
Reflecting modeling languages regarding Wand and
Weber’s DecompositionModel

Florian Johannsen, Susanne Leist

Department of Management Information Systems
University of Regensburg
Universitaetsstraße 31
93053 Regensburg

Florian.Johannsen@wiwi.uni-regensburg.de
Susanne.Leist@wiwi.uni-regensburg.de

Abstract: The benefits of decomposing process models are widely recognized in
literature. Nevertheless, the question of what actually constitutes a “good”
decomposition of a business process model has not yet been dealt with in detail.
Our starting point for obtaining a “good” decomposition is Wand and Weber’s
decomposition model for information systems which is specified for business
process modeling. In the investigation at hand, we aim to explore in how far
modeling languages support the user in fulfilling the decomposition conditions
according to Wand and Weber. An important result of the investigation is that all
investigated business process modeling languages (BPMN, eEPC, UML AD) can
meet most of the requirements.

1 Introduction

Business process modeling is widely recognized as an important activity in a company
[BWW09]. For instance, business process models can serve as a basis for decisions on
IT-investments or the design and implementation of information systems [BWW09]. In
view of its understandability the size of a business process model plays a central role
[MRC07]. Depending on both the purpose of modeling and the target group considered,
requirements on process models may differ. While a software engineer may be interested
in details of a business process (e.g. complex control-flow mechanisms), another
employee may only consider the more abstract model levels, giving him/her a basic
understanding of the business process [BRB07]. For creating process models that are
manageable and understandable in size, but also contain all the information needed (e.g.
for software development, process improvement efforts etc.), they are decomposed “into
simpler modules” [GL07]. In doing so, a process model is decomposed into several
model levels that differ in detail [KKS04]. Nevertheless the characteristics that actually
constitute a “good” decomposition [BM06, BM08] remain unclear. In practice, the
decomposition of process models is usually done in an “ad hoc” fashion [RMD10].
Guidelines on how to decompose a model into subprocesses are missing [RMD10]. Our
starting point is Wand and Weber’s model for a good decomposition which was
developed for information systems (see [WW89, We97]).

We specify this model for business process modeling giving business analysts a means
to evaluate their decomposed models. As already mentioned in literature (see [Re09]),
the potential of the Wand and Weber model seems promising for deriving criteria to
judge whether the decomposition of a process model is “good” or “bad”. As a first step
in our investigation we evaluate the capabilities of common process modeling languages
to enable Wand and Weber’s decomposition model. It is our aim to explore how far
these modeling languages support the user in fulfilling the defined conditions. Although,
in fact, common modeling languages enable the decomposition e.g. by means of
hierarchical functions in Event-driven Process Chains (EPCs) or subprocesses in the
Business Process Modeling Notation (BPMN), the information given on a certain model
level is not only dependent on the control-flow. Sometimes additional information is
needed which becomes obvious by taking, for instance, a data-oriented view (e.g. focus
on data elements). Since not all modeling languages support views that are not solely
directed at the control-flow, the capabilities of a modeling language influence the quality
of the decomposition.

This paper is structured as follows. In section two, we give a definition of the term
decomposition, highlight the relevance of the Wand and Weber model, and describe the
procedure for the research under study. Section three introduces the investigated
business process modeling languages, and section four presents the decomposition
model. Whether the process modeling languages are capable to support the
decomposition model or not, is discussed in section five. Therefore requirements on
process modeling languages are derived. Section six presents conclusions, a set of
limitations, and potential directions for future research.

2 Conceptual Basics and Related Work

2.1 Decomposition and process model quality

Manifold metrics for judging the quality of a process model were recently developed
(see [GL07, Va07, MRA10]). Moreover frameworks for evaluating conceptual models
exist [SR98, KLS95]. In that context, decomposition is seen as a means to improve the
understandability of a process model while reducing the likelihood of errors at the same
time [MRA10]. The term decomposition is used in several publications, and many
further publications (see e.g. [FS06, He09]) use terms with similar meanings (e.g.
deconstruction, disaggregation, specialization). We define the decomposition of a
process according to Weber [We97] as a set of subprocesses in such a way that the
composition of the process equals the union of the compositions of the subprocesses in
the set. Everything in the composition of the process is included in at least one
subprocess in the set of subprocesses we chose. The decomposition of a process is
represented in a level structure of subprocesses, and, on each level, the process or the
subprocesses are displayed in a process model (see [We97]). Disaggregation and
specialization are seen as special types of decomposition representing a part-of-relation
respectively an is-a-relation. Most of the related work distinguishes heterogeneous types
of decomposition for a given objective.

28 Florian Johannsen, Susanne Leist

For example, vom Brocke [Br06] introduced design principles for reference modeling
which aim to provide a greater flexibility in reference modeling. Malone et al. [Ma99]
developed the “process compass” which differentiates between horizontal specialization
by means of objects and vertical disaggregation into subprocesses. Heinrich et al. [He09]
used disaggregation and specialization for decomposing a process landscape, aiming at
identifying primarily functional similarities of the detailed subprocesses. Ferstl and Sinz
[FS06] defined principles (the so-called decomposition rules) to recursively refine
processes over several levels of detail which support disaggregation and specialisation.
The principles were especially designed to be used within the framework of their SOM
(semantic object model) methodology. Österle [Ös95] described a pragmatic procedure
to decompose processes. The objective of the procedure is to detail macro processes into
micro processes (see [Ös95]). Therefore he suggested four sources (services, business
objects, process or activities of the customer process, existing activities) which help to
derive activities from the macro process [Ös95]. While, based on their objectives,
different principles of decomposition are defined in these publications, characteristics of
a good decomposition are not investigated.

