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Abstract: Context: Self-Driving cars are getting more and more attention with public
demonstration from all important automotive OEMs but also from companies, which
do not have a long history in the automotive industry. Fostered by large international
competitions in the last decade, several automotive OEMs have already announced to
bring this technology to the market around 2020.

Objective: International competitions like the 2007 DARPA Urban Challenge did not
focus on efficient usage of resources to realize the self-driving vehicular functionality.
Since the automotive industry is very cost-sensitive, realizing reliable and robust self-
driving functionality is challenging when expensive and sophisticated sensors mounted
very visibly on the vehicle’s roof for example cannot be used. Therefore, the goal for
this study is to investigate how architectural design decisions of recent self-driving
vehicular technology consider resource-efficiency.

Method: In a multiple case study, the architectural design decisions derived for resource-
constrained self-driving miniature cars for the international competition CaroloCup are
compared with architectural designs from recent real-scale self-driving cars.

Results: Scaling down available resources for realizing self-driving vehicular technol-
ogy puts additional constraints on the architectural design; especially reusability of
software components in platform-independent algorithmic concepts are prevailing.
Conclusion: Software frameworks like the robotic operating system (ROS) enable
fast prototypical solutions; however, architectural support for resource-constrained
devices is limited. Here, architectural design drivers as realized in AUTOSAR are more
suitable.

1 Introduction

Competitions like the 2007 DARPA Urban Challenge [RBL08], the Grand Cooperative
Driving Challenge in 2011 and its announced successor in 2016 [AEE*11, Higl1], as
well as successful large-scale test runs on public roads [Thr10] led to the announcement
from all important automotive OEMs that self-driving vehicular technology is said to
be available for customers around 2020 [Hirl13]. Since the technology has proven its
feasibility on urban roads like in Braunschweig, Germany as reported by [NHOV11] or in
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the VisLab Intercontinental Challenge (VIAC) [BBFZ11], the next technological challenges
are robustness, reliability, and foremost resource-efficiency.

1.1 Motivation and Problem Domain

Today’s prototypical cars use either a broad variety of different sensors or depend on expen-
sive and sophisticated sensors that can perceive a huge data volume from the surroundings
so that algorithmic solutions have much information available to derive reasonable and reli-
able driving decisions. However, such large, clearly visible, and predominantly expensive
sensors are rather unrealistic being part of a self-driving car for the mass-market.

Therefore, today’s technological solutions need to become more resource-efficient in terms
of realizing (at least) the same robustness and reliability as the existing self-driving vehicles
with their broad and expensive selection of sensors by using less, cheaper, and simpler
sensors [NP14]. Thus, limitations for the available hardware resources need to be carefully
addressed also in the software architecture for self-driving cars.

1.2 Research Goal and Research Questions

Therefore, the research goal for this study is to identify and elaborate on architectural
design drivers for self-driving vehicular technology that is subject to resource constraints.
Thus, the following research questions were derived:

RQ-1: Which design drivers affect the software architecture of self-driving cars when
resource constraints need to be obeyed?

RQ-2: Which hardware- and software-related architectural design decisions can be found
in successful self-driving cars?

RQ-3: Which experiences can be drawn from a competition of self-driving miniature cars
regarding resource constraints and their impact on the software architecture for
self-driving cars?

1.3 Contributions of the Article

The contributions of this work include (a) an elaboration of the impact of design decisions
originating from resource-constrained environments on the software architecture of self-
driving vehicular technology by outlining results from a systematic literature review, (b) a
selected overview of architectural design decisions for the hardware and software archi-
tecture of recent successful self-driving cars, and (c) transferring the conclusions drawn
from the software architecture of self-driving miniature cars to real-scale cars regarding the
software design for resource-constrained environments.

1.4 Structure of the Article

The rest of the article is structured as described in the following: In Sec. 2, an overview
of related work is presented with a specific focus on resource-constrained self-driving
vehicular technology. Sec. 3 describes the results from a multiple case study that we
conducted using four self-driving cars projects including two projects for the development
of self-driving miniature cars under resource-constraints. Sec. 4 discusses the outcome of
the multiple case study, before the article concludes in Sec. 5.
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2 Related Work

To address RQ-1, we conducted a systematic literature review (SLR) according to the
guidelines provided by Kitchenham and Charters [KC07]. The results are described in the
following.

