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Abstract: Starting from simple hand-crafted viruses, today’s malware has evolved to
constitute highly infectious computer diseases. The technical development of malware
was mainly driven by the wish to improve and accelerate both attacks and proliferation.
Although these programs have incurred significant hazard and financial losses, their
mechanisms are relatively simple and are amenable to effective countermeasures—
once, the first attack has been launched. From a software technology point of view,
malicious software in fact is often very similar to network services with the main
difference that security holes are exploited to enforce participation in the protocol.

In this position paper we outline the wide range of possible malware-specific engi-
neering techniques which are not used in known viruses and worms, but are technically
feasible and will therefore be realized in the foreseeable future—less likely by hackers
than by organized illegal entities. The techniques we describe enable the malware to
obfuscate its functionality, monitor and analyze its environment, and modify or extend
itself in non-trivial ways. Consequently, future security policies and risk assessments
have to account for these new classes of malware.
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1 Introduction

On March 19, 2004 at approximately 8:45pm PST, a new worm—later named Witty—was
found in the wild. Witty, a program of only 700 bytes, targeted a buffer overflow in sev-
eral Internet Security Systems (ISS) products. In just 45 minutes, Witty managed to infect
12.000 machines all over the world, which constitutes almost the entire vulnerable popu-
lation [SM04, WE04]. Although the total number of infected machines was too low for
sensational press coverage, Witty marks a paradigm shift in malware: Witty distinguished
itself from previous viruses in that it carried a particularly destructive payload, was error-
free and was launched in an organized manner from a set of compromised hosts. But most
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importantly, Witty spread through a relatively small population in record time, only one day
after the ISS vulnerability was published. As Bruce Schneier later wrote [Sch04]: “Witty
represents a new chapter in malware. If it had used common Windows vulnerabilities to
spread, it would have been the most damaging worm we have seen yet.”

During the last years, the number of known viruses and worms has been growing almost
exponentially. The number of infected computers has risen with each new generation
of malware: whereas CodeRed (2001) infected “only” about 359.000 hosts, the versions
of the Sasser (2004) worm together infected about 1 million machines. Recently the first
Bluetooth worm has been discovered [Blu04]. This shows that worm authors got interested
in targeting the increasing number of ubiquitous and mobile devices. We can expect this
trend to continue in the near future.

While the first worms were apparently written for the cynical entertainment of the authors,
we expect that explicitly criminal worms targeted at commercial fraud (e.g., access for sale
[SS03]), will become an increasingly dangerous threat. In fact, worms arguably present
a substantial threat to the world economy. Weaver and Paxson [WP04] estimate that a
worst-case worm could cost the US economy $50 billion in direct economic damage, not
counting indirect costs caused by power outages, transportation delays, general interrup-
tions in the industrial supply chain, etc. In the hands of highly skilled malevolent experts,
these economic vulnerabilities may turn virus and worm technology into a weapon.

This position paper expresses our conviction that the technological possibilities for sys-
tematically engineering malware have hardly been explored so far. In this paper we con-
centrate on computer worms; however the techniques can be adapted to other types of
malware, too. Notwithstanding their destructiveness, today’s worms are relatively sim-
ple pieces of hand-crafted software performing straightforward mechanisms which makes
them amenable to effective countermeasures. In fact, from a software technology point of
view, today’s worms are structurally similar to system software which goes the direct way
to provide an intended (malicious) functionality by utilizing security exploits.

Most of innovation in the past years concerned the attack mechanism, which makes attacks
fast and vicious but constitutes a relatively simple-minded (though often effective) way of
information warfare. In this paper, we will focus on natural technologies facilitating slower
but possibly more dangerous attacks.

Extrapolating the status quo. Starting with the Morris Internet worm in 1988, we have
seen a permanent evolution in the world of malware. About ten years later, the first virus
(ShareFun, 1997) spread through e-mail. Melissa (1999) was the fist worm performing
mass mailings, while SirCam (2001) even contained its own SMTP client. Nimbda (2001)
used multiple attacks to spread and Bibrog (2003) targeted various existing peer-to-peer
schemes [KE03].

Kienzle and Elder [KE03] claim one can observe a lack of innovation in e-mail worms
recently. In fact, most recent e-mail worms are just minor variations of well-known tech-
niques: worm authors typically replace one security exploit by another, enhance the dis-
tribution and target discovery mechanisms and modify the payload. This trend was also
driven by the availability of virus toolkits which enable non-experts and script-kiddies to

140



create a huge zoo of related viruses. Still, most worms are naive, yet dangerous, pieces of
software.

The lack of recent innovation for several months does not indicate the lack of danger, as
shown by Witty. In fact, we believe that the saturation of the known technology marks
a technical boundary which is going to provoke a new cycle of innovation, characterized
by a switch from hacker programming to malware engineering. What does malware engi-
neering set apart from hacking?

• Hand-crafted vs. engineered. Similar to the development of programming from
Knuth’s art to Dijkstra’s science, we expect a corresponding development for ma-
licious programming. There is a clear evolutional line from the first hand-crafted
viruses over virus toolkits (designed to automatically generate new virus variants)
towards well-engineered viruses and worms.