2.2 Relevance of Wand and Weber’s decomposition model

As described above (section 2.1) various principles and suggestions to help practitioners
achieve a good decomposition exist. But, to our knowledge, only one general theory of
decomposition has so far been proposed in information systems (see [BM06]): Wand and
Weber’s good decomposition model (see [WW89, WW90, We97]). The decomposition
model is part of the Bunge-Wand-Weber model (BWW model) [We97]. The BWW
model is deeply rooted in the information system discipline [Re09] and considers the
representational model, the state-tracking model, and the decomposition model as named
above [We97]. The representational model has gained popularity as a means of the
ontological analysis of modeling languages (see e.g. [RI07, Ro09, RRK07]). Therefore
modeling languages are evaluated regarding ontological completeness and ontological
clarity [Re09].

Both the state-tracking and the decomposition model are based on the concepts of the
representational model [We97]. Details on the BWW model can be found in Weber
[We97], for example. The decomposition model as it was originally developed by Wand
and Weber comprises five conditions to judge the quality of a decomposition [We97]:
minimality, determinism, losslessness, minimum coupling, and strong cohesion. These
conditions help a user to decide whether an information system has been appropriately
decomposed or not. Investigating these principles of good decomposition [We97] to
support the creation of manageable business process models in large-scale initiatives has
already been promoted by Recker et al. [Re09] as a promising field for research. If the
decomposition model proves to be appropriate for that purpose, guidelines on how to
decompose business process models may be derived in a subsequent step. This opinion is
shared by Reijers and Mendling [RM08] as well. The positive effect of the
decomposition conditions on the comprehensibility of UML diagrams has already been
shown empirically (see [BM02, BM06, BM08]).

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 29

2.3 Procedure for deriving requirements on modeling languages

Since the decomposition conditions are based on the BWW representational model
[We97] and modeling languages differ regarding their ontological completeness [Re09],
the question arises in how far heterogeneous modeling languages are able to support
Wand and Weber’s decomposition conditions. To answer this question we adhere to the
following procedure.

Step 1: Specification of the
decomposition conditions for
business process modeling

Step 2:Derivation of metrics
for evaluating processmodels
regarding the decomposition

conditions

Step 3: Formulation of
requirements on

modeling languages

Step 4: Evaluation
of the modeling

languages

Figure 1: Procedure for deriving requirements and evaluating modeling languages

In a first step, the decomposition conditions, which have their origin in information
systems, are being specified for business process modeling. Based on this specification,
metrics are derived (step 2) to judge whether a process model adheres to the
decomposition conditions as defined in step 1. These metrics serve as an objective basis
for the evaluation of process models. The metrics are obtained from our specification of
the decomposition conditions (step 1). Thus they address those modeling constructs that
are focused for evaluating process models regarding their fulfillment of the
decomposition conditions. By looking at the metrics and the modeling constructs they
address, requirements on modeling languages can be defined straightaway. The third
step of our procedure (figure 1) contains the formulation of the requirements on
modeling languages. Using these requirements, common modeling languages are
evaluated regarding their support of the decomposition conditions (step 4). In doing so, it
becomes obvious as to which degree a decomposed process model that was designed by
using a specific modeling language can be judged regarding its coherence with the
decomposition conditions. This investigation is part of a research project which aims to
define conditions for a good decomposition. The research project is based on the design
science research method (see [He04]). Thus decomposition conditions will be build and
evaluated afterwards. The investigation at hand serves to prove the capabilities of
existing knowledge (modeling languages and Wand and Weber’s decomposition model)
and builds upon design science principles as well. We evaluate existing artifacts
(modeling language) using requirements derived by a proposed solution (Wand and
Weber’s decomposition model) for a given problem (decomposition).

3 Business Process Modeling Languages

Manifold notations exist for modeling business processes. Especially the Business
Process Modeling Notation (BPMN), the enhanced Event-driven Process Chains
(eEPCs), and UML activity diagrams (UML ADs) have gained considerable attention in
the field of business process modeling [MR08, Me09]. BPMN and UML have been
developed and promoted by the OMG as standards in the modeling domain [MR08].
However, not only the ratification by the OMG, but also the growing tool support have
contributed largely to their popularity in today`s business process modeling projects
[MR08].

30 Florian Johannsen, Susanne Leist

eEPCs are characterized by a high user acceptance [Me09, STA05], especially in the
German-speaking community. A lot of reference models for different areas of
application (e.g. computer integrated manufacturing, logistics or retail) are designed
using eEPCs, while the notation is supported by manifold modeling tools as well
[Me09]. Whereas other modeling languages exist (such as Petri-nets) (see [Mi10]), most
of them were developed for analysis purposes and not for communicating models to
business people and employees [Mi10] which hampers their popularity. Thus, in the
following, we focus on eEPCs, UML ADs and BPMN. In addition, all of these languages
support modeling constructs such as “collapsed subprocesses” (BPMN), “sub-activities”
(UML AD), or “hierarchical functions” (eEPC) enabling the process design on different
model levels.
Enhanced Event-driven Process Chains (eEPCs): Event-driven Process Chains were
developed in the early 1990s for visualizing an integrated information system from a
business perspective (see [STA05]). The EPC is part of the ARIS framework (see
[STA05]). The ARIS framework comprises several views (e.g. data view, function view
or organization view) that can be used to specify an EPC-model through additional
information, for example data elements or organizational units [STA05]. In that context,
we speak of enhanced Event-driven Process Chains (eEPCs).
Business Process Modeling Notation (BPMN): BPMN was officially introduced in
2004. The idea was to create a graphical standard to complement executable business
process languages such as BPEL or BPML, for example [MR08]. In the meantime,
Version 2.0 of the standard was released by the OMG. BPMN offers a variety of
graphical modeling elements which are separated into basic and extended elements
[OMG10].
UML Activity Diagrams (UML ADs): UML can be seen as a standard in the field of
object-oriented modeling [Ru06]. It plays a dominant role in software engineering, since
the functionality as well as the static structure of software can be described by several
diagram types [Ru06]. In that context, activity diagrams (UML ADs) are important for
modeling business processes, software is supposed to support. In the meantime, Version
2.4.1 of UML was released by the OMG [OMG11]. An “action” is the central element of
UML activity diagrams for describing the behavior within a business process [Ru06].
The terminology in the field of business process modeling techniques is not
standardized. We therefore stick to the terminology of Vanderfeesten et al. [Va07] which
can be used for nearly all common business process modeling languages. Therefore we
consider activities, events, data elements, directed arcs, connectors, and resources as
constructs of a process model. Contrary to Vanderfeesten et al. [Va07] we also list
events as separate elements, since events are an important concept during process
execution [Mi10] which is emphasized by modeling languages such as the EPC. We
adhere to this terminology in the following. This allows us to specify the decomposition
conditions regardless of the business process modeling languages used (e.g. eEPC,
BPMN etc.).

