B. Mitschang et al. (Hrsg.): BTW 2017 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 143

Mining Java Packages for Developer Profiles:
An Exploratory Study

Jasmin Ramadani' and Stefan Wagner?

Abstract: Not all developers have the same degree of knowledge of all parts of a software system.
For allocating new task expertise, it would be interesting to have different developer profiles explicit.
The state of the practice is to find out manually who might be most experienced in a certain area. A
clear understanding how to automate this analysis is missing. Our goal is to explore to what degree
the analysis of couplings of packages can be useful for this automation. Our analysis approach uses
the idea that packages reflect the organization of the source code into basic functionalities. We use
data mining on the version history to identify the sets of the packages that were most frequently
changed together in different occasions. We present a case study where we analyze three open-source
software systems to define developer expertise profiles based on the aggregation of the packages. Our
results identify different developer profiles. They can be especially useful in analyzing projects with a
larger number of developers saving time and effort by limiting the data sets to be investigated to find
relevant software changes.

Keywords: Version history;Packages;Developers expertise

1 Introduction

Software systems are developed and changed by a number of developers over time. The
contribution of developers to a project consists of the combination of their actions performed
during software development [GKSO0S8]. This kind of expertise is called implementation
expertise [SZ08]. Yet, software developers involvement in the source code becomes diverse
and awkward to follow. As the development team grows, it becomes more complicated to
allocate the developers according to their expertise considering their contribution to the
project. One approach defines that the developers who changed a file are considered to have
the expertise for that file [SZ08]. This information can be found by mining changes in the
software repositories.

In Java projects, packages are important to group source code based on its functionality. By
scanning the changes in the versioning system, we can extract the packages of files being
changed. For the reason that the package structure is more stable and does not change often,
we use the packages instead of classes or methods to define developer expertise profiles.

An approach how to find file changes that happened together frequently using data mining
has been described in [KYMO6; RW16b; Yi04]. The changes are grouped based on the
developer that performed the commits. These changes are called coupled file changes and

1 University of Stuttgart, jasmin.ramadani @informatik.uni-stuttgart.de
2 University of Stuttgart, stefan.wagner @informatik.uni-stuttgart.de

144 Jasmin Ramadani, Stefan Wagner

can be offered to the developers as recommendations when solving some maintenance task.
We use this technique to extract the packages which changed most frequently together to
define developer profiles. The profiles can be used to identify who worked on similar issues
on the project.

1.1 Problem Statement

Developers working on maintenance tasks could use the information who worked on which
part of the source code to assign work or ask for help. Having many developers on a project,
it is difficult to identify the experts working on topics related to their tasks.

1.2 Research Objective

The aim of our study is to identify the developers’ expertise profiles based on the projects’
package structures. We use the package organization of the source code because it reflects
the grouping of the system functionalities and defines the fundamental features or layers
of the system. Using data mining, we investigate the software repositories to extract the
sets of packages that were most frequently changed together by a given developer during
software development. The fact that these sets of package changes are repeating in different
occasions give us better expertise description than simply listing how often the packages
have been changed by the developer. Based on the functionalities behind these sets, we
differentiate the developer expertise.

1.3 Contribution

We present an exploratory case study where we define developer profiles of expertise based
on the aggregated information about the system packages that were most frequently changed
together. By differentiating developer profiles, the effort for the analysis drops because the
users involved in maintenance do not have to examine the data from all developers on the
project. They can choose the data from those developers who implemented changes in the
system relevant to their tasks.

2 Background

2.1 Java Packages

Packages in Java represent namespaces to organize set of classes and interfaces which
prevent conflicts in the source code. They can be related according to some specific
functionality. For example, the java.io package groups the classes dealing with input and
output. There are two fundamental approaches for creating packages in Java. Package by
feature reflects a set of features of the software. It organizes the classes related to a single
feature. Package by layer reflects various application levels instead of features.

Mining Java Packages for Developer Profiles: An Exploratory Study 145

2.2 Data Mining

Hidden dependencies between source code files are also known as logical dependencies or
couplings [GHJ98]. Coupled file changes describe a situation where someone changes a
file and afterwards also changes another file. We use the same principle to investigate the
version history for frequent change sets on a package instead of file level. One of the most
popular data mining techniques is the discovery of frequent item sets.

We use a heuristic where the commits containing the package names are grouped based on
the developers who committed the changes. The number of developers identifies the number
of groups of commits for which the mining process will be performed. The user-defined
support threshold identifies the frequency of the package couplings.

