space grows quickly, increasing the analysis time for TINA.
For this model the induction based verification of SpiNat shows almost no increase in
run-time for the deadlock property.

SMT-Based Verification of Concurrent Critical Systems 75



98 M. Güdemann

5 Related Work

Most Petri net analysis and verification methods are based on enumerative approaches. A
lot of interesting properties are expressed in temporal logic which is more expressive than
the simple invariants here. In [PCM14] the authors apply SMT based verification on a
constrained subset of timed Petri nets. They use BMC which allows for checking reachable
markings but cannot prove invariants. BMC also has the challenge that with every time step
the problem for the underlying solver gets bigger and more complex.

In [ABDZ21] the authors combine SMT-based verification with an abstraction technique
called polyhedral abstraction for Petri nets. They show that this works well together and
allows for solving a lot of instances of the MCC competition. A similar approach is followed
in [TM20] and the corresponding ITS-Tools. It would be interesting to see how to combine
these approaches with the one described here.

In [BSS09] the authors propose a related approach which expresses the semantics of Lustre
in an asynchronous framework called BIP (Behavior, Interaction, Priority). BIP models are
then executed via a transformation into a special form of Petri nets. It could be interesting
to see if it is possible to combine the framework in with SpiNat to allow for analysis of
systems with both synchronous and asynchronous behavior.

6 Conclusion and Outlook

This work shows that it is possible to express Petri nets in the synchronous dataflow language
Lustre. This allows for using tools like JKind and kind2 to analyze certain properties of
critical systems with concurrency. The approach is orthogonal to other verification methods.
First experiments show that there are properties and Petri nets where the required analysis
time is comparable or even better than specialized Petri net tools.4 Using SMT-based
verification for Petri nets is not new but to my knowledge dataflow languages as intermediate
representation have not yet been proposed.

There is room to increase the efficiency of the current implementation. For larger Lustre
models the parsers of the model checkers sometimes have problems. Therefore it might
make sense to also provide the possibility to use them as libraries and use their API instead
of text files to exchange models.

The current implementation supports basic Petri nets. A possible extension would be support
for colored Petri nets and hierarchic Petri nets. To increase efficiency of the analyses it
would make sense to support annotations, e.g., convert the information that a system is
n-safe into a system constraint in order to speed up verification of other properties. By
using incremental inductive CTL [HBS12] it would be possible to support temporal logic
properties. This technique would have to be integrated into the model checkers directly.
4 Threat to validity The author is no expert on using the TINA toolbox. Therefore, It is possible that with different
options and / or some pre-processing, TINA can be faster than reported in the table.

76 M. Güdemann



SMT-Based Verification of Concurrent Critical Systems 99

Bibliography
[ABDZ21] Amat, Nicolas; Berthomieu, Bernard; Dal Zilio, Silvano: , On the Combination of

Polyhedral Abstraction and SMT-based Model Checking for Petri nets, 2021.

[Am11] Ameur-Boulifa, Rabéa; Halalai, Raluca; Henrio, Ludovic; Madelaine, Eric: Verifying
Safety of Fault-Tolerant Distributed Components – Extended Version. Research Report
RR-7717, INRIA, September 2011.

[ASDP17] Abid, Rim; Salaün, Gwen; De Palma, Noel: Asynchronous synthesis techniques for
coordinating autonomic managers in the cloud. Science of Computer Programming,
146:87–103, 2017.

[Ba11] Barrett, Clark; Conway, Christopher L; Deters, Morgan; Hadarean, Liana; Jovanović,
Dejan; King, Tim; Reynolds, Andrew; Tinelli, Cesare: CVC4. In: International Conference
on Computer Aided Verification. Springer, pp. 171–177, 2011.

[BC00] Bjesse, Per; Claessen, Koen: SAT-based verification without state space traversal. In:
International Conference on Formal Methods in Computer-Aided Design. Springer, pp.
409–426, 2000.