2.1 Data Sources and Search Strategy

We used the following digital libraries as data sources for the SLR: ACM Digital Library
(ACM DL), IEEE Xplore Digital Library (IEEE Xplore), and SpringerLink. Additionally,
we used Google Scholar to complement the aforementioned data bases to also cover data
sources, which are not represented in the aforementioned libraries. Within these databases,
the following search strategy was applied:

Publication date: “2004 or newer” to ensure that related work might be influenced by the
outcome for the 2004 DARPA Grand Challenge.

Search phrase A: “resource-constrained” AND “self-driving” and “car”

Search phrase B: “resource-constrained” AND “self-driving” AND “vehicular” AND
“technology”

2.2 Study Selection

After the results were retrieved from the databases mentioned before, the following exclusion
criteria were applied: (a) The publication was not inside the desired time frame (1), (b)
the work was a duplicate (F>), or (c) the title and abstract were referring to an unrelated
domain (F3). The remaining publications that are related to this article according to title
and abstract are listed in the last column in Tab. 1.

Search phrase | Library # | By B, E;5 | v/ | References
A ACM DL 1 - - 1
A IEEE Xplore 25 | - 1 19 | 5 | JKK*14]
[KKLR13]
[KBRJ12]
[CQBT12]
[UWO08]
A SpringerLink 3 - - 2 1 | [FGRS14]
A Google Scholar || 20 | 1 | 50234 | 11 | 3 | [Kre09]
[WLM13]
[ME10]
B ACM DL 0 - - - -
B IEEE Xplore 0 - - - -
B SpringerLink 0 - - - -
B Google Scholar || 4 | - 1’ 1 | 2 | [GLPL14]
[Chul3]
Total 531 1 7 34 | 11

Table 1: Results from the systematic literature review.
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2.3 Study Quality Assessment

Kitchenham and Charters state different risks for bias that might occur when conducting an
SLR. To address publication bias, which refers to the risk that only papers are considered
that report about positive results, we complement the well-known libraries by including
Google Scholar as an additional data source.

The risk of performance bias refers to the dependency of the results on the researcher who
is carrying out the SLR. Since the amount of results that we retrieved from the databases
was surprisingly small, no specific means were applied to address this risk. Instead, all
papers that are relevant to this study are summarized in the following.

2.4 Data Extraction and Synthesis
The remaining eleven papers are summarized and their relevance to this study is discussed.

Jo et al. [JKK™14] describe in their work a distributed system architecture for self-driving
cars that relies on AUTOSAR and FlexRay. The motivation for the former decision were
“reusability, reliability, transferability, and maintainability of the software.”, while for the
latter, predictability in such a safety-critical system is required. However, the authors also
conclude that the existing AUTOSAR architecture contains many constraints that limit the
flexibility, which is required to successfully realize a self-driving car. Thus, they omitted
“many standard AUTOSAR components related to product reliability.”

Kim et al. [KKLR13] proposed a thread-based parallelization to realize the motion planning
in self-driving cars to evaluate potential paths that can be considered as drivable. However,
they do no outline design constraints for a resource-efficient realization of a self-driving
car.

In [KBRJ12], Kim et al. present the middleware SAFER, which they applied to the winning
self-driving car “Boss”’; Urmson and Whittaker [UWOS] give a brief overview of this vehicle.
While the middleware aims for fault-tolerance, no design considerations are presented and
discussed regarding resource-constraints.

Chong et al. [CQB™12] present briefly their self-driving vehicle. Due to the very short
article, no design considerations are presented or discussed.

In the doctoral thesis from Krenn [Kre09], the system architecture for an adaptive system
for intelligent systems is discussed. The main focus is not on resource-constrained software
architectures for self-driving cars.

Wang et al. [WLM13] describe an architecture for the ontology-based integration of compo-
nents in the context of the ““ Internet of the Things” (IoT). In the main focus of the work is
the handling of restrictions in terms of heavy communication layers for resource-constrained
devices like RFID tags. However, specific considerations for the software architecture of
self-driving cars are not presented or discussed.