4 The Decomposition Model

Wand and Weber`s decomposition model [We97] focuses on the decomposition of
information systems and specifies five conditions: (1) minimality, (2) determinism, (3)
losslessness, (4) minimum coupling and (5) strong cohesion.

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 31

Some of the conditions can also be found in neighboring disciplines such as data
modeling or business process modeling (see e.g. [BCN92, Be95, Va07]). These findings
are referred to in order to specify the conditions for the purpose under study
appropriately. In addition, Green and Rosemann [GR00] as well as Recker et al. [Re09]
reflect modeling languages regarding the BWW model. Their results, too, help to specify
the conditions.

Minimality condition: Following Weber [We97] a decomposition „is good only if for
every subsystem at every level in the level structure of the system there are no redundant
state variables describing the subsystem“. In the information systems domain this means
that every subsystem of an information system should be characterized by the minimum
number of attributes necessary for describing the subsystem [We97]. Minimality is an
aspect that has also been addressed both in data modeling (see e.g. [BCN92]) and
business process modeling (see e.g. [Be95]). According to Batini et al. [BCN92] a model
is minimal if no object can be removed without causing a loss of information. If there is
a loss of information or not, is to be judged by the end-user, and is therefore highly
subjective. In addition, it is also the end-user who decides whether a specific modeling
element is necessary or not. As already stated, a software engineer may expect more
details in a process model than, for instance, a normal employee (see [BRB07]).
Therefore a modeling construct can be seen as needless, if it is not required by the end-
user. Another important aspect of minimality is seen in avoiding redundancies. But,
while designing redundant-free models is a realistic goal in data modeling, this does not
apply to business process models [Be95]. Therefore redundancies in business process
models are quite common and may be necessary to design semantically correct models.
Becker [Be95] gives some hints as to when activities in a business process model can be
merged to avoid redundancies. Nevertheless the user’s perception plays a central role in
deciding whether a construct within a model should be modeled more than once (see
[Be95]). Sometimes redundant-free process models may be difficult to understand
because complex structures of different connectors (e.g. OR, XOR, AND) are needed.
Therefore we distinguish between wanted and unwanted redundancies. Only unwanted
redundant elements, however, should be avoided. The final decision whether an object in
a process model is to be considered as unwanted redundant should be up to the end-user.
Therefore, to evaluate different designs of a process model as regards minimality we
propose the following (see table 1):

Verification of minimality Metric No.
Number (#) of activities, events, data elements,
resources that are not required by the end-user or
unwanted redundant in relation to all activities,
events, data elements, resources.

not required or unwanted redundant
activities, events, data elements, resources/
all activities, events, data elements,
resources

1

Table 1: Verification of minimality

Regarding the metric, the size of the business process model is reflected upon when
evaluating minimality. As mentioned, the end-user`s perspective is crucial at that point.

Determinism condition: According to Weber [We97] determinism can be defined the
following way: “For a given set of external (input) events at the system level, a

32 Florian Johannsen, Susanne Leist

decomposition is good only if for every subsystem at every level in the level structure of
the system an event is either (a) an external event, or (b) a well-defined internal event”.
The decomposition model mentions internal and external events [We97, Re09, GR00].
According to Burton-Jones and Meso [BM02], internal events are those events that occur
during the execution of a process. Whether a specific internal event occurs, depends on
decisions made or activities performed. The completeness check of a “purchase order”
indicates that an order is either “complete” or “incomplete”, depending on prior steps in
the process, for example. The decomposition model requires internal events to be “well-
defined” [We97, Re09, GR00]. This means that knowledge concerning the prior state
enables a user to predict the subsequent event that will occur [We97]. In literature, there
has been discussion about the relation between OR-splits and their effect on the
instantiation of a process [ADK02]. It becomes obvious that the use of OR-splits often
leads to designs in which events or subsequent states are hard to predict and may lead to
complications during the actual execution of the process [ADK02]. Therefore the
determinism of a process model suffers from the use of OR-splits. In addition, Cardoso
showed the negative effect of OR-splits on the understandability of process models (see
[Ca05]). Therefore he introduced the Control-Flow-Complexity-Metric [Ca05] that
relates the complexity of a process model to the use of specific connectors. Negative
impacts on the understandability of business process models are also caused by XOR-
splits that are not based on conditional expressions. BPMN models using event-based
XOR-splits, for example, are hard to interpret, since the branch to be chosen after the
XOR-split depends on an event to occur, mainly the receipt of a message [OMG10]. In
that case, internal events are only modeled in an implicit way, while the process flow
actually comes to an abrupt stop at that point. External events, on the other hand, are
triggered by factors that are beyond a company`s influence, for instance, a server crash at
a supplier which prevents the regular stockpiling of the company`s warehouse [We97].
While the existence of such events should be recognized, it is hard to predict their effects
on the actual process execution. When external events are known, activities to react to
these external influences can be specified within a process model. Nevertheless it is
often hard to identify all external events that may have an impact on a process. Therefore
a modeler can only be expected to model external events, insofar as she/he is able to
identify them. If a process model has few external events this can either be an indicator
that the process is only little affected by external influences or that the modeler has not
identified all external events properly. Despite these problems the relation between the
number of external events and all events of the model can be used to judge to which
degree a process model is stamped with external events. To evaluate different designs of
a process model we therefore propose the following:

Verification of determinism Metrics No.
Number (#) of OR-splits in relation to all Split-operations of the
model.

