On the Suitability of WS-CDL for Choreography Modeling

Gero Decker; Hagen Overdick
Hasso Plattner Institute, University of Potsdam, Germany
{gero.decker,hagen.overdick } @hpi.uni-potsdam.de

Johannes Maria Zaha
Queensland University of Technology, Australia
j-zaha@qut.edu.au

Abstract: The Web Service Choreography Description Language (WS-CDL) has been
put forward as language for capturing sets of web service interactions and their con-
trol and data dependencies, seen from a global perspective. However the suitability of
WS-CDL for this purpose has not been assessed in a systematic manner. This paper
presents such an assessment by adopting a two-pronged approach. First, the paper
studies the relation between WS-CDL and w-calculus, a well-known formalism for
specifying communicating systems with dynamic topologies. Second, WS-CDL is as-
sessed in terms of its support for two collections of patterns: the Workflow Patterns
which capture recurrent control-flow dependencies in business processes, and the Ser-
vice Interaction Patterns which capture recurrent compositions of interactions between
services.

1 Introduction

With increasing maturity of implementation languages for Service-Oriented Architectures,
languages for describing service interactions on a higher level of abstraction and in the
early phases of the development lifecycle are emerging. WS-CDL allows one to define
interactions, and to compose these interactions through control-flow dependencies in or-
der to capture collaborative business processes. The Workflow Patterns [vdAtHKBO03] are
an established framework for evaluating the control-flow perspective of business process
definition languages, while the Service Interaction Patterns [BDtHO5] have been put for-
ward as a benchmark for evaluating languages that support the definition of interactions
and compositions thereof. Therefore, the combination of these two frameworks provides a
basis for evaluating the suitability of WS-CDL for choreography definition. As a starting
point, the relationship between WS-CDL and 7-calculus is investigated. This allows for
identifying the capabilities of WS-CDL to elevate the level of abstraction by providing
higher-level constructs than m-calculus.

The paper is structured as follows. In Section 2 an introduction to m-calculus is given
and the similarity between WS-CDL and m-calculus is shown. Sections 3 and 4 provide

*Research conducted while with SAP Research Centre Brisbane

21

solutions for the Workflow Patterns and the Service Interaction Patterns. Finally, Section 5
concludes.

2 WS-CDL and 7-calculus

The w-calculus is a process algebra for mobile systems [MPWO92]. In w-calculus, com-
munication takes place between different m-processes. Names are a central concept in
m-calculus. Links between processes as well as messages are names. This allows for link
passing from one process to another. The scope of a name can be restricted to a set of pro-
cesses but may be extruded as soon as the name is passed to other processes. The syntax
for m-calculus looks as follows:

Listing 1: 7-calculus syntax

P = M|PIP|(vz)P|P
M == 0|n.P|M+M
mon= Ty) [e(y) [T

Concurrent execution is denoted as P|P’, the restriction of the scope of z to P as (v z)P
and an infinite number of concurrent copies of P as !P (“bang-operator”). Inaction of
a process is denoted as 0. A non-deterministic choice between M and M’ as M + M’
and sending y over x as Z{y). The prefix z(y) receives a name over x and continues as
P with y replaced by the received name. 7 is the unobservable action. Communication
between two processes can take place in the case of matching send- and receive-prefixes.
It has been shown that all Service Interaction Patterns can be expressed using 7-calculus
([DPWO06]). As an example the Request with referral pattern, where a party A sends a
request to party B indicating that a follow-up response should be sent to another party C,
can be encoded as follows:

Listing 2: Request with referral

A= (va)blreg,c,a) . a(resp) . 0

B =b(req,x,y) . T(resp,y) . 0
C = c(msg, z) . Z(resp) . 0

Party A creates a fresh name a which will be used as response channel later on. A passes
the request together with a as well as a channel c to B. B receives the request, processes
it and sends a response to the specified party. B does not need to know this third party
in advance. In this example x is replaced with ¢ so B uses this channel to pass on his
response. C' receives this message and sends his response back over the return channel
a. Each m-process describes the publicly visible behavior of a participant (“interface
process”). The combination of these behaviors determines the global interaction protocol.
Each 7-interaction in this setting represents an interaction between participants. In

