Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 2401

Building a Consistent Taxonomy for Parallel Programming
Models

Markus Nestmann'

Abstract: Parallel programming has been a challenge for developers and software engineers for over
two decades now. To lower the complexity of parallel programs, a lot of different parallel programming
models (like ACTORs) or supporting libraries (like MPI) have been introduced. These models and
libraries support different features and have individual hardware requirements.

As part of a software development process a software engineer has to choose which programming
model or library is used and fits best for a specific use case. Usually this discussion is made in an early
design phase and depends on multiple factors.

To enable the software engineer to make a well-informed decision a taxonomy is required, that contains
all necessary information. To find such a taxonomy we performed a Systematic Literature Review,
within we found five taxonomies. However, the found taxonomies are inconsistent regarding structure,
terms and included models. This paper discusses the five found taxonomies and we will propose a new
taxonomy, that overcomes their shortages and combines their features. With our proposed taxonomy
software engineers are able to make well-informed decisions already in early phases of the software
development process.

Keywords: Parallel Programming Models, Overview, Taxonomy

1 Introduction

Over a decade ago the validity of Moore’s law seemed threaten, because single core
processors reached a performance limit, due to various factors like overheating. At around
the same time multicore CPU’s (CPU’s which contains multiple cores) became wildly used
to overcome performance issues. Nowadays multicore CPU’s can be found in all kind of
devices (i.e., smartphones, desktop PC’s, or Servers). To use these CPU’s in an efficient
way, it is necessary, that the software running on these devices is written in a way, that
it supports parallel execution. However, developing parallel software is complex due to
additional challenges (i.e., synchronisation, race conditions, etc.). Therefore, new parallel
programing models and frameworks emerged, which abstract the level of parallelism to an
extend, that it is easier to handle. Examples are: OpenMP 2 or Erlang 3. These languages are
based on parallel programming models, like the Parallel Random Access Machine (PRAM).

! Technische Universitiit Chemnitz, Fakultét fiir Informatik, Professur Softwaretechnik, Straf3e der Nationen 62,
09111 Chemnitz, nesma@hrz.tu-chemnitz.de

2 http://openmp.org/wp/

3 https://www.erlang.org/

E©®® doi:10.18420/in2017_245

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_245

2402 Markus Nestmann

However, choosing the right model or framework is not a trivial task. Every model has
other features and drawbacks. Therefore, choosing a model is a design decision made by a
software engineer in an early design phase and cannot be undone easily. This means further,
the software engineer needs to gather founded information about different models as well
as information about the hardware, the software should run on, to be enable to make a
well-informed decision [FH16].

To support the software engineers decision making process an overview of the features and
requirements for different models is necessary.

A Systematic Literature Review(SLR)[Nel6] revealed five different taxonomies ([Lil 1],
[Zh07], [DMN12], [Jel1], [Bel3]). However, when evaluating the found taxonomies it
became clear that they also fail to provide a complete set of aspects desired for a taxonomy.
In this paper we discuss and analyze the features and the shortcomings of the found papers.
Based on the analyses we propose a combined taxonomy to overcome the problematic
inconsistencies and flaws of the found taxonomies with the purpose to sufficiently differentiate
between parallel programming models. Further we identify requirements for such a taxonomy
by answering the following research question:

RQ: What is a consistent structure for parallel programming models and which criteria
have to be used to sufficiently differentiate between the models?

As a result we present a taxonomy which possesses relevant criteria for differentiating
between programming models. This taxonomy can now be used by software engineers to
make well-informed decisions.

This paper begins with a short section about the performed SLR. Then the requirements of
the desired taxonomy will be defined in the following section. After that we discuss the five
found taxonomies regarding their underlying motivation, structure, and what requirements
they miss. We conclude with the presentation of our proposed taxonomy.

2 Systematic Literature Review

To answer the research question a Systematic Literature Review was performed during a
bachelor thesis [Nel6]. The goal was to find all relevant sources that deal with and present
multiple parallel programming models. It was performed to get a list of currently used
parallel programming models and to find differences between taxonomies. The thesis is a
meta-survey, so especially surveys and overviews were interesting. The SLR was performed
according to Kitchenham [KCO07] using the meta search engine Google Scholar 4. The
following lists show the search terms (S), the inclusion criteria (I), and the exclusion

4 https://scholar.google.de/

A Taxonomy for Parallel Programming Models 2403

criteria (E). Synonyms for the search terms were review, overview, parallel model, parallel
computing, and model.