Tab. 1: Developer Profiles

Package Profile

Dev.l | astpa/src/asty Istr oller

control structure

p pa/controlstru p
Dev.2 astpa/src/astpa/ui/interfaces/

astpa/src/astpa/ui/common/grid user interface
astpa/src/astpa/ui/sds/

2.3 Developer Profiles

Developers working on a project can be differentiated based on their contribution to the
functionalities of the software. There are developers that commit a significant number
of commits to the system whereby others only contribute [ADGO08]. Existing approaches
investigate developer expertise based on the authorship of these changes [Fr10]. In our
study, we define profiles of developers expertise on the level of packages. Using developers’
profiles we capture the characteristics of their changes according to their contribution in the
source code. Schuler et al. [SZ08] defined a process for aggregating developer expertise
profiles. Similarly, we use the changed packages from the version history to aggregate the
expertise profile of the developer. The profile contains all coupled packages changed by the
developer. We rank the coupled packages to find the most frequent package couplings to
define the profile.

Users working on some maintenance task can use the profiles to decide which developer’s
data given the implementation expertise matches to their work the best. For example,
lets suppose that a developer has some maintenance task related to some change in the
control structure of the application. He or she looks up at the developers profiles to find the
developer whose most frequent package couplings are relevant for his feature. In Table 1 we
have two developers, their most frequently changed packages and the defined profiles. We
see that the most frequently coupled packages by the first developer cover features related
to the control structure. We aggregate the features covered in these packages in a developer
profile: control structure. The second developer profile describes package features related
to the user interface and are not relevant for the task mentioned above.

146 Jasmin Ramadani, Stefan Wagner

3 Related Work

Various studies define the developer expertise based on the changes in the code. McDon-
ald [McO1] presents a recommendation system using the change history information based
on the Line 10 rule. Here, the developer whose name shows up on line 10 of the change log
is the last person who worked on the file. A developer is considered to be an expert if he or
she is the last person having the file in memory [RR13]. Gitba et al. [Gi05] measure the code
ownership based on who is the last committer. We consider all the developers working on a
particular part of the code, not only the last one. A similar approach is defined by Mockus
and Herbsleb [MHO02] where the number of times the file is changed by a developer is
measured for the expertise. Nakakoji et al. [Na02] define an onion like structure to describe
the contributing developers to a project. Our approach differs because we do not investigate
methods or files to define developer profiles but Java packages. We investigate frequently
changed couplings of packages and not only the number of changes.

Manto and Murphy propose developer expertise [MMO7] where the expert is defined using
data from versioning system and explore how often a developer changed a particular file.
The study by Schuler et al. [SZ08] recommends experts by mining of version archives
based on the methods they have changed. Another approach, presented by Anvik and
Murphy [AMO7] defines a three-way approach using the source repository check-in logs,
bug reports and the modules containing changes determined on file or package level. Alonso
et al. [ADGO8] uses CVS to identify and visualize developer expertise. Similarly, we use the
version history of the project, in our case it is the Git repository. However, we investigate
not on a method but on a package level. Joblin et al. presents an empirical study about
classification of developers in to core and peripheral roles [Jo16].

There are several studies where the package information in the project has been investigated.
Robles et al. [Ro06] studied the characteristics of software including the packages, lines of
codes or the programming language. In our study, we do not describe the content of the
classes in the packages, we identify the way the source code is divided in packages based
on the features or layers. The project analysis studies performed in [Ha08; SD07] involve
dependency analysis between the packages. We investigate logical couplings between the
packages and not architectural dependencies.

Most of the studies dealing with identifying coupled changes from software repositories
use some kind of data mining for this purpose [KYMO06; RW16a; RW16b; Yi04; Zi04].
In [KYMOG6; Yi04] the authors investigate the couplings based on the file level. In [FGPOS;
Zi04] the researchers identify couplings between parts of files like classes, methods or
modules. We investigate higher level couplings based on the project packages.

4 Case Study Design

4.1 Research Questions

RQ1: Which package couplings are most frequent per developer? We examine which
packages are most frequently changed together by particular developers. We use this

Mining Java Packages for Developer Profiles: An Exploratory Study 147

information to investigate the functionalities the developers were mostly involved during
the software development.

RQ2: What kind of developer profiles can we define based on the packages? Based on
the changed packages and their functionalities, we aggregate them to define their profiles
related to their expertise on the system software. Using this information, developers can
explicitly identify the software changes related to their task.

4.2 Case Selection

For our study, we use three open source projects: ASTPA, an Eclipse based Java project,
RIOT, Java and Android based software and VITA, Java based text analysis software. They
were all developed at the University of Stuttgart and were found on the local Gitlab. The
projects have been selected based on their structure having a number of packages and
developers and their availability for the study.