22

contrast this example, m-interactions can also be used for control flow coordination within
one participant. This strategy was followed in the formalization of all the Workflow
Patterns ([PWO05]) and some Service Interaction Patterns. Each activity within a process
is represented by a m-process and coordination between these processes takes place
via interactions. If a process participates in a collaboration with other processes, the
interactions used for control flow coordination are not visible to the outside world.

Comparison. In the 7-calculus example in Listing 2 we described “stitched” inter-
face processes. Control flow is specified between communication actions which leads
to an endpoint-centric view. The Web Services Choreography Interface standard (WSCI
[AT02]) follows this approach, too. In contrast to this, WS-CDL treats interactions be-
tween services as first-class citizens. Therefore, control flow is defined between interac-
tions rather than communication actions.

Besides the direct support for channel passing in WS-CDL, especially the basic control
flow constructs correspond to concepts in 7-calculus. Some of them have different seman-
tics though:

e <sequence> directly corresponds to a sequence in 7-calculus (“.”).

e <parallel> corresponds to parallelism in mw-calculus (“|”). However, the
<parallel> construct of WS-CDL also implies merging after the parallel branches
have completed. In 7-calculus this is not the case. Here, we would have to introduce
an additional interaction for synchronization purposes.

e Non-blocking performs (<perform block="false">) of choreographies also
correspond to parallelism in m-calculus. No synchronization is needed after the
performed choreography has completed. Using a non-blocking perform within an
infinitely repeated work unit, the bang-operator “!” can be realized in WS-CDL.

e <choice> corresponds to a choice in w-calculus (“+”). Once again, merging the
alternative branches is implied in WS-CDL which would have to be encoded differ-
ently in 7-calculus.

Some WS-CDL constructs cannot be directly found in 7r-calculus:

e (Non-blocking) guarded work units (<workunit guard=".." block="false">)
contain interactions that can only occur if the given condition evaluates to true.
In 7-calculus we could express this using a choice with two guarded alternatives
where one alternative would be a 7g-action. Furthermore, merging before follow-up
activities would have to be encoded.

e Repeated work units (<workunit repeat="..">) are a convenient means to in-
troduce repetitions into choreographies. In m-calculus either recursion or the bang-
operator have to be used.

Like already mentioned in the previous section, m-interactions can be used to encode com-
plex control flow. A direct support for this facility is missing in WS-CDL. However,

23

blocking work units can be used to realize a similar semantics in WS-CDL. Assume the
following m-process:

(I/h,i)(TAB.(%.0|TBo.h.TBA.0)|TDB.i.TBD.E)

The T-actions represent service interactions. The resulting global interaction protocol is:
After interactions AB and DB, BD can happen. However, BC can already happen directly
after AB without waiting for DB. Finally, BA can happen after BC and BD. Figure 1
illustrates this.

AB » BC » BA

DB BD

h 4

Figure 1: Sample choreography

We have introduced the fresh names h and ¢ for realizing the desired control flow.
In WS-CDL we can also introduce two variables h and ¢ that cause the blocking of
interaction BA and BD, respectively. For the rest of the control flow logic we use two
sequences that run in parallel and assign a value to variables h and ¢ at the appropriate
places so that the blocked work unit are activated:

Listing 3: Sample choreography in WS-CDL

<parallel>
<sequence>
interactionAB
<assign roleType="B"><copy>
<source expression="true" />
<target variable="cdl:getVariable('i’)" />
</copy></assign>
interactionBC
<workunit guard="cdl:getVariable('h’)" block="true">
interactionBA
</workunit>
</sequence>
<sequence>
interactionDB
<workunit guard="cdl:getVariable(’i’)" block="true">
interactionBD
</workunit>
<assign roleType="B"><copy>
<source expression="true" />
<target variable="cdl:getVariable('h’)" />
</copy></assign>
</sequence>
</parallel>

m-calculus has a minimal number of language constructs in order to allow for elegant

reasoning. In contrast to this, WS-CDL is more of an engineering medium to facilitate the
design of service choreographies and therefore includes more high-level concepts. Unlike

24

m-calculus, WS-CDL is typed and has a high expressiveness for specifying data structures
(“information types”) and conditions such as repetition conditions and guard conditions.
Role types, relationship types, participant types and channel types can be easily described.
Identity tokens definitions are a convenient way to capture correlation.

Since WS-CDL is tightly coupled with web service technology and does not provide any
graphical representations, we argue that WS-CDL should only be used in the latest stages
of the choreography definition process. Like it is proposed to use the Business Process
Modeling Notation (BPMN [bpmO06]) prior to encoding process descriptions in BPEL,
there should be a similar choreography modeling notation for early choreography design
stages. UML2.0 Activity Diagrams have an extensible meta-model that could used for
defining a choreography notation. However, to the best knowledge of the authors there is
no publication introducing such an extension.

3 Workflow Pattern support

The Workflow Patterns were introduced by van der Aalst et al. in [vdAtHKBO3]. They
serve as a reference framework for assessing process modeling languages and work-
flow systems in terms of control flow expressiveness. WSCI as well as a number of
other standards (e.g. BPEL, UML 2.0 Activity Diagrams, BPMN) have already been
assessed ([vVdAADtHWO02], [WvdADtHO3], [RvdAtHWO06], [WvdAD™T06]). These assess-
ments serve as reference for identifying if direct, partial or no support for a particular
pattern is given.

3.1 Basic control flow patterns

Sequence is directly supported through the structure type <sequence> in WS-CDL.
As shown above, control flow dependencies between interactions could also be realized
through blocking work units and variable assignments.

Corresponding Parallel Splits and Synchronizations can be expressed using <parallel>
structures. Although only block structures can be captured, we follow the assessments
for these two patterns in XLang ([WvdADtHO03]) and BPML / WSCI ([vdADtHWO02])
and therefore conclude that there is direct support for them. A workaround for encoding
arbitrary Synchronizations is the usage of blocking work units and variables (cf. Listing 3).
A Parallel Split without synchronization can alternatively be expressed using non-blocking
<perform> structures.

The Exclusive Choice pattern appears as the structure type <choice> in WS-CDL. It
specifies that only one activity within the structure is selected and all other activities are
disabled. Different control flow behaviors apply depending on whether or not work units
with guard conditions are contained in the structure. In the case where such work units are
present the behavior of an Exclusive Choice applies. The first work unit that matches the
guard condition is selected. <choice> also implements Simple Merge at the same time.

25

Thus direct support for both patterns. Arbitrary Simple Merges can again be implemented
using blocking work units as a workaround.

3.2 Advanced Branching and Synchronization patterns

In the case of the Multiple Choice pattern a number of branches are chosen. This can
be expressed using a <parallel> structure containing guarded work units. A matching
Synchronizing Merge is also covered by this structure.

Multiple Merge: A point in a process where two or more branches reconverge without
synchronization. If more than one branch gets activated, possibly concurrently, the ac-
tivity following the merge is started for every activation of every incoming branch. So-
Iution: Non-blocking <perform> structures can be used to implement this pattern. A
sub-choreography is defined and instances are performed from within parallel activities.
This style of implementation is similar to spawning off new process instances in BPML,
which causes problems if the Multi Merge is placed within a cycle. In analogy to BPML,
we opt for partial support for this pattern.