Search Terms:
S1 Survey AND "Parallel Programming Model"

Sy Survey AND Models AND "Parallel Computation”

Inclusion Criteria:

I; Results, that compare parallel programming models.
I, Results, that describe and present multiple parallel programming models.

I3 Results, that introduce a taxonomy for parallel programming models.

Exclusion Criteria:

E; Results, that don’t meet the search criteria.

E; Results, that were written in other languages than german or english.
E3 Results, that are e.g. PowerPoint presentations.

E4 Results, that are not available using the TU Chemnitz access.

Es Results, that don’t go into parallel programming models.

E¢ Results, that don’t cover multiple parallel programming models.

The search terms with their variations led on the 11.08.2016 to 20 results. Google Scholar
filters were used to get results between 2006 and 2016 and the filter intitle: was used to
search for the term Survey and it’s synonyms in the title. The whole documentation of the
SLR can be found in the bachelor thesis [Ne16]. After analyzing these 20 papers 9 of them
were excluded due to exclusions criteria, so 11 papers were used in the bachelor thesis. All
of them cover multiple parallel programming models but just 5 of them contain a taxonomy.
These 5 papers ([Lil 1], [Zh07], [DMN12], [Jel11], [Bel3]) are now the foundation of our
paper and we will discuss them later on.

2404 Markus Nestmann

3 Requirements of a Sufficient and Consistent Taxonomy

To find the desired taxonomy, it is first necessary to characterize the requirements for such a
taxonomy. The requirements depent on the intended usage of the taxonomy, so we first have
to define our motivation and then afterwards introduce the requirements. Our motivation is
to have a taxonomy that can aid in the choosing process of a parallel programming model.
For that it has to differentiate between the models using criteria that are interesting in the
choosing process. To find these criteria and finally the requirements we used results from
the SLR [Nel6]. Especially R4 and Rs were included after seeing the increasing popularity
of these groups in the papers of the SLR (see also chapter 5). The first three requirements
arose mainly from our motivation. R, was therefore included because it is important in the
choosing process but also because we found this differentiation in the papers. More details
can be seen in the thesis. In the following we present a well-considered list of requirements.

The taxonomy has to...

R; ...include all currently used parallel programming models, because most likely current
models will be interesting for the software engineer in the choosing process.

R, ...give information about the memory architecture of the models, namely shared-,
distributed- or hierarchical memory, so that the user can pick a model fitting to his
hardware.

Rj3 ...provide sufficient criteria to differentiate between all included models, so that it can
aid the software engineer in the choosing process.

R4 ...include GPGPU models (models that use also the GPU), because these models are
gaining popularity and will be relevant to many developers today.

Rs5 ...include hybrid models (they combine existing models, e.g. MPI + Pthreads), because
some of them combine the advantages of existing models and allow a better runtime
for some special applications. This gives the software engineer more possibilities.

4 Existing Taxonomies

In this section the mentioned five taxonomies will be discussed.

The taxonomy of Xin Li [Lil1] includes just task-based parallel programming models,
because the focus was on automatic analyzes in APIs for task-level compiler. The author also
wanted to look on the efficiency of models and therefore chose a division of these task-based
models in control- and data driven models. That is basically a division in different execution
mechanisms. The taxonomy was created for a specific research and therefore doesn’t include
libraries that are currently popular and widely used, such as MPL

A Taxonomy for Parallel Programming Models 2405

Task-Based Parallel
Programming Models

Task-Based Task-Based
Control-Driven Models Data-Driven Models
OpenMP Jade
CUDA SMPSs

Etc. Etc.