[BFT17] Barrett, Clark; Fontaine, Pascal; Tinelli, Cesare: The SMT-LIB Standard: Version 2.6.
Technical report, Department of Computer Science, The University of Iowa, 2017.
Available at www.SMT-LIB.org.

[Bo18] Bozic, Josip; Marsso, Lina; Mateescu, Radu; Wotawa, Franz: A formal TLS handshake
model in LNT. arXiv preprint arXiv:1803.10319, 2018.

[Br11] Bradley, Aaron R: SAT-based model checking without unrolling. In: International
Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, pp.
70–87, 2011.

[BRV04] Berthomieu, Bernard; Ribet, P-O; Vernadat, François: The tool TINA–construction of
abstract state spaces for Petri nets and time Petri nets. International journal of production
research, 42(14):2741–2756, 2004.

[BSS09] Bozga, Marius; Sfyrla, Vassiliki; Sifakis, Joseph: Modeling Synchronous Systems in BIP.
In (Chakraborty, Samarjit; Halbwachs, Nicolas, eds): 9th ACM & IEEE International
conference on Embedded software, EMSOFT 2009. ACM, Grenoble, France, pp. 77–86,
October 2009.

[CG12] Cimatti, Alessandro; Griggio, Alberto: Software model checking via IC3. In: International
Conference on Computer Aided Verification. Springer, pp. 277–293, 2012.

[Ch16] Champion, Adrien; Mebsout, Alain; Sticksel, Christoph; Tinelli, Cesare: The Kind 2
model checker. In: International Conference on Computer Aided Verification. Springer,
pp. 510–517, 2016.

[CHN12] Christ, Jürgen; Hoenicke, Jochen; Nutz, Alexander: SMTInterpol: An interpolating SMT
solver. In: International SPIN Workshop on Model Checking of Software. Springer, pp.
248–254, 2012.

[DMB08] De Moura, Leonardo; Bjørner, Nikolaj: Z3: An efficient SMT solver. In: International
conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 337–340, 2008.

SMT-Based Verification of Concurrent Critical Systems 77



100 M. Güdemann

[Er] Erlang: , The Erlang Programming Language. https://www.erlang.org/.

[Ga13] Garavel, Hubert; Lang, Frédéric; Mateescu, Radu; Serwe, Wendelin: CADP 2011: a
toolbox for the construction and analysis of distributed processes. International Journal
on Software Tools for Technology Transfer, 15(2):89–107, 2013.

[Ga18] Gacek, Andrew; Backes, John; Whalen, Mike; Wagner, Lucas; Ghassabani, Elaheh: The
JKind model checker. In: International Conference on Computer Aided Verification.
Springer, pp. 20–27, 2018.

[GLS17] Garavel, Hubert; Lang, Frédéric; Serwe, Wendelin: From LOTOS to LNT. In: ModelEd,
TestEd, TrustEd, pp. 3–26. Springer, 2017.

[HBS12] Hassan, Zyad; Bradley, Aaron R; Somenzi, Fabio: Incremental, inductive CTL model
checking. In: International Conference on Computer Aided Verification. Springer, pp.
532–547, 2012.

[Hi10] Hillah, Lom-Messan; Kordon, Fabrice; Petrucci, Laure; Treves, Nicolas: PNML Frame-
work: an extendable reference implementation of the Petri Net Markup Language. In:
Proceedings of Petri Nets. Springer, pp. 318–327, 2010.

[Ho78] Hoare, Charles Antony Richard: Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[JRH16] Jahier, Erwan; Raymond, Pascal; Halbwachs, Nicolas: The Lustre V6 reference manual.
Verimag, Grenoble, Dec, 2016.

[KS15] Kriouile, Abderahman; Serwe, Wendelin: Using a formal model to improve verification
of a cache-coherent system-on-chip. In: Proceedings of TACAS. Springer, 2015.

[KT14] Kroening, Daniel; Tautschnig, Michael: CBMC–C bounded model checker. In: Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 389–391, 2014.

[La] Language, Go Programming: , The Go Programming Language. https://golang.org/.