The Discriminator is a point in a process that waits for one of the incoming branches to
complete before activating the subsequent activity. Solution: A blocking work unit can be
used to emulate a Discriminator. Several activities running in parallel assign a value to a
synchronization variable. As soon as this happens the blocking work unit can start. Since
there is no direct language construct for the Discriminator and implementations always
involve bookkeeping through variables, there is no support for this pattern.

3.3 Structural patterns

Arbitrary Cycles is a point in a process where one or more activities can be done repeat-
edly. Arbitrary Cycles are not supported in WS-CDL. Cycles with one entry and one exit
point are implemented using repeated work units.

Implicit Termination: A given sub-process should be terminated when there is nothing
else to be done. This pattern covers how to describe the point of termination of an in-
stance of the model. In the case of WS-CDL there is direct support for this pattern:
Sub-choreography instances can be activated using non-blocking performs and there is
thus no defined point in the choreography where termination of the choreography instance
happens.

3.4 Patterns involving Multiple Instances

These patterns describe scenarios where multiple instances of an activity can be created
in the context of a single case. If the number of instances is known at design-time (MI

26

with a priori design time knowledge) the activities could be replicated and placed in a
<parallel> structure. These structures also indicate synchronization after completion of
the activities. Alternatively, a sub-choreography can be defined and activated several times
using <perform> actions. These actions can either be blocking or non-blocking while in
the latter case no synchronization takes place (MI without synchronization).

The case where the number of instances is not known at design-time (MI with a priori
runtime knowledge and MI with no a priori runtime knowledge) cannot directly be
expressed in WS-CDL. As a workaround, blocking work units and variables can be used:
A sub-choreography is defined and performed several times within a repeated work unit.
If the <perform> action is non-blocking, the sub-choreography instances are activated
in parallel. In the case of no a priori knowledge the repeated work unit is also guarded
so instances can be activated at a later point in time. A counter is used to record how
many instances have already completed. A blocking work unit is activated as soon as the
counter has reached a certain value.

Listing 4: Workaround for MI with a priori runtime knowledge

<choreography name="chorl">
<sequence>
activity
<assign><copy><!—-- increase counter -->
<source expression="cdl:getVariable (' counter’) + 1" />
<target variable="cdl:getVariable (' counter’)" />
</copy></assign>
<sequence>
</choreography>. .
<sequence>
<assign><copy><!—-- initialize counter —-->
<source expression="0" />
<target variable="cdl:getVariable (' counter’)" />
</copy></assign>
<workunit .. repeat=".."><!-- spawn off multiple instances -->
<perform choreographyName="chorl" block="false" />
</workunit>
<workunit guard="cdl:getVariable (’counter’)==.." block="true" ..>

</workunit>
</sequence>

3.5 State-based Patterns

A Deferred Choice is a point in the process where one of several branches is chosen.
In contrast to the XOR-split, the choice is not made explicitly (e.g. based on data or a
decision) but several alternatives are offered to the environment. This means that once the
environment activates one of the branches the other alternative branches are withdrawn. It
is important to note that the choice is delayed until the processing in one of the alternative
branches is actually started. Solution: <choice> structures implement both Exclusive

27

Choice and Deferred Choice. If no guarded work units are contained in a choice structure
the decision criteria is hidden and Deferred Choice behavior applies.

In the case of Interleaved Parallel Routing a set of activities is executed in an arbitrary
order: Each activity in the set is executed, the order is decided at run-time, and no two
activities are executed at the same moment (i.e. no two activities are active for the same
workflow instance at the same time). There is no support for Interleaved Parallel Routing
in WS-CDL. A possible workaround could be to introduce a variable representing a mutex.
Blocking work units are used the guard condition of which evaluates to true if the mutex
is available (i.e. the variable a certain value). Then as a first activity within each work
unit the mutex is made unavailable (i.e. another value is assigned). However, this is only
possible if the first activity is performed before another work unit is activated. This might
depend on the underlying implementation.