Fig. 1: Figure based on taxonomy from [Lil1]

The taxonomy of [Zh07] gives a historic view on parallel programming models. The
authors showed that first there were models based on shared memory. After that the first
models with distributed memory appeared and now the models with hierarchical memory
are gaining popularity. That’s why the taxonomy divides the parallel programming models
in these three groups. Especially in the group of models with hierarchical memory a lot of
current models are covered.

year

Shared Memory Distributed Memory Hierarchical Memory
Parallel Computational Parallel Computational Parallel Computational
Models Models Models

i: PRAM i: BSP i: DRAM
Extensions of PRAM LogP P-HMM

Fig. 2: Figure based on taxonomy from [Zh07]

The authors Javier Diaz et al. [DMN12] introduce in their paper a taxonomy with four
groups of parallel programming models. This allows a very broad view over the models and
the authors also included currently used models. The paper of the authors discussed parallel
programming models regarding their suitability for the High-Performance-Computing
community. For that they chose one model for each target architecture: models for shared-
/distributed architectures, GPGPU models and hybrid models (combine models of the other
groups). The model PGAS forms a group of itself.

2406 Markus Nestmann

Parallel

Programming Models
Classical Heterogeneous PGAS Model Hybrid
|:Pth1‘eads i:CUDA i: Pthreads + MPI
OpenMP OpenCL CUDA + MPI

Fig. 3: Figure based on taxonomy from [DMN12]

The paper of Matevz Jekovec [Jel1] introduces the most important models of computation.
A model of computation is used as a term to describe sequential programming models and
their counterpart parallel models which are covered in their paper. Each model belongs to one
of the groups shared-, distributed- or hierarchical memory models, like the historic division
form [Zh07]. But another criterion is the degree of abstraction. It shows for every model
whether it is very abstract or realistic. For the author it was important to research technical
bottlenecks to develop efficient algorithms. The memory architecture is an important aspect
for this. That’s why he structured the taxonomy as he did. In the figure only the parallel
programming models (right side) are displayed.

PRAM
+ derivatives

10818QR
s[opow pjo

BSP

+ derivatives
Models of

Computation
PMH
+ derivatives

N

PCO

o1sI[BAL
S[opow mou

-

Fig. 4: Figure based on taxonomy from [Je11]

Evgenij Belikov et al. [Be13] have the largest overview in their paper compared to the other
four. They use the term parallel programming models in another sense than the other authors.
For example models like PRAM are not listed but a lot of parallel programming languages
like JAVA or Erlang and also many libraries. Because of that they structured the models in
many clusters that are also based on programming language properties. They differentiate
for example between declarative and imperative languages. In the paper they focus on the

A Taxonomy for Parallel Programming Models 2407

efficiency of models and and support the opinion that the abstraction of Coordination and
Computation has to be balanced for the best result. That’s why this is included in their
taxonomy. The software engineer can see how each of the models manages this abstraction.

'E“ parallel declarative
%- Par Haskells
PLINQ : 4 Eval Strategies
E data parallel ppy Manticore /epu
Erlang / Fammonad o<
HPF sac ‘Eden o™
CAF - :
= PGAS object-
.2 Fortress °fented
s imperative Chapel E i ave Hadoop ~\ 4o®
= 0. conc. coll. TPL ST e
= upC * ForkiJoin
g OpenMP Threads 1BB
Cilk -
B GPGPU P3.|__ o
Renderscript SkePU
- CUDA c++AMP
S MPI OpencCL
=
>
m »
Explicit Implicit

Coordination
Fig. 5: Taxonomy from [Bel3]

Comparison of the Taxonomies

In the following table 1 the fulfilled requirements are shown for each analyzed paper.

The paper [Lill] fulfills the third requirement, because for each model the execution
mechanism is provided. So each model can be differentiated using that criteria. But it doesn’t
include GPGPU and hybrid models and it only covers task-based parallel programming
models. The other requirements are therefore not fulfilled.

The paper [Zh07] fulfills the first two requirements, because all current models are covered
in one of the three groups, that also differentiate based on the memory architecture, which
is the second requirements. GPGPU models or hybrids are not mentioned however.

The paper [DMN12] covers all current models and includes GPGPU and hybrid models.
Three requirements are therfore fulfilled. But there is no furhter criteria in the structure to
differentiate between the many models that are covered in the first group (classical models).
The taxonomy also gives no information about shared-, distributed or hierarchical models.
So the second and the third requirement is not fulfilled.

The paper [Jel1] gives information about each model regarding the degree of abstraction.
The software engineer can differentiate between all models with this criteria. It also groups

2408 Markus Nestmann

the models based on the three memory models. But the other requirements are not fulfilled
because the authors only chose those models that show parallel structure to the sequential
models in their paper.