4.3 Data Collection Procedure

We extract the Git log from the project repositories and format the output to separate the
commits according to the developer who has done the changes. We enlist the commits with
all changed files represented by the file names containing the relative file paths including
the packages and sub-packages of the project. To prepare the data for analysis, we remove
empty commits or commits having only a single entry. We group the commits based on the
developer heuristics. We create data sets of commits for every developer who contributed
to the repository.

4.4 Analysis Procedure

° Extracting the packages from the commits: We extract all names of the files changed
in a commit. They include the relative file path on the system which includes the
names of the package and sub-packages. We scan the file paths from the back and
remove the filenames from the path. The resulting string identifies the name of the
package or sub package.

. Mining packages: We perform a frequent item sets analysis on the packages to extract
the most frequent couplings from the the repository. Due to the high number of
file couplings, we use a relatively high user-defined support level for the frequent
item sets analysis. This way we include only the coupled packages which happened
frequently and not by chance.

. Define developer profiles: We rank all the coupled packages for a developer starting
with the most frequently changed package to identify the most frequent ones. After
the ranking of the packages, we join the group of most frequent packages to the
developer. This will identify the expertise of the developer marking the functionalities

148 Jasmin Ramadani, Stefan Wagner

he or she was most involved into. We look up the features that are involved in the
files behind this packages. We aggregate developers expertise profile based on the
most frequently changed packages.

5 Results and Discussion’

We have extracted the most frequent package couplings for the developers in all three
projects. Depending on the outcomes of the mining algorithm, we set an average support
level of 80% for the first project, 60% for the second and 40% for the third project. These
values define the strength of the couplings.

Our results show that the number of different coupled packages vary from developer to
developer and from project to project. These values are mainly influenced by the number of
functionalities the developers have been involved into.

Tab. 2: Frequent packages and expertise profiles

ASTPA
packages profiles
Devl astpa.src.astpa ructure. editParts control structure
astpa.src.astpa.controlstructure
Dev2 astp: pa.controlstructure.controller.editParts control structure
astpa.src.astpa.controlstructure. figure
astpa.src.astpa.controlstructure.controller.editParts
Dev3 astpa.src.astpa.model.interfaces control structure+
astpa.src.astpa.ui.common.grid
user interface+model
Dev4 astpa.src.astpa.model.interfaces user interface+model
Dev5 astpa.astpa.intro.graphics.icons graphics
Dev6e astpa.src.astpa.ui.sds, astpa.src.astpa.ui.accha user interface
Dev7 astpa.src.astpa.ui.common.grid user interface
Dev8 astpa.icons.button description graphics
RIOT

android.riot.res.layout, android.riot.res.drawable-xhdpi
Dev.1 android.riot.res.drawable-mdpi, android layout
android.riot.res.drawable-hdpi, android.riot
android.res.layout android.res.layout

Dev.2 android.src.main.java.de.uni_stuttgart.riot.android android layout
Dev.3 commons.src.main.java.de.uni_stuttgart.riot.server.commons.db database
android.riot, android.riot.settings, android.riot.res.drawable-hdpi
Devd nndro%d.r%m.res,dmwnble-mdpL .andmid,rio.[,res.dmwable-xhdpl android layout
android.riot.res.drawable-xxhdpi, android.riot.res.layout
android.riot.res.menu, android.riot.res.values-de
Dev.5 android.src.main.java.de.uni_stuttgart.riot.android.account android account
Dev6 a.ndrol‘d.srcv,mam.java.devuni,slul[gan.nol.andmid,idea.]ibraries android librarics
.idea.libraries
Dev.T user rc.main.java.de -m‘i)mugurl.ﬁol. database
user data.sqlQueryDao.impl
Dev.8 commons.src.main.java.de.uni_stuttgart.riot.thing riot things
Dev.9 webapp webapps
Dev.10 rc.main webapp webapps
VITA
Dev.1 sre.main.resources.gate_home.plugins annie.resources. gazetieer ANN plugins
Dev.2 src.main.java.de.unistuttgart.vis.vita.services services
Dev.3 src.main.front-end.app.partials frontend
Dev.4 src.main.java.de.unistuttgart.vis.vita.analysis analysis
Dev.5 src.main.java.de.unistuttgart.vis.vita.importer.epub importer
Dev.6 src.main.java.de.unistuttgart.vis.vita.importer.epub importer
Dev.7 src.main.front-end.app.partials frontend

3 The complete list of all couplings and profiles are available at: http://dx.doi.org/10.5281/zenodo.51302.

http://dx.doi.org/10.5281/zenodo.51302

Mining Java Packages for Developer Profiles: An Exploratory Study 149

5.1 Most frequent package couplings per developer (RQ1)

For every developer, we have extracted a list of package couplings covering various software
features. For example, in Table 2, we see that the first developer on the ASTPA project
changed mostly files in the controller.editParts sub-package, whereby the sixth and the
seventh developer changed mostly the ui related packages.