[La19] Lange, Tim; Neuhäußer, Martin R; Noll, Thomas; Katoen, Joost-Pieter: IC3 software
model checking. International Journal on Software Tools for Technology Transfer, pp.
1–27, 2019.

[mc] mcc: , Model Checking Contest. https://mcc.lip6.fr/models.php.

[PCM14] Półrola, Agata; Cybula, Piotr;Mȩski, Artur: SMT-based reachability checking for bounded
time Petri nets. Fundamenta Informaticae, 135(4):467–482, 2014.

[Re13] Reisig, Wolfgang: Understanding Petri Nets: Modeling techniques, analysis methods,
case studies. Springer, 2013.

[Sa] Satellite: , Memory Model. https://mcc.lip6.fr/pdf/SatelliteMemory-form.pdf.

[TM20] Thierry-Mieg, Yann: Structural Reductions Revisited. In: International Conference on
Applications and Theory of Petri Nets and Concurrency. Springer, pp. 303–323, 2020.

[wi] wikipedia: , Petri Net Example. https://en.wikipedia.org/wiki/Petri_net.

[Zh16] Zhang, Zhen; Serwe, Wendelin; Wu, Jian; Yoneda, Tomohiro; Zheng, Hao; Myers, Chris:
An improved fault-tolerant routing algorithm for a network-on-chip derived with formal
analysis. Science of Computer Programming, 118:24–39, 2016.

78 M. Güdemann

https://www.erlang.org/
https://golang.org/
https://mcc.lip6.fr/models.php
https://mcc.lip6.fr/pdf/SatelliteMemory-form.pdf
https://en.wikipedia.org/wiki/Petri_net


SMT-Based Verification of Concurrent Critical Systems 101

A Satellite Model Example

The Satellite Memory model is an industrial case study from the aerospace domain. It has
been submitted to MCC as an example model and is described in [Sa]. It is a Petri net with
multiple variants. Figure 2 shows the initial marking for the variant 𝑋 = 100 and 𝑌 = 6.

This models a satellite which contains memory in the form of a circular buffer. The size of
the buffer in the number of available sectors is modelled as the parameter 𝑋 . The circular
buffer has a write pointer and a read pointer. The parameter𝑌 models the minimal difference
between the sector currently used for writing and the sector used for reading. More details
on the case study can be found in [Sa].

Fig. 2: Satellite Memory Model Variant 𝑋 = 100, 𝑌 = 6 [Sa]

A.1 Lustre version of the Satellite Model

node main(act_t0, act_t1, act_t2, act_t3, act_t4, act_t5, act_t6,

act_t7, act_t8, act_t9 : bool)

returns (p0, p1, p10, p11, p12, p2, p3, p4, p5, p6, p7, p8, p9 : int;

firing_t0, firing_t1, firing_t2, firing_t3, firing_t4, firing_t5,

firing_t6, firing_t7, firing_t8, firing_t9 : bool);

var

deadlock : bool;

trans_set0, trans_set1, trans_set2, trans_set3, trans_set4 : bool;

enabled_t0, enabled_t1, enabled_t2, enabled_t3, enabled_t4,

enabled_t5, enabled_t6, enabled_t7, enabled_t8, enabled_t9 : bool;

SMT-Based Verification of Concurrent Critical Systems 79



102 M. Güdemann

enable_t0, enable_t1, enable_t2, enable_t3, enable_t4, enable_t5,

enable_t6, enable_t7, enable_t8, enable_t9 : bool;

marked_p0, marked_p1, marked_p10, marked_p11, marked_p12, marked_p2, marked_p3,

marked_p4, marked_p5, marked_p6, marked_p7, marked_p8, marked_p9 : bool;

prop_oneSafe : bool;

prop_deadTransExists : bool;

prop_deadPlaceExists : bool;

prop_noDeadlock : bool;

let

trans_set0 = act_t0 or act_t4 or act_t8;

trans_set1 = act_t1 or act_t6;

trans_set2 = act_t2;

trans_set3 = act_t3 or act_t7 or act_t9;

trans_set4 = act_t5;

assert (not (enable_t0 or enable_t1 or enable_t2 or enable_t3 or enable_t4

or enable_t5 or enable_t6 or enable_t7 or enable_t8 or enable_t9)

or (bool2int(trans_set0) + bool2int(trans_set1) + bool2int(trans_set2)