Milestone: The enabling of an activity depends on the case being in a specified state,
i.e. the activity is only enabled if a certain milestone has been reached which did not
expire yet. Solution: In WS-CDL state can be represented using variables (“‘state capturing
variables”). Work units can be activated if a certain guard condition evaluates to true.
Milestones are then expressed by non-blocking work units.

3.6 Cancellation patterns

In the case of Cancel Activity an enabled activity is disabled, i.e. a thread waiting for
the execution of an activity is removed. Solution: In WS-CDL exceptions can be caused
which lead to disabling activities within the scope of the nearest exception handler. Thus
direct support.

Cancel Case is directly supported, too. A case, i.e. workflow instance, is removed com-
pletely (i.e., even if parts of the process are instantiated multiple times, all descendants are
removed). This can be achieved through exceptions that are handled in the root choreog-
raphy.

4 Service Interaction Pattern support

The Service Interactions Patterns were introduced by Barros et al. in [BDtHOS5]. They
present common interaction scenarios between two or more parties and can be used to as-
sess choreography languages. Although [BDtHO0S5] also contains hints about how different
languages implement individual patterns no complete assessment of a standard has been
carried out so far using this set of patterns.

28

4.1 Single-transmission bilateral interaction patterns

All three patterns Send, Receive and Send/receive are directly supported in WS-CDL. The
structure type <interaction> allows to define message exchanges between two services.
The action attribute of a channel type specifies whether the message exchange is of
type request-only, response-only Or request-response. Binding a particular
participant for an interaction is realized through assigning channel instances to variables.
At any point in a choreography a new instance can be assigned. Therefore, design-time
and runtime binding and even runtime re-binding of participants can be expressed.

4.2 Single-transmission multilateral interaction patterns

The Racing incoming messages pattern is similar to the Workflow Pattern Deferred
Choice: A party expects to receive one among a set of messages. It can be expressed
using a <choice> containing interactions with the same recipient.

In the case of the One-to-many send pattern a party sends messages to several parties.
If the number of recipients is known at design-time, interactions can be placed in a
<parallel> structure. This can represent both design-time and runtime binding of recip-
ients of a specified role. However, if the number of recipients is not known at design-time
we have the same problem like in the MI with a priori runtime knowledge pattern. As a
workaround the interactions could be serialized in a repeated work unit. Or an interac-
tion is placed in a sub-choreography which is activated several times using non-blocking
<perform> actions. A variable is used for bookkeeping how many sends have already
completed. Since WS-CDL only directly supports the case where the number of recipients
is known at design-time, we opt for partial support for this pattern.

The One-from-many receive pattern describes that a party receives a number of logically
related messages that arise from autonomous events occurring at different parties. The
arrival of messages needs to be timely so that they can be correlated as a single logical
request. Solution: This can be expressed using a repeated work unit containing a single
interaction.

The One-to-many send/receive is very similar to One-to-many send: A party sends a re-
quest to several other parties. Responses are expected within a given timeframe. The
interaction may complete successfully or not depending on the set of responses gathered.
Solution: The timeframe aspect is directly supported through the <t imeout> structure in
WS-CDL. Successful vs. unsuccessful completion is directly supported through exception
mechanisms. However, we have the same problem with an unknown number of partici-
pants at design-time like it was the case for One-fo-many-send. Hence, there is only partial
support for this interaction pattern, too.

29

4.3 Multi-transmission interaction patterns

In the case of Multi-responses a party X sends a request to another party Y. Subsequently,
X receives any number of responses from Y until no further responses are required. So-
lution: This pattern is directly supported through a repeated work unit containing the re-
sponse interaction.