10ne article is a duplicate to the one found with the second search query in Google Scholar; article was not
accessible.

2Two articles are duplicates to the ones found with the first search query in SpringerLink.

30ne article is a duplicate to the one found with the first search query in ACM DL.

4Includes a duplicate to [Chul3].

SThe article is the duplicate to the one found with the first search query; article was not accessible.
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Fortino et al. [FGRS14] discuss requirements for smart environments as needed by the IoT.
The authors have identified the following requirements, which they evaluated for different
IoT-capable middlewares like the robot operating system (ROS):

1. “Abstraction over heterogeneous input and output hardware devices,”

2. “Abstraction over hardware and software interfaces,”

s

3. “Abstraction over data streams (continuous or discrete data or events) and data types,
4. “Abstraction over physicality (location, context),”

5. “Abstraction over the development process.”

th)

Medvidovic and Edwards present a roadmap for “software architecture and mobility
[MEI10]. In their work, they also cover some of the frameworks presented by Fortino et
al. for mobile devices like smart phone but also for mobile robotic platforms. In their
research roadmap, they confirm that the software engineering is specifically challenged by
resource-constrained devices. While they suggest the use of generative techniques to create
systems that are “correct by construction”, some restrictions in terms deployment costs
need to be kept in mind when dealing with such devices. Their observation is in line with
the one from Jo et al. [JKK ™ 14] as described before. These design considerations can also
be found in AUTOSAR. However, they do not discuss specific requirements that originate
from resource-constrained devices.

Gerla et al. [GLPL14] report the “vehicular cloud” that combines independently acting
autonomous vehicles with a cloud-based infrastructure. While they are envisioning various
use cases in combination with vehicle-to-X communication, specific design aspects from
resource-constrained devices are not discussed.

Chua focuses in his thesis [Chul3] mainly on unmanned aerial systems that are used in
urban search and rescue environments. While specific aspects are discussed regarding
resource-constraints, no reflections are presented how this should be considered in the
design of a software architecture.

3 Multiple Case Study

For addressing RQ-2, a multiple case study was conducted covering four projects for
self-driving cars. We are reporting this study according to Runeson and Host [RHO8].

3.1 Method

The objective for this multiple case study is to evaluate design considerations of the software
architecture from different self-driving cars. In this regard, a specific focus is given on how
resource-constraints are considered in the architectural design.

These architectural designs for self-driving cars are evaluated according to the criteria that
have been identified from the SLR as provided by Fortino et al. [FGRS14]:
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1. “Abstraction over heterogeneous input and output hardware devices,”

2. “Abstraction over hardware and software interfaces,”

3. “Abstraction over data streams (continuous or discrete data or events) and data types,”
4. “Abstraction over physicality (location, context),”

5. “Abstraction over the development process.”

The following cases are presented and compared in the multiple case study:

1. A ROS-powered platform for autonomous driving evaluated by a company as de-
scribed by Ainhauser et al. [ABHT13],

2. a ROS-powered platform for autonomous driving evaluated by a research laboratory
as outlined by Fernandes et al. [FSP*14],

3. results from a Java-based design of a self-driving miniature car that participated in
the international competition for self-driving miniature vehicles CaroloCup®,

4. results from a C++-based design of a self-driving miniature car that participated also
in this competition [BAH13].

3.2 Case Description

The first architecture in our case study is described by Ainhauser et al. [ABH"13], where
ROS as a platform for future autonomous driving functions is discussed. The authors report
that for autonomous driving two environments are needed: A hardware-oriented environ-
ment for sensors and actuators, as well as an environment for functions like connectivity and
route planning. For this, the two frameworks AUTOSAR and ROS are used: AUTOSAR as
the standard for the embedded hardware and ROS for high-level functions like communica-
tion, to build the environment model, and planning the route. AUTOSAR components are
integrated by ROS stubs. They suppose that ROS is currently the most suitable existing
middleware for the needs of autonomous driving. They propose the architecture in Fig. 1
on the left hand side.

The second case study is taken from a very recent publication in the Journal of Systems
Architecture published by Fernandes et al. [FSP™14], where two outdoor intelligent vehicles
platforms named CaRINA I and CaRINA II were described. Similarly as in the first case, an
architecture based on ROS is proposed. Since the authors have developed the architecture
for the first vehicle and could transfer it to the second one, they suggest it as a reference
architecture. Fig. 1 shows the architecture on the right hand side.