OR-splits/
all Split-operations

2

Control-Flow-Complexity-Metric according to [Ca05]. OR-splits have
the most negative impact on the complexity of the model.

see [Ca05] 3

Number (#) of XOR-splits that are not based on conditional
expressions in relation to all Split-operations of the model.

XOR-splits not based on
conditional expressions/
all Split-operations

4

Number (#) of external events in relation to all events of the model. # external events/
events of the model

5

Table 2: Verification of determinism

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 33

Losslessness condition: Weber [We97] believes that “a decomposition is good only if
every hereditary state variable and every emergent state variable in a system is
preserved in the decomposition“. Simply speaking, the decomposition model demands
“not to lose properties” of a thing that is being decomposed [WW89, We97]. No
information must get lost during the decomposition. The ideas of Moody [Mo98]
concerning the completeness of data models can be used to specify this aspect for
business process models. A model therefore suffers from “losses”, if certain constructs
(e.g. activities, events) are required by the target group but cannot be found in the
process model itself. The perspective of the target group once again becomes decisive in
that context. In addition, Weber [We97] exemplifies that decomposition can lead to a
false reproduction of the real world. This means that the semantics of a business process
model may be distorted during decomposition and losses of the required semantics will
occur. Considering resources can be of great help during decomposition. While two
activities may look equal at first sight (e.g. “checking account”), they can be different
regarding both the person performing the activity and the resources needed (see [Be95]).
The underlying semantics can be completely different for these activities (e.g. “checking
private customers` account” vs. “checking business customers` account”). What is more,
syntactical errors occurring during decomposition will lead to misinterpretations and
losses of the required semantics, too. As a consequence, the syntactical correctness of a
model must be guaranteed for all model levels. Therefore “losslessness” of a model can
be checked by means of the following metrics; the relation once again considers the size
of the model:

Verification of losslessness Metrics No.
Number (#) of missing activities, events, data
elements, resources on all model levels considering
an original model (or the requirements of a user).

missing activities, events, data elements,
resources/# all activities, events, data
elements, resources of an original model (or
the requirements of an user)

6

Number (#) of wrongly designed constructs
(syntactically and semantically) in relation to all
required constructs.

wrongly designed constructs/
all required constructs

7

Table 3: Verification of losslessness

Minimum coupling condition: Weber [We97] states that “a decomposition has
minimum coupling iff the cardinality of the totality of input for each subsystem of the
decomposition is less than or equal to the cardinality of the totality of input for each
equivalent subsystem in the equivalent decomposition”. Another aspect of the
decomposition model addresses the coupling of the subsystems [We97]. The condition
demands a minimum coupling which requires a minimum cardinality of the totality of
the input [We97]. In process models, inputs are seen as data elements and the minimum
cardinality refers to the number of relations between incoming data elements and
activities. In the context of business process modeling, this idea is also supported by
Vanderfeesten et al. [Va07]. According to Vanderfeesten et al. [Va07, VCR07]
“coupling” measures the number of interconnections between the activities of a business
process model. Thus it becomes obvious in how far various activities are dependent on
each other [VRA08]. “Two activities are coupled, if they contain one or more common
data element(s)” [Va07]. Accordingly, the degree of coupling of a business process
model can be calculated by counting the number of coupled pairs (see [Va07, VRA08]).

34 Florian Johannsen, Susanne Leist

The activities have to be selected pairwise beforehand. The mean is then determined on
the basis of the total number of activities [Va07]. This approach has a strong focus on
the data elements. With “minimal coupling” the activities in a business process model
are neither too small nor too big (see [Va08]). Nevertheless, Wand and Weber admit that
the meaning of “minimum coupling” is unclear and different interpretations can be found
in literature (see [We97]). A further interpretation of Wand and Weber’s definition of
“minimum coupling” in business process models could be seen in the possibility to
measure the strength of the connection between the activities (see [Va08]). In that case,
mainly the control-flow would be focused. The degree of coupling depends on the
complexity and the type of connections (e.g. XOR, AND, OR) between the activities
[VCR07]. In Vanderfeesten et al. [Va08] the so called “Cross-Connectivity-Metric
(CC)” is introduced for that purpose. The coupling of a business process model is thus
determined by the complexity of the connections between its activities. To compare
different designs as regards their degree of “coupling”, the following metrics can be used
(the relation once again considers the size of the model):

Verification of minimum coupling Metrics No.
Number (#) of “coupled pairs” (activities sharing the same data
element) in relation to all activities (see [Va07]).

coupled pairs/
all activities*(# all activities-1)

8

Cross-Connectivity-Metric according to [Va08]. The strength of
the connections between activities is considered by assigning
weightings to the paths of the model.

see [Va08] 9

Table 4: Verification of coupling

Strong cohesion condition: According to Weber [We97] “a set of outputs is maximally
cohesive if all output variables affected by input variables are contained in the same set,
and the addition of any other output to the set does not extend the set of inputs on which
the existing outputs depend and there is no other output which depends on any of the
input set defined by the existing output set“. Whereas coupling tends to enlarge the size
of an activity, cohesion downsizes activities [We97]. The “strong cohesion condition”
requires for each activity of the process model that all output of an activity depends upon
its input (see [We97, VRA08]). In literature, only few publications can be found on the
“cohesion” of a business process model. Exceptions are Vanderfeesten et al. [VRA08]
and Reijers and Vanderfeesten [RV04] who introduce metrics for measuring cohesion. A
strong focus is placed on the “data elements” within an activity. These data elements are
processed by operations. Operations can be understood as small parts of work within an
activity [Re03]. Strong cohesion is given, if operations within an activity overlap by
sharing “data elements”, either as input or as output (activity relation cohesion according
to [VRA08]). In addition, strong cohesion is also dominant when several of the data
elements within an activity are used more than once (activity information cohesion
according to [VRA08]). This definition comes very close to the definition in Wand and
Weber’s decomposition model, because they both define cohesion as mainly data-driven
and focus the processing of data elements within the activities.
In summary, the cohesion of an activity is determined by the extent to which the
operations of an activity “belong” to each other [VRA08, RV04]. Vanderfeesten et al.
[VRA08] propose three metrics to determine the cohesion of an activity. The final
process cohesion is then calculated on the basis of the cohesion values of the activities.