Contingent requests: A party X makes a request to another party Y. If X does not receive
a response within a certain timeframe, X alternatively sends a request to another party
Z, and so on. Responses from previous requests might be still considered or discarded.
Solution: The limited timeframe can be specified through the <t imeout> structure. A
work unit is activated several times until a response arrives before the timeout occurs
or the list of potential recipients has been reached. For every iteration a new channel
instance is assigned to the channel variable. The selection of the next participant would
be hidden. However, this only covers the cases where responses of previous requests are
discarded. The case where other responses are still considered requires a parallel execution
of the request-response-interactions. Blocking work units could be used to ensure that
interactions are only activated a certain time after the previous request has been activated.
Nevertheless, this only works for the case where the number of recipients is known at
design-time. Since the discard-case is directly supported we still conclude that there is
partial support for the pattern.

In the case of Atomic multicast notification a party sends notifications to several parties
such that a certain number of parties are required to accept the notification within a certain
timeframe. For example, all parties or just one party are required to accept the notification.
In general, the constraint for successful notification applies over a range between a mini-
mum and maximum number. There is no direct support for this pattern in WS-CDL. As
a workaround we could resort to blocking work units and variables: A parallel structure
contains several perform actions as well as two blocking work units. In the sequences the
actual interactions take place. Depending on the outcome of the interaction a counter is
increased. As soon as the counter reaches a certain value or a global timeout occurs, one
of the blocking work units is activated.

4.4 Routing patterns

Request with referral: Party A sends a request to party B indicating that any follow-
up response should be sent to a number of other parties (P1, P2, ..., Pn) depending on the
evaluation of certain conditions. Solution: WS-CDL directly supports channel passing. An
<exchange> structure within an <interaction> structure can contain a specification of
the corresponding channelType. Although the follow-up responses might need to be sent
to a number of participants that is only known at runtime (which would not be supported
by WS-CDL), we argue that the notion of channel passing is at the very core of the pattern.
So we conclude that there is direct support.

<channelType name="Channell">..</channelType>

30

<interaction>
<exchange channelType="Channell">..</exchange>..
</interaction>

Relayed request: Party A makes a request to party B which delegates the request to other
parties (P1, ..., Pn). Parties P1, ..., Pn then continue interactions with party A while party B
observes a “view” of the interactions including faults. Solution: All responses are encoded
in one-way interactions. Using a <parallel> structure responses are sent to A and to B.

Dynamic routing: A request is required to be routed to several parties based on a routing
condition. The routing order is flexible and more than one party can be activated to receive
a request. When the parties that were issued the request have completed, the next set of
parties are passed the request. Routing can be subject to dynamic conditions based on data
contained in the original request or obtained in one of the “intermediate steps”. Since the

ported. Dynamic conditions in the sense that a participant can overwrite e.g. repetition or
guard conditions at runtime is not supported. Static routing orders can easily be expressed
using <sequence> and <parallel> structures. Dynamic routing orders in the sense that
a participant can delete interactions or insert new interactions into the choreography at
runtime is not supported. We skip this pattern in the assessment.

5 Conclusion

This paper has discussed the relationship between WS-CDL and m-calculus. It turns out
that 7r-calculus and WS-CDL share some elements, but that a number of high-level con-
structs are provided in WS-CDL that result in more direct pattern support.

Table 1 summarizes which Workflow Patterns and Service Interaction Patterns are sup-
ported in WS-CDL. In analogy to the mentioned assessments of other process modeling
languages we assign a “+” for direct support of a pattern, “+/=" for partial support and
“~” for lack of support. The table shows that WS-CDL supports more patterns than its
predecessor WSCI. However, we propose introducing a construct similar to <forEach>
in BPEL 2.0. This would lead to direct support of Multiple Instances with a priori runtime
knowledge as well as the three Service Interaction Patterns that are currently only partially
supported. At the moment variable assignments and blocking work units have to be re-
sorted to as workarounds. This is problematic since mappings of blocking work units to
implementation languages such as BPEL still remain unclear.

We stated that WS-CDL is not suited for early choreography design stages and we called
for a standardized graphical notation, e.g. an extension to UML2.0 Activity Diagrams.
WS-CDL could then be used as intermediary language introducing web-service-specific
definitions.