The third case study is taken from team “piCar” of the Technische Universitaet Braun-
schweig, that won the Junior Edition at CaroloCup 2014 with their car. The vehicle uses
the Eleanor Framework, which was developed at the Institute of Software Engineering and

Swww.carolocup.de
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Figure 1: Comparison of the architecture that uses ROS as software platform for the self-driving
car: On the left hand side, the industrial study is shown in comparison with the research laboratory
realization as depicted on the right hand side.
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Figure 2: Comparing the architectural design of two resource-constrained self-driving miniature cars:
On the left hand side, the architecture from team from Technische Universitaet Braunschweig is
shown and on the right hand side, the design of the team from Chalmers | University of Gothenburg
is shown. Both teams participated in the international competition CaroloCup.
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Automotive Informatics. The architecture of the vehicle is shown in Figure 2 on the left
hand side.

The vehicle uses an Arduino microcontroller to control sensors and actuators as well as
two RaspberryPis. One of them acts as a central processing unit for route planning and
the other is used to connect the camera and for video processing. The Eleanor Framework
is a Java-based framework designed specifically to meet the needs of limited hardware,
however, yet to offer hardware independence and extensibility.

The framework provides a service and extension registry inspired by OSGi’, so all functions
are implemented as plugins that can have dependencies among each other. It also provides
useful basic functionality such as the abstraction of sensors and actuators as well as a
thread manager to schedule the plugins. In contrast to the other cases, this system uses
inter-process-communication (IPC) between the plugins.

The last case study is also taken from a team that participated twice in the CaroloCup and
that won the Junior Edition at CaroloCup 2013. The architecture used in cars of Chalmers
| University of Gothenburg is shown in Fig. 2 on the right hand side. The team used the
simulation and development middleware OpenDaVINCI in combination with the real-time
operating system ChibiOS/RT® as hardware abstraction layer (HAL) on the embedded
system, which is realized by using an STM32F4 board. In this regard, this case shows
similarities with the first case, where AUTOSAR is used as HAL. On the high-level data
processing where the self-driving functionality is realized with C++, platform-independent
data structures are used to enable reusability in the virtual test environment [BCH 13].

4 Analysis and Discussion

To address RQ-3 we compared the four case studies, to extract differences and commonali-
ties. We have found the following results:

All four cases have a strict separation between low-level functions to control the hardware
and a high-level layer for environment perception and behavioral planning. The separation
is achieved by a distribution of functions to different hardware. Hardware-related functions
were deployed to microcontrollers, where the first and fourth case use a hardware abstraction
layer (AUTOSAR and ChibiOS/RT) and the third case implements the functions directly
on the Arduino; no information was available for the second case.

On the high-level, all cases uses an abstraction layer over the hardware devices, which is
in line with the criteria identified by Fortino et al. [FGRS14]: Case 1 uses ROS stubs for
AUTOSAR components, case 2 uses modules that encapsulate the low-level protocols for
each hardware component, case 3 uses a plugins that communicates with the hardware part
and provides high-level services for other plugins, and case 4 uses a proxy that transparently
maps platform-independent data structures to platform-specific representations that depend
on the concrete hardware environment.

7
8
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Due to the abstraction of the concrete hardware, (a) high-level algorithms such as route
planning can be developed independently of the hardware, and (b) the hardware may
be replaced without the need to change to high-level software. This is an important
aspect since the configuration of commercial-of-the-shelf components, which are used
as software/hardware-interface in resource-constrained environments like the CaroloCup
competition, might change. Thus, even the low-level software that handles the data from
sensors and to actuators can be reused, when an appropriate HAL like AUTOSAR or
ChibiOS/RT is used.

The abstraction over hardware and software interfaces in the first two cases is realized with
the infrastructure and facilities provided by ROS, where the modules are loosely coupled
through topic publishing/subscription realized via TCP or UDP communication. The third
case uses a service registry, where plugins can register their interfaces to exchange data.
Case 4 uses a UDP-multicast session for a loosely coupled communication. As all cases
uses a concept of a platform-independent data representation, there is an abstraction over
data streams and data types as suggested by Fortino et al. [FGRS14].