+ bool2int(trans_set3) + bool2int(trans_set4) = 1));

assert ((enable_t0 or not act_t0) and (enable_t1 or not act_t1) and

(enable_t2 or not act_t2) and (enable_t3 or not act_t3) and

(enable_t4 or not act_t4) and (enable_t5 or not act_t5) and

(enable_t6 or not act_t6) and (enable_t7 or not act_t7) and

(enable_t8 or not act_t8) and (enable_t9 or not act_t9));

enable_t0 = true and p12 >= 94 and p4 >= 6;

enable_t1 = true and p0 >= 1 and p2 >= 1 and p4 >= 1 and p6 >= 1;

enable_t2 = true and p1 >= 1 and p6 >= 1;

enable_t3 = true and p3 >= 100;

enable_t4 = true and p11 >= 1;

enable_t5 = true and p12 >= 94 and p3 >= 94;

enable_t6 = true and p10 >= 1 and p12 >= 1 and p5 >= 1 and p8 >= 1;

enable_t7 = true and p12 >= 1 and p7 >= 1;

enable_t8 = true and p9 >= 100;

enable_t9 = true and p5 >= 1;

deadlock = not (enable_t0 or enable_t1 or enable_t2 or enable_t3 or enable_t4

or enable_t5 or enable_t6 or enable_t7 or enable_t8 or enable_t9);

p1 = 0 -> if pre firing_t1 then pre p1 + 1

else if pre firing_t2 then pre p1 - 1

else pre p1;

p12 = 0 -> if pre firing_t0 then pre p12 - 94

else if pre firing_t2 then pre p12 + 1

else if pre firing_t5 then pre p12 - 94

else if pre firing_t6 then pre p12 - 0

else if pre firing_t7 then pre p12 - 1

else pre p12;

80 M. Güdemann



SMT-Based Verification of Concurrent Critical Systems 103

p3 = 0 -> if pre firing_t0 then pre p3 + 6

else if pre firing_t2 then pre p3 + 1

else if pre firing_t3 then pre p3 - 100

else if pre firing_t5 then pre p3 - 94

else pre p3;

p5 = 0 -> if pre firing_t4 then pre p5 + 1

else if pre firing_t6 then pre p5 - 0

else if pre firing_t9 then pre p5 - 1

else pre p5;

p7 = 0 -> if pre firing_t6 then pre p7 + 1

else if pre firing_t7 then pre p7 - 1

else pre p7;

p0 = 1 -> if pre firing_t1 then pre p0 - 0

else pre p0;

p11 = 1 -> if pre firing_t4 then pre p11 - 1

else if pre firing_t9 then pre p11 + 1

else pre p11;

p2 = 1 -> if pre firing_t1 then pre p2 - 1

else if pre firing_t2 then pre p2 + 1

else pre p2;

p8 = 1 -> if pre firing_t6 then pre p8 - 1

else if pre firing_t7 then pre p8 + 1

else pre p8;

p10 = 3 -> if pre firing_t6 then pre p10 - 1

else if pre firing_t8 then pre p10 + 100

else pre p10;

p6 = 94 -> if pre firing_t0 then pre p6 + 94

else if pre firing_t1 then pre p6 - 0

else if pre firing_t2 then pre p6 - 1

else if pre firing_t5 then pre p6 + 94

else if pre firing_t7 then pre p6 + 1

else pre p6;

p9 = 97 -> if pre firing_t7 then pre p9 + 1

else if pre firing_t8 then pre p9 - 100

else pre p9;

p4 = 100 -> if pre firing_t0 then pre p4 - 6

else if pre firing_t1 then pre p4 - 1

else if pre firing_t3 then pre p4 + 100

else if pre firing_t5 then pre p4 + 94

else pre p4;

firing_t0 = act_t0 and p12 >= 94 and p4 >= 6;

firing_t1 = act_t1 and p0 >= 1 and p2 >= 1 and p4 >= 1 and p6 >= 1;