The paper [Bel3] lists a lot of parallel programming languages and libraries but many
models are not covered and it also doesn’t fulfill the second requirement. But with the
inclusion of the GPGPU models the fourth requirement is fulfilled. It is also possible to
differentiate between all models because they structured them in clusters and placed them
in an diagram that shows how every model manages computation and coordination.

The table 1 shows that no taxonomy from the papers fulfills all requirements.

taxonomies
[Lill] [ZhO07] [DMNI12] [Jell] [Bel3]
. R v v
£ Ry v v
5 Ry v v v
2 Ry v v
& R v

Tab. 1: Comparison of fulfilled requirements through the taxonomies

5 Proposed Taxonomy

Figure 6 shows our proposed taxonomy that was created to fit the requirements (see section
3).

Parallel Programming Models

- model/ technique every model inside a group contains

- library/ . information that can differntiate it from the
1brary/ extension other models (see following paragraphs)

Fig. 6: Own approach for a taxonomy.

A Taxonomy for Parallel Programming Models 2409

Many aspects of the analyzed taxonomies were taken to built a taxonomy that is relevant and
includes the most important parts. The taxonomy is vertically and horizontally structured.
Horizontally there are three groups. The classic models, the GPGPU models and the
hybrid models. First it became clear that a division of the parallel programming models
based on the shared-, distributed- and hierarchical memory models was often used ([Je11],
[DMN12], [Zh07]) and therefore should be included. That is why the classic models are
divided in these three groups. GPGPU models also appeared in many papers with increasing
popularity ([Bel3], [Lill], [DMN12]). A third group are hybrid parallel programming
models which were an example used by Javier Diaz [DMN12] who introduced in his paper
many possibilities for combining different parallel programming models.

The mentioned groups will be the horizontal structure but the models inside these groups
have to be structured (vertically) too. First it has to be clear what type of models are listed.
In the analyzed papers some listed exclusively models and techniques like PRAM, BSP
or PGAS. Others listed libraries like OpenMP, MPI or Intel TBB. Both parties described
them as parallel programming models. There are many aspects of models that can be used
to differentiate them among themselves. Henry Kasim et al. introduced a list of such aspects
in their paper [KaO8]. They ask the following questions to know whether these things are
done explicitly by the programmer or implicitly by the program itself. This list is sufficient
for our use case, so the vertical structure is based on these points:

1. system architecture (shared- or distributed memory?) — already included in horizontal
structure

2. programming methodologies (API, new specifications)

3. worker management (creation of threads/worker/processors?)

4. workload partitioning scheme

5. task-to-worker mapping

6. synchronization (when can worker access shared memory?)

7. communication model

The representation of the taxonomy as a table could look like Tab. 2. (The table is just an
example to get another perspective and is not complete.)

2410 Markus Nestmann

S
Q J) N
& s 5 3
& g & S
& S R S
W~ O o &
> § 3 5
N A3 & &
o S) 0
5 4 & & S
& & & ISif &
PRAM model SM data OpenMP, CUDA
ArBB library SM data N/A
o BSP model DM N/A BSPlib
g LogP model DM N/A N/A
O
P-HMM model HM N/A N/A
~ Pthreads&MPI libraries SM task/data MPICH2
2
>
an)
E OpenCL library HM data OpenCL C
@]
&
0

Tab. 2: This is an example for the representation of the taxonomy as a table. All the information for
the columns were taken form the analyzed papers. The N/A shows, that not every detail was found in
the papers. SM, DM and HM mean shared-, distributed- and hierarchical memory. The three dots
indicate that the content of this example table is not complete horizontally and vertically.

6 Evaluation

Now we have to evaluate whether the proposed taxonomy is an improvement to the found
taxonomies or not. For this we have to compare the taxonomy to the other ones. The
proposed taxonomy includes all current groups of parallel programming models, so all
currently used models can be found. The taxonomy gives information about the memory
architecture as seen in the group for classical models. With the criteria from Kasim [Ka08]
it is also possible to provide sufficient criteria for the differentiation between the models.
The taxonomy includes GPGPU models and hybrid models. The summarized comparison
can be seen in table 3:

A Taxonomy for Parallel Programming Models 2411

taxonomies
[Lil1] [Zh07] [DMNI12] [Jell] [Bel3] new
. R v v v v
£ Ry v v v
5 Ry v v v v
% Ry v/ v/ v/
= Rj v v

Tab. 3: Comparison table (see Tab. 1) with added row for the proposed taxonomy

As seen in the comparison table 3 the proposed taxonomy fulfills the requirements we
initially gathered. Therefore we could provide an improved taxonomy that overcomes most
identified drawbacks. However, also this taxonomy has some hitches we want to address in
the following enumeration. The bachelor thesis [Nel6] and the taxonomy was discussed in
a round of experts.