As the first two cases use ROS that supports a distributed architecture, there is an abstraction
over physicality; a similar concept is realized for case 4. Case 3 has a high level of
abstraction over the context by using a Java virtual machine but there is no direct support
for IPC.

As the development environment usually does not match the hardware on the vehicle, the
compilation of the code has to be done on the limited hardware of the vehicle, which can
be very time consuming, or by using a cross compiling tool chain. So, the development
process of the low-level part depends on the hardware in-use. It can be simplified by using
a HAL like AUTOSAR in case 1 or ChibiOS/RT in case 4. The development process of
the high-level part in case 1 and 2 is given by the tool chain of ROS and the one of case
4 is set by OpenDaVINCI. As case 3 uses Java, any Java-based development process can
be used. Here the usage of Java has the advantage that the code can be compiled on fast
development machines and deployed on any hardware supported by Java.

We found that all four cases are very similar. Each uses a central processing unit for the
high-level part with the responsibility for communication, creating an environment model,
planning the driving route, and decide which maneuver to drive. Sensors and actuators are
always connected through an ECU, which is abstracted by a low-level HAL in two cases.

Furthermore, the cases show that the low-level data processing can be realized with resource-
and energy-efficient and hardware environments to handle the data from sensors and to
actuators. A prevailing design consideration is the HAL which not only allows reusability
of software components on that layer; moreover, it also enables code-generation of the
software components due to standardized APIs.

For the higher levels, more processing power is reported to be required — from the results
of the SLR but also to handle mass-data from cameras or to interpret and derive driving
decisions. On this layer, reusing the self-driving functionality realized by the software
components is of interest — for instance by embedding them in virtual test environments
for example. A specific design aspect that originates from the resource-constrained low-
level hardware environment is the mapping of platform-independent data structures to the
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Case 1 | Case2 | Case3 | Case 4
separation between low/high-level functions + + + +
hardware abstraction layer + ? - +
high-level abstraction layer + + + +
loosely coupled components + + + +
platform-independent data representation +) +) + +
platform-independent development process - - + -
energy-efficient low-level data processing + + + +

Table 2: Comparison of architectural design drivers.

concrete platform-specific representation. Our findings are summarized in Tab. 2.

In the following, we are reporting about threats to validity according to Runeson and
Host [RHO08]. Considering construct validity, the setup of the study by using a systematic
literature review first to investigate the field followed by a multiple case study is appropriate
to investigate design criteria for resource-constrained self-driving cars. The use of the
SLR also reduces the risk of reliability bias since the evaluation criteria originate from the
findings of the SLR.

Regarding external validity, we analyzed four different cases by using criteria that are
reported by literature. Due to the recent publication dates of the investigated first two cases
as well as the involvement in the design and realization in the last two cases, the findings can
be generalized to design criteria for self-driving cars with a focus on resource-constraints.

Additionally, the specific design of a multiple case study reduces the bias regarding internal
validity because four different cases are investigated that were driven by four independently
working research groups.

5 Conclusion and Outlook

Self-driving cars are said to be part of our future mobility. In the last decade, the research
in this field has facilitated the development and state-of-the-art so that this technology is
evaluated nowadays in large-scale on public roads. However, to bring the technology to the
mass-market, the hardware costs especially for sophisticated sensors that are mounted on
the vehicle’s roof need to be scaled down.

In this study, results from a systematic literature review are presented that evaluate how
resource-constraints are considered in the design of the software architecture of self-driving
cars. This literature study unveiled that common guidelines could not be identified on how
to handle such constraints accordingly. Therefore, a multiple case study was conducted to
evaluate four projects for self-driving cars regarding design considerations for resource-
constraints.

Common design criteria include abstractions from concrete hardware environments. While
such a design does not only enable the independence from a concrete hardware, it also
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allows the transparent software reuse in virtual test environments for example. As future
work, specific design criteria for platform-independent data models in combination with
automated scenario generation for such test environments are of interest. However to
operate autonomous vehicles on public roads, the legal framework in different countries
needs to be evolved as well.
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