The first, the second and the fourth developer who worked on the RIOT project changed
very similar packages related to the layout whereby the third and the seventh developer
worked on the database packages.

The second developer who worked on the VITA project worked on the services whereby
the third and the seventh developer worked on packages related to the front-end. The results
show that some of them changed functionalities in files that belong to the same package,
whereby others worked on different packages. Some of the developers share the packages
meaning that two or more developers worked on the same packages. In other cases the
developers split their work and contributed into totally different packages.

5.2 Developer profiles (RQ2)

Based on most frequent package couplings we have aggregated various developer profiles
for all three projects as presented in Table 2. For the first project we identify profiles of
developers related to the changes on the control structure, user interface and graphics. For
the second project we define developer profiles covering expertise on the android layout,
database, account, libraries, android functionalities and web apps. For the developers on
the third projects we define profiles including involvement in the plugins, services, front
end, analysis and import features.

The difference in the profiles is directly influenced by the areas of the system where the
developers have worked on. Also the project organization and the number of packages
affect the precision of the profiles.

5.3 Discussion

Using the most frequently changed packages, various functionality topics in the source
code structure have appeared. For some developers we have limited set of changed system
functionalities which gives clear information what they were mainly working on. This way,
the profiles related to a small number of functionalities and show a more precise developer
expertise. This is useful to define a precise expertise profile and clearly identifies changes
related to a particular maintenance task for developers working on a concrete part of the
system.

Other package changes show developers working on various topics in the system. They
show more general expertise working on different areas of the system. Their profiles do not

150 Jasmin Ramadani, Stefan Wagner

clearly represent a set of changes related to a specific functionality. They are based on a set
of changes covering broader system contribution. However, they can be still valuable for
developers working on various parts of the software or on new functionalities.

6 Threats to Validity

A threat to construct validity could be that the developers by creating the packages influence
the organization of the code. The names of the packages could lead to a group of classes
which are not related or similar. We look up in the classes and other files in the packages to
inspect manually if they are related to the package name.

As an internal threat we can mention that the relatively high support level for the data
mining algorithms provides relative small number of package couplings. However, this
ensures that these couplings happened frequently and not by chance.

The generalization of our approach represents an external threat because it is limited and we
investigated a small number of Java projects. However, it is possible to apply our approach
on any project having a clear package or namespace structure and having several developers
working on it.

7 Conclusion

We conclude that we can successfully define developer profiles based on the packages
that most frequently changed together. There are developers working on similar system
functionalities which can lead to more precise developer profiles. This can limit the number
of data sets for data mining, which decreases the effort for the analysis and can be very
helpful in projects with a large number of developers. For the developers working on various
or totally different parts of the code, the profiles show more general coverage of system
expertise.

The resulting profiles differentiate a number of functionalities, which can help the users
working on their maintenance tasks to choose the most relevant implementation. The next
steps will be to formalize the automation of the expertise analysis process of the profile
description according to the package structure of the system.

References

[ADGO08] Alonso, O.; Devanbu, P. T.; Gertz, M.: Expertise Identification and Visualiza-
tion from CVS. In: Proceedings of the 2008 International Working Conference
on Mining Software Repositories. MSR 08, pp. 125-128, 2008.

[AMO7] Anvik, J.; Murphy, G. C.: Determining Implementation Expertise from Bug
Reports. In: Proceedings of the Fourth International Workshop on Mining
Software Repositories. MSR 07, pp. 2—, 2007.

Mining Java Packages for Developer Profiles: An Exploratory Study 151

[FGPO5]

[Fr10]

[GHJ98]

[Gi05]

[GKSO08]

[Ha08]

[Jo16]

[KYMO6]

[McO1]

[MHO2]

[MMO7]

[Na02]

[Ro06]

[RR13]

Fluri, B.; Gall, H.; Pinzger, M.: Fine-Grained Analysis of Change Couplings.
In: SCAM. Pp. 66-74, 2005.