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 35

Verification of strong cohesion Metrics No.
The activity relation cohesion determines in how far the operations within
one activity are related with one another [VRA08].

see [VRA08] 10

The activity information cohesion determines how many data elements are
used more than once in relation to all the data elements [VRA08].

see [VRA08] 11

The activity cohesion is the product of the activity relation cohesion and
the activity information cohesion [VRA08].

see [VRA08] 12

Table 5: Verification of cohesion

Although the conditions introduced are named decomposition conditions, they do not
facilitate the procedure of decomposition. They are applied on the basis of the results of
the decomposition and enable the evaluation of a decomposed process model by means
of metrics (introduced above). The metrics` value helps to compare different alternative
models, although the interpretation of differences between the metrics` values remains
an open issue. Is it worth to reduce the value of coupled pairs in relation to all activities
from 0.3 to 0.1, for example? Furthermore it has to be considered that the use of these
metrics means an additional effort, since all metrics introduced can be calculated for all
model levels of the designed alternatives. Since the decomposition of a process model
into several, more detailed model levels always means adding semantics, user
specifications have to be regarded as well. Therefore some metrics cannot be directly
derived from the process models but have to imply users` knowledge or specification
documents. These metrics are part of the conditions “losslessness” and “minimality”.

5 Evaluation of the Business Process Modeling Languages

5.1 Requirements based on the decomposition conditions

In the following, we derive requirements on modeling languages by looking at our
specification of the decomposition conditions (see section 4) and the corresponding
metrics that reflect our interpretation. In doing so, each requirement (see table 6) can be
directly associated to the related decomposition condition as well as certain facets of our
interpretation.
To fulfill the minimality condition according to our interpretation from section 4, a
process model should not include unwanted redundant and not required elements (see
also metric 1). Not only the decision whether an element is unwanted redundant, but also
whether it is required or not, is up to the user. In this regard, the context of the process is
decisive. Whereas the modeling language offers modeling constructs to represent the
process, the user specifies them taking into account the context of the process. The
modeling language cannot prevent the user from misinterpreting the requirements
resulting from the context of the process (see [Mi10]). Therefore requirements for this
condition cannot be defined.
The determinism condition, as it has been specified in section 4, requires a predictable
control-flow of the process which implies that all internal events are well-defined. The
aforementioned OR-splits often lead to designs in which events or subsequent states are
hard to predict (see [ADK02]). This also becomes evident by metrics 2 and 3 we have
introduced. In addition, if the conditions of the outgoing branches of an XOR-connector
are not explicitly defined, the subsequent state is not determinable either (see [OMG10]).

36 Florian Johannsen, Susanne Leist

This aspect is dealt with in metric 4, while the number of XOR-splits that are not based
on conditional expressions should be minimal. A process modeling language should
therefore enable the definition of conditions to specify the outgoing branches of an
XOR-connector (requirement 1 – see table 6) and should not support an OR-connector
(requirement 3 – see table 6) (see also metrics 2, 3 and 4). Contrary to poorly-defined
internal events in a good decomposition, poorly-defined external events are permitted
(see [We97, GR00]). This is due to the fact that it is often not possible to predict a
subsequent state a priori that occurs as a result of an external event. The “determinism
condition” only demands to represent external events in a model. External events in a
process model are counted by metric 5 resulting from our specification of the condition.
Accordingly, the process modeling language should be able to display external events
(requirement 2 – see table 6).
To fulfill the losslessness condition according to our interpretation (see section 4),
hereditary and emergent elements of a process are to be preserved in the decomposition.
Since only being based on the knowledge of users or specification documents with
which a missing (see metric 6) or wrongly designed element (see metric 7) can be
identified, the process modeling language is not able to support this condition. To detect
syntactically wrongly designed elements, the process modeling language has to be
specified by means of its metamodel (requirement 4 – see table 6).
In order to be able to define the minimum cardinality of the minimum coupling condition
(according to section 4) and evaluate a process regarding metric 8, the process modeling
language has to display inputs and the flow between data elements and activities
(requirement 5 – see table 6). Earlier on (section 4), we made a suggestion to fulfill the
minimum coupling condition which is not based on inputs, namely to investigate the
strength of the connections between the activities by applying the Cross-Connectivity-
Metric (see [Va08] and metric 9). The strength of the connection between the activities
is measured considering all nodes (activities and connectors) and arcs. Therefore the
process modeling language has to display activities, connectors as well as the arcs
between them (requirement 6 – see table 6).