1. The term parallel programming model includes also libraries even though there is a
distinction between libraries and models.

2. It is not clear where MPI can be included. Due to he message passing model it can be
based on shared- or distributed memory.

7 Application of the Taxonomy

With the example presentation in table 2 the developer get’s a helpful overview for the parallel
programming models. He can look for GPGPU models or choose a classic model. If the
developer looks into the classic models, he can choose a category that fits his environment. If
he wants to work with shared memory, he could for example choose the PRAM model. This
decision could be based on different reasons. For example preferences in explicit or implicit
handling of the worker management or synchronization. Implementations of the chosen
model can be found in the last column. It is furthermore possible that the developer chooses
a hybrid model that combines his chosen model with another one. A good combination of
the advantages from two models can lead to a better performance on special systems (e.g.
Pthreads and MPI [Wr(06]).

8 Conclusion

Through the analysis of multiple papers that introduce taxonomies for parallel programming
models we observed that there are many differences between them. A taxonomy has to fulfill
some requirements so that it can aid the developer in his choosing process of a suitable
model. We were able to define these requirements and then we discussed the individual

2412 Markus Nestmann

taxonomies of the SLR. We were then able to introduce a new approach for a taxonomy
that fulfills these requirements. Everyone who wants to choose a parallel programming
model and is new to the subject could benefit from this taxonomy. Serving as an overview
the developer can get information from the taxonomy about the differences between the
current models. This could aid him so that he can make a well-informed decision. We could
also show that our proposed taxonomy is an improvement to the taxonomies found in the
SLR, nevertheless we are aware of hitches in the taxonomy and open for discussion and
further improvement. It is also necessary to adapt the taxonomy when new groups of parallel
programming models appear in the future so that it still includes all current models.

References

[Bel3]

[DMN12]

[FH16]

Uell]
[Ka08]

[KCO07]

[Lill]

[Nel6]

[Wr06]

[Zh07]

Belikov, Evgenij; Deligiannis, Pantazis; Totoo, Prabhat; Aljabri, Malak; Loidl, Hans-
Wolfgang: A survey of high-level parallel programming models. Technical Report
HW-MACS-TR-0103, Heriot-Watt University, 2013.

Diaz, Javier; Munoz, Camelia; Nino, Alfonso: A survey of parallel programming models
and tools in the multi and many-core era. IEEE Transactions on parallel and distributed
systems, pp. 1369-1386, 2012.

Frank, Markus; Hilbrich, Marcus: Performance Prediction for Multicore Environments—
An Experiment Report. In: Proceedings of the Symposium on Software Performance 2016,
7-9 November 2016, Kiel, Germany. 2016.

Jekovec, Matevz: Survey of the sequential and parallel models of computation. 2011.

Kasim, Henry; March, Verdi; Zhang, Rita; See, Simon: Survey on parallel programming
model. In: Network and Parallel Computing. Springer, pp. 266275, 2008.

Kitchenham, Barbara; Charters, Stuart: Guidelines for performing systematic literature
reviews in software engineering. 2007.

Li, Xin: A Survey of Task-Based Parallel Programming Models. In: International
Conference on Information Technology and Computer Science, 3rd (ITCS 2011). ASME
Press, 2011.

Nestmann, Markus: , Erstellung einer einheitlichen Taxonomie fiir die Programmiermodelle
der parallelen Programmierung, 2016. http:/nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-
224238.

Wright, Charles: Hybrid programming fun: Making bzip2 parallel with MPICH2 &
Pthreads on the Cray XD1. In: CUG’06, 48th Cray User Group Conference. volume 1.
Citeseer, 2006.

Zhang, Yunquan; Chen, Guoliang; Sun, Guangzhong; Miao, Qiankun: Models of parallel
computation: a survey and classification. Frontiers of Computer Science in China,
1(2):156-165, 2007.