Fritz, T.; Ou, J.; Murphy, G. C.; Murphy-Hill, E.: A Degree-of-knowledge
Model to Capture Source Code Familiarity. In: Proceedings of the 32Nd
ACMV/IEEE International Conference on Software Engineering - Volume 1.
ICSE ’10, pp. 385-394, 2010.

Gall, H.; Hajek, K.; Jazayeri, M.: Detection of Logical Coupling Based on
Product Release History. In: Proceedings of the International Conference on
Software Maintenance. ICSM °98, pp. 190—, 1998.

Girba, T.; Kuhn, A.; Seeberger, M.; Ducasse, S.: How Developers Drive Soft-
ware Evolution. In: Proceedings of the Eighth International Workshop on
Principles of Software Evolution. IWPSE 05, pp. 113-122, 2005.

Gousios, G.; Kalliamvakou, E.; Spinellis, D.: Measuring Developer Contribu-
tion from Software Repository Data. In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories. MSR °08, 2008.

Hautus, E.: Improving Java Software Through Package Structure Analysis,
2008, URL: http://ehautus.home.xs4all.nl/papers/PASTA.pdf/.

Joblin, M.: Classifying Developers into Core and Peripheral: An Empirical
Study on Count and Network Metrics, 2016, URL: http://arxiv.org/abs/1604.
00830.

Kagdi, H.; Yusuf, S.; Maletic, J.I.: Mining Sequences of Changed-files from
Version Histories. In: Proceedings of the 2006 International Workshop on
Mining Software Repositories. MSR 06, pp. 47-53, 2006.

McDonald, D. W.: Evaluating Expertise Recommendations. In: Proceedings of
the 2001 International ACM SIGGROUP Conference on Supporting Group
Work. GROUP "01, pp. 214-223, 2001.

Mockus, A.; Herbsleb, J. D.: Expertise browser: a quantitative approach to
identifying expertise. In: ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering. Pp. 503-512, 2002.

Minto, S.; Murphy, G. C.: Recommending Emergent Teams. In: Fourth Interna-
tional Workshop on Mining Software Repositories (MSR’07:ICSE Workshops
2007). Pp. 5-5, 2007.

Nakakoji, K.; Yamamoto, Y.; Nishinaka, Y.; Kishida, K.; Ye, Y.: Evolution
Patterns of Open-source Software Systems and Communities. In: Proceedings
of the International Workshop on Principles of Software Evolution. IWPSE
"02, pp. 7685, 2002.

Robles, G.; Gonzalez-Barahona, J. M.; Michlmayr, M.; Amor, J.J.: Mining
Large Software Compilations over Time: Another Perspective of Software
Evolution. In: Proceedings of the International Workshop on Mining Software
Repositories (MSR 2006). Pp. 3-9, 2006.

Robbes, R.; Rothlisberger, D.: Using developer interaction data to compare
expertise metrics. In. Pp. 297-300, 2013.

http://ehautus.home.xs4all.nl/papers/PASTA.pdf/
http://arxiv.org/abs/1604.00830
http://arxiv.org/abs/1604.00830

152 Jasmin Ramadani, Stefan Wagner

[RW16a]

[RW16b]

[SDO7]

[SZ08]

[Yi04]

[Zi04]

Ramadani, J.; Wagner, S.: Are Suggestions of Coupled File Changes Interest-
ing? In: Proceedings of the 11th International Conference on Evaluation of
Novel Software Approaches to Software Engineering. Pp. 15-26, 2016.

Ramadani, J.; Wagner, S.: Which Change Sets in Git Repositories Are Related?
In: International Conference on Software Quality, Reliability and Security
(QRS). 2016.

S.Ducasse; D.Pollet; M.Suen; andl. Alloui, H.: Package Surface Blueprints:
Visually Supporting the Understanding of Package Relationships. In: 2007
IEEE International Conference on Software Maintenance. Pp. 94—103, 2007.

Schuler, D.; Zimmermann, T.: Mining Usage Expertise from Version Archives.
In: Proceedings of the 2008 International Working Conference on Mining
Software Repositories. MSR 08, pp. 121-124, 2008.

Ying, A. T. T.; Murphy, G. C.; Ng, R. T.; Chu-Carroll, M.: Predicting Source
Code Changes by Mining Change History. IEEE Transactions on Software
Engineering 30/9, pp. 574-586, 2004.

Zimmermann, T.; Weisgerber, P.; Diehl, S.; Zeller, A.: Mining Version His-

tories to Guide Software Changes. In: Proceedings of the 26th International
Conference on Software Engineering. ICSE ’04, pp. 563-572, 2004.