Decomposition
condition Requirements

Corresponding
metrics

Minimality No requirements can be defined metric 1

Determinism

The process modeling language has to provide modeling constructs for:
conditions to specify outgoing arcs of an XOR-connector (requirement 1)
external events (requirement 2)

The process modeling language should not support an OR-connector
(requirement 3)

metric 4
metric 5

metrics 2,3

Losslessness The process modeling language is defined by its metamodel (requirement 4) metrics 6,7

Minimal coupling

The process modeling language has to provide modeling constructs for:
input data elements and the flow between data elements and activities
(requirement 5)
activities, connectors and arcs between them (requirement 6)

metric 8

metric 9

Strong cohesion

The process modeling language has to provide modeling constructs for:
input data elements (requirement 7)
output data elements (requirement 8)
intermediate data elements (requirement 9)
the flow between the data elements (requirement 10)

metrics 10,11,12

Table 6: Requirements on business process modeling languages

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 37

The strong cohesion condition (we have introduced in section 4) is related to the
functionality a subsystem performs [WW89, We97] and requires for each activity of the
process model that all output of an activity depends upon its input [We97]. To be able to
measure cohesion with the suggested metrics (see metrics 10, 11 and 12) the process
modeling language has to display all inputs and outputs for every activity (requirements
7 and 8 – see table 6). The flow between input and output as well as possibly existing
data elements between them by means of intermediate results are to be regarded as well
(requirements 9 and 10 – see table 6). A short overview of the identified requirements is
given in table 6. It becomes obvious that ten requirements can be derived from our
interpretation of the decomposition conditions. These requirements cover the range of
modeling constructs needed to evaluate a process model regarding the decomposition
conditions. The process of modeling a real-world situation is, however, subjective and
thus not considered at this point.

5.2 Capabilities of business process modeling languages

Support of determinism: The determinism condition focuses on modeling constructs
representing external events, OR-connectors, and conditional expressions related to
XOR-operations (see section 4 and 5.1). In eEPCs, the outgoing branches of an XOR-
split are specified by the events to follow. While it is possible in modeling tools such as
ARIS to add attributes to the arcs which specify conditional expressions, these are
usually not modeled on a graphical level. In recent years, the eEPC notation was
enhanced by modeling constructs for visualizing inter-organizational business processes
(see [KKS04]). As a consequence, external events of cooperation partners, too, become
evident. It is also possible to use start events for expressing external events (see [GR00]).
The eEPC-notation provides an OR-connector. BPMN supports the exclusive gateway.
The decision which one of the outgoing arcs of the exclusive gateway is chosen depends
on a condition that is visualized by labeling the outgoing arcs [OMG10]. BPMN offers a
variety of event-types and different triggers [OMG10] that can be used to visualize the
occurrence of an external event in the process model [Re09]. BPMN supports OR-
connectors as well. In UML ADs, the decision node (and a corresponding conditional
expression) is used for XOR-operations [Ru06]. UML 2.0 introduces the “accept event”
which can be used to express external events [Ru06]. Contrary to BPMN and eEPCs,
OR-operations are not considered by UML ADs.
Support of losslessness: For all notations considered, official metamodels are available
(see [Sch98, OMG10, OMG05]). But these metamodels are either too focused on
specific aspects of the modeling language (e.g. for BPMN: metamodel for choreography
activity, artifacts metamodel, external relationship metamodel) or mainly address
technical aspects. Nevertheless, literature provides metamodels which were derived from
the available specifications providing a more manageable means for a practitioner to
design syntactical correct business process models. In that context, Rosemann [Ro96]
presents a comprising metamodel for eEPCs which also takes into account connectors
and views, while Korherr and List [KL07] design a metamodel for BPMN. Bordbar and
Staikopoulos [BS04] develop a metamodel for UML ADs in particular.
In summary, metamodels exist in literature which are less complex than those presented
in the official specifications, helping a practitioner to design syntactically correct
models.

38 Florian Johannsen, Susanne Leist

Support of minimal coupling: On the one hand, minimum coupling can be determined
by the interconnections between functions/activities/actions based on common data
elements. On the other hand, the structure of the process model provides information to
calculate the coupling degree [Va08, VCR07]. The first option takes a data-oriented
view while the second option focuses the control-flow. All modeling languages
considered offer modeling constructs to calculate the coupling degree according to our
specification and design models with “minimum coupling”. eEPCs support the data view
(see [STA05]), while in BPMN data objects are used for presenting both information and
data (see [OMG10]). UML ADs have object nodes representing data elements that are
transferred from one action to another one [OMG05]. These can either be attached to an
action symbol as a “pin” or to an object flow. In all modeling languages the connection
between the functions/activities/actions is the control-flow.
Support of strong cohesion: The strong cohesion condition is based on a data-oriented
view (see [VRA08, Re03]). As already stated, eEPCs support data elements, while the
distinction between input and output data elements is possible. However, the flow
between the data elements themselves is not visualized within an eEPC (see [STA05]).
Additional diagrams would be necessary in that context (see [STA05]). In addition,
possible intermediate data elements that are produced within a “basic” function while
transforming an input data element to an output data element are not modeled. If the
function was a “hierarchical function” with further model levels subjacent, additional
data elements would be given. In BPMN, data objects can be differentiated as data input
and data output on a graphical level, while the flow between the data objects is not
explicitly modeled (see [OMG10]). Regarding basic activities no intermediate data
elements are modeled that may be produced within the activity to create the final output
data (see [OMG10]). In UML ADs, object nodes represent data elements, while the
object flow respectively the “pin symbol” characterizes them as input or output data (see
[Ru06]). While all modeling languages considered support input and output data,
additional diagrams are necessary to highlight the flow between the data elements.
Intermediate data elements within a function/activity/action in the sense of
Vanderfeesten et al. [VRA08] are not explicitly modeled or supported. Therefore the
degree of cohesion [VRA08] cannot be calculated by just looking at the process models.

