
On Knowledge Transfer Skill in Pair Programming∗

Franz Zieris, Lutz Prechelt

Institut für Informatik

Freie Universität Berlin

Takustraße 9

14195 Berlin, Germany

{zieris,prechelt}@inf.fu-berlin.de

Abstract: Context: General knowledge transfer is often considered a valuable effect
or side-effect of pair programming, but even more important is its role for the success
of the pair programming session itself: The partners often need to explain an idea to
carry the process forward. Goal: Understand the mechanisms at work when knowl-
edge is transferred during a pair programming session; provide practical advice for
constructive behavior. Method: Qualitative data analysis of recordings of actual in-
dustrial pair programming sessions. Results: Some pairs are much more efficient in
their knowledge transfer than others. These pairs manage to (1) not attempt to explain
multiple things at once, (2) not lose sight of a topic, (3) clarify difficult points in stages.
Conclusions: Pair programming requires skill beyond software development skill. To
be able to identify knowledge needs and then push such knowledge to or pull it from
the partner successfully is one aspect of such skill. We characterize a number of its
elements.

The agile practice of pair programming has been subject to many small-scale empirical

evaluations, often in the form of controlled experiments in comparison with solo devel-

opers, which produced remarkably unstable results [HDAS09]. We conjecture that one

reason for the high results variance lies in ignoring pair programming skill (as opposed

to technical software development skill) as a factor; we consequently pursue a research

program for analyzing the actual pair programming process and the skill involved in it.

Its long-term goal is to understand what constitutes that skill and to make it teachable

and learnable through behavioral patterns (much like design becomes learnable by design

patterns).

In the context of pair programming, knowledge transfer has three different roles: It can be

the main purpose of a whole pair programming session, for instance to bring a new team

member up to speed quickly. It can be a valuable side-effect of a session by spreading

relevant knowledge about requirements, technology, existing code, etc. within a team. It

is always an unavoidable ingredient of a pair programming session, because the partners

constantly explain their thoughts and ideas to each other. We ask the following research

question: What mechanisms underlie knowledge transfer during pair programming and

which of these work well or not so well?

∗This paper is a short summary of the full article with the same title [ZP14].

67



Our analysis is based solely on recordings of pair programming sessions of professional

software developers working on real tasks in their original office environment. It uses the

Grounded Theory Methodology (GTM, [SC90]) and aims at a Grounded Theory (GT) of

knowledge transfer in pair programming such that its main concepts directly inform useful

behavioral patterns for practitioners.

So far, we have identified four elements of knowledge transfer skill in pair programming

[ZP14]. When putting them together, they allow to formulate a rough sketch of the problem

solving process for knowledge transfer challenges.

• Whenever both partners perceive a different (perhaps vague) knowledge need at the

same time, they need to determine an order for satisfying those needs and must not

both pursue (in our terminology, propel) the needs at once.

• The need-pursuing partner, the Propellor, must make sure to recognize if the know-

ledge-to-be-transferred, the Target Content, contains multiple elements that together

are too complicated to be explained at once and so need to be split up into multiple

Topics for separate clarification.

• From the viewpoint of the developer-in-need, a Direct Question can be a simple

way to trigger an explanation. Often though, this is insufficient for successfully

communicated the Topic at hand to the knowledgeable partner, so the speaker needs

to devise a sequence of more sophisticated Explanation Triggers to lead first her-

self and then the partner towards a sufficiently precise understanding. We call this

sequence a Clarification Cascade.

• The pair must not lose sight of a Topic until it is resolved or they find a good reason

to give up. Losing sight can happen easily because additional knowledge transfer

Episodes (aiming at different Topics) often intervene.

Although the above process sketch is incomplete, even these few behaviors are sufficiently

difficult to make some pairs much more efficient in their knowledge transfer than others.

We consider such pairs to possess the superior pair programming skill.

Acknowledgments. This work was supported by a DFG grant.

References

[HDAS09] J.E. Hannay, T. Dybå, E. Arisholm, and D.I.K. Sjøberg. The effectiveness of pair pro-
gramming: A meta-analysis. Information and Software Technology, 51(7):1110–1122,
2009.

[SC90] Anselm L. Strauss and Juliet M. Corbin. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. SAGE, 1990.

[ZP14] Franz Zieris and Lutz Prechelt. On Knowledge Transfer Skill in Pair Programming.
In ESEM’14 Proc. 8th ACM/IEEE Intl. Symposium on Empirical Software Engineering
and Measurement. ACM, 2014.

68