Acknowledgments. The second author is funded in part by SAP. Many thanks to Marlon
Dumas for his valuable feedback.

31

Workflow Patterns WS-CDL WSCI BPEL
1. Sequence + + +
2. Parallel Split + + +
3. Synchronization + + +
4. Exclusive Choice + + +
5. Simple Merge + + +
6. Multiple Choice + - +
7. Synchronizing Merge + - +
8. Multiple Merge +/— +/— -
9. Discriminator - - -
10. Arbitrary Cycles - - -
11. Implicit Termination + + +
12. MI without synchronization + + +
13. MI with a priori design time knowledge + + +
14. MI with a priori runtime knowledge - - -
15. MI with no a priori runtime knowledge - - -
16. Deferred Choice + + +
17. Interleaved Parallel Routing - - +/—
18. Milestone + - -
19. Cancel Activity + + +
20. Cancel Case + + +
Service Interaction Patterns WS-CDL
1. Send +
2. Receive +
3. Send/receive +
4. Racing incoming messages +
5. One-to-many send +/—
6. One-from-many receive +
7. One-to-many send/receive +/—
8. Multi-responses +
9. Contingent requests +/—
10. Atomic multicast notification -
11. Request with referral +
12. Relayed request +
Table 1: Pattern support in WS-CDL
References
[AT02] Assaf Arkin et al. Web Service Choreography Interface (WSCI) 1.0. Technical re-
port, Aug 2002. http://www.w3.0rg/TR/2002/NOTE-wsci-20020808.
[BDtHOS] Alistair Barros, Marlon Dumas, and Arthur ter Hofstede. Service Interaction Pat-

terns. In Proceedings 3rd International Conference on Business Process Manage-

ment (BPM 2005), pages 302-318, Nancy, France, 2005. Springer Verlag.

32

[bpmO06]

[DPWO06]

[MPW92]

[PWO5]

[RvdAtHWO6]

[vdADtHWO02]

[vdAtHKBO03]

[WvdADT06]

[WvdADtHO3]

Business Process Modeling Notation (BPMN) Specification, Final Adopted Spec-
ification. Technical report, Object Management Group (OMG), February 2006.
http://www.bpmn.org/.

Gero Decker, Frank Puhlmann, and Mathias Weske. Formalizing Service Interac-
tions. In Proceedings 4th International Conference on Business Process Manage-
ment (BPM 2006), Vienna, Austria, Sept 2006. Springer LNCS.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1-40, 1992.

Frank Puhlmann and Mathias Weske. Using the pi-Calculus for Formalizing Work-
flow Patterns. In Proceedings 3rd International Conference on Business Process
Management (BPM 2005), pages 153—-168, Nancy, France, 2005. Springer Verlag.

N. Russell, Wil M.P. van der Aalst, Arthur ter Hofstede, and Petia Wohed. On the
Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. In Pro-
ceedings 3rd Asia-Pacific Conference on Conceptual Modelling (APCCM 2006),
volume 53 of CRPIT, pages 95-104, Hobart, Australia, 2006.

Wil M.P. van der Aalst, Marlon Dumas, Arthur H.M. ter Hofstede, and Petia Wohed.
Pattern-Based Analysis of BPML (and WSCI). QUT Technical report FIT-TR-
2002-05, Queensland University of Technology, Brisbane, Australia, 2002.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and
Alistair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5—
51, 2003.

Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, Arthur ter Hofstede, and
N. Russell. On the Suitability of BPMN for Business Process Modelling. In
Proceedings 4th International Conference on Business Process Management (BPM
2006), LNCS, Vienna, Austria, 2006. Springer Verlag.

Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, and Arthur ter Hofstede.
Analysis of Web Services Composition Languages: The Case of BPEL4AWS. In
Proceedings 22nd International Conference on Conceptual Modeling (ER 2003),
volume 2813 of LNCS, pages 200-215. Springer Verlag, 2003.

33