Decomposition
condition Requirements eEPC BPMN

UML
AD

Determinism
Requirement 1 (conditions for arcs of a XOR-connector) x
Requirement 2 (constructs for external events)
Requirement 3 (no support of OR-connector) x x

Losslessness Requirement 4 (definition of a metamodel) 0 0 0

Minimal coupling
Requirement 5 (constructs for input data elements and flow
between data elements and activities)

Requirement 6 (activities, connectors and arcs between them)

Strong cohesion

Requirement 7 (constructs for input data elements)
Requirement 8 (constructs for output data elements)
Requirement 9 (constructs for intermediate data elements) x x x
Requirement 10 (constructs for flow between data elements) x x x

Key: : fulfilled; 0: partly fulfilled; x: not fulfilled

Table 7: Results of the evaluation

Table 7 summarizes the findings. None of the modeling languages entirely fulfills the
requirements derived in section 5.1. Major differences between the languages can be
seen in the requirements regarding the determinism condition.

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 39

Some restrictions become obvious when evaluating the languages against the
requirements derived from the losslessness and strong cohesion condition.

6 Summary and Outlook

The use of Wand and Weber’s decomposition model for business process modeling is
meant to facilitate the decomposition of the process model. This enables a better
comprehensibility of the model for its users. Whereas this statement is the basis for our
complete research project and will have to be empirically validated, we have only just
started our investigation with this paper. The objective was to find out which of the three
selected business process modeling languages (BPMN, eEPC, UML AD) is best able to
support the decomposition conditions. A first result is that requirements on business
process modeling languages could not be defined for all decomposition conditions. The
capabilities of the modeling languages do not vary for most of the requirements which
stresses the similarities of the languages. The main differences could be detected when
fulfilling the requirements of the determinism condition. An important result to be
incorporated into the research project is that the business process modeling languages
can meet most of the requirements and that, for all deficiencies, supplementary models
or an extension of the process modeling language can be provided. In that context, it is
of special interest that none of the business process modeling languages is capable to
model the data elements as it is required for the strong cohesion condition. Intermediate
data elements as well as the flow between the data elements have to be documented in
supplementary models which will be verified by means of conducting the empirical
validation of the decomposition conditions. The results of the investigation underline the
need for a better integration of data elements into business process modeling. As a
restriction to the above, it has to be stated that the requirements on the modeling
languages were derived from the authors` interpretation of the decomposition conditions
by Wand and Weber [WW89, WW90, We97]. The conditions were specified by metrics
allowing an objective evaluation of different design alternatives. Nevertheless there may
be other interpretations of these conditions in the context of business process modeling.
While process modeling itself is a subjective task, evaluation procedures in the field of
process modeling, too, may underlie subjectivity. This refers to section 5.2 in particular.
In addition, the investigation is limited, because only three process modeling languages
were investigated. With the next steps of the research project we aim to validate the
decomposition model and derive a decomposition method which comprises principles
and practical guidelines for business analysts.

References

[ADK02] van der Aalst, W.M.P.; Desel, J.; Kindler, E.: On the semantics of EPCs: A vicious
circle. In: EPK 2002: Business Process Management using EPCs, 2002; p. 71–80.

[BCN92] Batini, C.; Ceri, S.; Navathe, S.B.: Conceptual Database Design - An entitiy
relationship approach. Benjamin/Cummings Publishing, Redwood City et al., 1992.

[Be95] Becker, J.: Strukturanalogien in Informationsmodellen: Ihre Definition, ihr Nutzen
und ihr Einfluß auf die Bildung von Grundsätzen ordnungsmäßiger Modellierung
(GoM). Wirtschaftsinformatik 95. Physica, Heidelberg, 1995, p. 133-150.

40 Florian Johannsen, Susanne Leist

[BM02] Burton-Jones, A.; Meso, P.: How Good Are These UML Diagrams? An Empirical
Test of the Wand and Weber Good Decomposition Model. In: International
Conference on Information Systems (ICIS), 2002; p. 101-114.

[BM06] Burton-Jones, A.; Meso, P.: Conceptualizing Systems for Understanding: An
Empirical Test of Decomposition Principles in Object-Oriented Analysis.
Information Systems Research 2006; 17:38-60.

[BM08] Burton-Jones, A.; Meso, P.N.: The Effects of Decomposition Quality and Multiple
Forms of Information on Novices’ Understanding of a Domain from a Conceptual
Model. Journal of the Association for Information Systems 2008; 9:748-802.

[BRB07] Bobrik, R.; Reichert, M.; Bauer, T.: View-Based Process Visualization. Lecture
Notes in Computer Science 2007; Volume 4714/2007:88-95.

[Br06] vom Brocke, J.: Design Principles for Reference Modelling - Reusing Information
Models by Means of Aggregation, Specialisation, Instantiation, and Analogy. In
(Fettke, P., Loos, P. eds.): Reference Modelling for Business Systems Analysis. Idea
Group Publishing, Hershey, USA, 2006.

[BS04] Bordbar, B.; Staikopoulos, A.: On Behavioural Model Transformation in Web
Services. Lecture Notes in Computer Science 2004; 3289/2004:667-678.

[BWW09] Becker, J.; Weiß, B.; Winkelmann, A.: A Business Process Modeling Language for
the Banking Sector - A Design Science Approach. In: Fifteenth Americas
Conference on Information Systems (AMCIS), 2009; p. 1-11.

[Ca05] Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes and
Workflows. In (Fischer, L. ed.): Workflow Handbook. Lighthouse Point 2005.

[FS06] Ferstl, O.K.; Sinz, E.J.: Modeling of Business Systems Using SOM. In (Bernus, P.,
Mertins, K., Schmidt, G. eds.): Handbook on Architectures of Information Systems.
Springer, Berlin etc., 2006, p. 347-367.

[GL07] Gruhn, V.; Laue, R.: Approaches for Business Process Model Complexity Metrics.
In (Abramowicz, W., Mayr, H.C. eds.): Technologies for Business Information
Systems. Springer, Berlin, 2007; p. 13-24.

[GR00] Green, P.; Rosemann, M.: Integrated process modeling: An ontological evaluation.
Information Systems 2000; 25:73-87.