SMT-Based Verification of Concurrent Critical Systems 81



104 M. Güdemann

firing_t2 = act_t2 and p1 >= 1 and p6 >= 1;

firing_t3 = act_t3 and p3 >= 100;

firing_t4 = act_t4 and p11 >= 1;

firing_t5 = act_t5 and p12 >= 94 and p3 >= 94;

firing_t6 = act_t6 and p10 >= 1 and p12 >= 1 and p5 >= 1 and p8 >= 1;

firing_t7 = act_t7 and p12 >= 1 and p7 >= 1;

firing_t8 = act_t8 and p9 >= 100;

firing_t9 = act_t9 and p5 >= 1;

enabled_t0 = false -> if enable_t0 then true else pre enabled_t0;

enabled_t1 = false -> if enable_t1 then true else pre enabled_t1;

enabled_t2 = false -> if enable_t2 then true else pre enabled_t2;

enabled_t3 = false -> if enable_t3 then true else pre enabled_t3;

enabled_t4 = false -> if enable_t4 then true else pre enabled_t4;

enabled_t5 = false -> if enable_t5 then true else pre enabled_t5;

enabled_t6 = false -> if enable_t6 then true else pre enabled_t6;

enabled_t7 = false -> if enable_t7 then true else pre enabled_t7;

enabled_t8 = false -> if enable_t8 then true else pre enabled_t8;

enabled_t9 = false -> if enable_t9 then true else pre enabled_t9;

marked_p0 = false -> if 0 < p0 then true else pre marked_p0;

marked_p1 = false -> if 0 < p1 then true else pre marked_p1;

marked_p10 = false -> if 0 < p10 then true else pre marked_p10;

marked_p11 = false -> if 0 < p11 then true else pre marked_p11;

marked_p12 = false -> if 0 < p12 then true else pre marked_p12;

marked_p2 = false -> if 0 < p2 then true else pre marked_p2;

marked_p3 = false -> if 0 < p3 then true else pre marked_p3;

marked_p4 = false -> if 0 < p4 then true else pre marked_p4;

marked_p5 = false -> if 0 < p5 then true else pre marked_p5;

marked_p6 = false -> if 0 < p6 then true else pre marked_p6;

marked_p7 = false -> if 0 < p7 then true else pre marked_p7;

marked_p8 = false -> if 0 < p8 then true else pre marked_p8;

marked_p9 = false -> if 0 < p9 then true else pre marked_p9;

prop_noDeadlock = not deadlock;

prop_deadTransExists = (not enabled_t0) or (not enabled_t1) or (not enabled_t2)

or (not enabled_t3) or (not enabled_t4) or (not enabled_t5) or (not enabled_t6)

or (not enabled_t7) or (not enabled_t8) or (not enabled_t9);

prop_deadPlaceExists = (not marked_p0) or (not marked_p1) or (not marked_p10)

or (not marked_p11) or (not marked_p12) or (not marked_p2) or (not marked_p3)

or (not marked_p4) or (not marked_p5) or (not marked_p6) or (not marked_p7)

or (not marked_p8) or (not marked_p9);

prop_oneSafe = 1 >= p0 and 1 >= p1 and 1 >= p10 and 1 >= p11 and

1 >= p12 and 1 >= p2 and 1 >= p3 and 1 >= p4 and 1 >= p5 and

1 >= p6 and 1 >= p7 and 1 >= p8 and 1 >= p9;

--%PROPERTY prop_noDeadlock;

--%PROPERTY prop_oneSafe;

--%PROPERTY prop_deadTransExists;

--%PROPERTY prop_deadPlaceExists;

tel;

82 M. Güdemann