[He09] Heinrich, B. et al.: The process map as an instrument to standardize processes:
design and application at a financial service provider. ISeB 2009; 7:81-102

[He04] Hevner et al.: Design Science in Information Systems Research. MISQ 2004; 28:75-
105

[KKS04] Klein, R.; Kupsch, F.; Scheer, A.-W.: Modellierung inter-organisationaler Prozesse
mit Ereignisgesteuerten Prozessketten, 2004.

[KL07] Korherr, B.; List, B.: Extending the EPC and the BPMN with Business Process
Goals and Performance Measures. In: 9th ICEIS, 2007.

[KLS95] Krogstie, J.; Lindland, O.I.; Sindre, G.: Towards a Deeper Understanding of Quality
in Requirements Engineering. In: Proceedings of the 7th CAISE, 1995; p. 82-95.

[Ma99] Malone, T.W. et al.: Tools for Inventing Organizations: Toward a Handbook of
Organizational Processes. Management Science 1999; 45:425-443.

[Me09] Mendling, J.: Metrics for Process Models - Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Springer, Berlin et al., 2009.

[Mi10] Mili, H. et al.: Business process modeling languages: Sorting through the alphabet
soup. ACM Computing Surveys 2010; 43:1-54.

[Mo98] Moody, D.L.: Metrics for Evaluating the Quality of Entity Relationship Models.
Lecture Notes in Computer Science 1998; 507/1998:211-225.

[MR08] zur Muehlen, M.; Recker, J.: How Much Language Is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. Lecture Notes in
Computer Science 2008; 5074/2008:465-479.

Reflecting modeling languages regarding Wand and Weber’s Decomposition Model 41

[MRA10] Mendling, J.; Reijers, H.; van der Aalst, W.: Seven process modeling guidelines.
Information and Software Technology 2010; 52:127-136.

[MRC07] Mendling, J.; Reijers, H.A.; Cardoso, J.: What Makes Process Models
Understandable? Lecture Notes in Computer Science 2007; 4714/2007:48-63.

[OMG05] OMG Unified Modeling Language (OMG UML) – Superstructure, 2005.
[OMG10] OMG: Business Process Model and Notation (BPMN) – Version 2.0, 2010.
[OMG11] OMG Unified Modeling Language, Infrastructure – Version 2.4.1, 2011.
[Ös95] Österle, H.: Business in the information age Springer, Berlin et al., 1995.
[Re03] Reijers, H.A.: A Cohesion Metric for the Definition of Activities in a Workflow

Process. In: Eighth CAiSE/IFIP8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design, 2003, p. 116-125.

[Re09] Recker, J. et al.: Business process modeling: a comparative analysis. Journal of the
Association for Information Systems 2009; 10:333-363.

[RI07] Recker, J.; Indulska, M.: An Ontology-Based Evaluation of Process Modeling with
Petri Nets. Interoperability in Business Information Systems 2007; 2:45-64.

[RM08] Reijers, H.; Mendling, J.: Modularity in Process Models: Review and Effects.
Lecture Notes in Computer Science 2008; 5240:20-35.

[RMD10] Reijers, H.A.; Mendling, J.; Dijkman, R.: On the Usefulness of Subprocesses in
Business Process Models. BPM Report, 2010.

[Ro96] Rosemann, M.: Komplexitätsmanagement in Prozeßmodellen. Gabler-Verlag,
Wiesbaden, 1996.

[Ro09] Rosemann, M. et al.: Using ontology for the representational analysis of process
modelling techniques. International Journal of Business Process Integration and
Management Decision 2009; 4:251-265.

[RRK07] Recker, J.; Rosemann, M.; Krogstie, J.: Ontology- Versus Pattern-Based Evaluation
of Process Modeling Languages: A Comparison. Communications of the Association
for Information Systems 2007; 20:774-799.

[Ru06] Russell, N. et al.: On the suitability of UML 2.0 activity diagrams for business
process modelling. In: 3rd Asia-Pacific conference on Conceptual modelling, 2006.

[RV04] Reijers, H.A.; Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow
Process Design Lecture Notes in Computer Science 2004; 3080:290-305.

[Sch98] Scheer, A.-W.: ARIS - Modellierungsmethoden - Metamodelle - Anwendungen.
Springer, Berlin et al., 1998.

[SR98] Schütte, R.; Rotthowe, T.: The Guidelines of Modeling – An Approach to Enhance
the Quality in Information Models. LNCS 1998; 1507/1998:240-254.

[STA05] Scheer, A.-W.; Thomas, O.; Adam, O.: Process Modeling Using Event-Driven
Process Chains. In (Dumas, M., van der Aalst, W., Hofstede, A.T. eds.): Process-
aware information systems. John Wiley and Sons 2005, p. 119-146.

[Va07] Vanderfeesten, I.T.P. et al: Quality Metrics for Business Process Models. In
(Fischer, L. ed.): BPM and Workflow Handbook 2007. Future Strategies, p. 179-190.

[Va08] Vanderfeesten, I. et al.: On a Quest for Good Process Models: The Cross-
Connectivity Metric. Lecture Notes in Computer Science 5074 2008; 5074:480-494

[VCR07] Vanderfeesten, I.; Cardoso, J.; Reijers, H.A.: A weighted coupling metric for
business process models. In: Proceedings of the CAiSE 2007, p. 41-44.

[VRA08] Vanderfeesten, I.; Reijers, H.A.; van der Aalst, W.M.P.: Evaluating workflow
process designs using cohesion and coupling metrics. Computers in Industry 2008;
59:420-437

[We97] Weber, R.: Ontological Foundations of Information Systems, Queensland, 1997.
[WW89] Wand, Y.; Weber, R.: A Model of Systems Decomposition. In: Tenth International

Conference on Information Systems, 1989; p. 42-51.
[WW90] Wand, Y.; Weber, R.: Toward a theory of the deep structure of information systems.

In: International Conference on Information Systems, 1990; p. 61-71.

42 Florian Johannsen, Susanne Leist