• Savage vs. tactical. Traditional viruses and worms attempted to spread and attack as
quickly as possible, similar to the influenza virus in nature. This makes them easily
detectable (e.g., just by monitoring the network load); however, at this point it may
be too late to stop their spreading efficiently. More refined tactics may combine
slower infection rates with intelligent, goal-oriented behavior.

• Covert vs. ostensible. The first worms essentially amounted to mobile code, mak-
ing no attempts to obfuscate their content and existence. Polymorphic viruses
present the first, but by no means the last, step towards advanced obfuscation tech-
niques. Practical experiments [CJ04] have dramatically demonstrated that current
virus detection software fails even for relatively simple syntactic modifications of
malicious code. This situation clearly calls for the use of semantic methods, such as
program analysis, for the sake of virus detection.

• Dynamic vs. static. The traditional understanding of software implies a prede-
termined functionality, with self-modifying code being a curiosity rather than an
engineering principle. Well engineered viruses may employ randomized semantic
program transformations and even accept a certain risk of code corruption in their
replicas (“children”).

• Exploit oriented vs. investigative. Many worms have been created in response to
published vulnerabilities. An advanced worm may attempt to identify vulnerabilities
on-the-fly (e.g., buffer overflows or open ports).

• Ad hoc vs. well-tested. One of the most surprising features of Witty was its cor-
rectness, in contrast to worms like Sasser. In the future, we expect to see more
well-tested worms.

To wrap up this argument, we believe that future malware technology will use semantically
non-trivial methods to hit their target.

The goal of this position paper is to focus on the issue of advanced malware technology.
We will explore possible ways to realize the above mentioned lines of development. In

141



Section 2 we describe in detail various design principles. The new malware we describe
will typically propagate more slowly. Section 3 deals in more detail with a suitable theo-
retic notion of code obfuscation.

Let us conclude the introduction with the following important note: it is evident that the
ideas and methods presented in this paper are potentially dangerous and not intended for
implementation. We do however strongly believe that these issues need to be raised and
openly discussed within the research community early on. Only knowledge and analysis
of future attack possibilities pave the way for feasible countermeasures. “Security by
ignorance” is no better than “security by obscurity”.

2 Perspectives of Malware Engineering

In computer science at large, the transition from hacking to software engineering is char-
acterized by the increased utilization of theoretical results and engineering techniques
[Sha90]. The main message of this paper is that we expect a similar trend in the con-
text of malware engineering. In this section, we describe technical approaches that well-
engineered malware may perform in the future. Although current malware programs only
use these possibilities to a small extent, we can expect this to happen once all associated
practical problems are solved. Viruses and worms relying on these approaches will be
considerably more difficult to detect and remove, as virus detectors will have to resort to
semantic analysis methods in the detection process.

In the rest of this section, we will survey the spectrum of future worms and suggest ad-
equate terminology. We will classify certain features of future malware technology as
obfuscated, ductile, curious, concurrent and latent.

2.1 Obfuscated Worms

Perhaps the most traditional technique to hinder virus and worm detection is the use of pro-
gram obfuscation. Obfuscation techniques come in two flavors: they either operate directly
on the machine code or they employ encryption techniques. In the first case, obfusca-
tion techniques insert dummy instructions, unnecessary branches and loops or re-schedule
independent program instructions (polymorphic worms). An overview of such program
obfuscation techniques can be found in [CTL97]. In the second case, the worm spreads
in encrypted form (encrypted worms). The worm mostly consists of a small stub imple-
menting a decryption routine, which decrypts the core worm code. Each worm replica is
produced by randomized encryption of the parent worm’s code. Both techniques for pro-
gram obfuscation are essentially syntactic, i.e., they do not modify the functionality of the
worm.

Recent research has shown that good program obfuscation is difficult to achieve. Systems
that follow the first paradigm risk easy detection unless the obfuscation engine uses novel
methods not known to analysis tools. A sophisticated way of using program obfuscation
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is to implement a randomized obfuscation engine in the worm itself, producing randomly
obfuscated worm replicas (metamorphic worms, first applied by Zmist [Jor02]). This ap-
proach may foil virus detectors relying on syntactic detection mechanisms, but requires
the obfuscation engine itself to be obfuscated. The second paradigm (encrypted spread-
ing) has the main disadvantage that the decryption stub remains unchanged, thereby again
opening a door for detection.

We expect to see more subtly obfuscated worms in the future. However, it remains an
open question whether obfuscation techniques provide an efficient means for worms to
escape detection. In particular, we do not currently know whether it is possible to produce
provably undetectable viruses and worms through obfuscation, i.e., viruses for which it is
possible to obtain a formal undetectability guarantee. Section 3 explores this issue in more
detail.

An entirely different way of obfuscation is to utilize code that is already available at the
infected host. Given the large number of different executables present at modern com-
puters, it is not unrealistic to assume that future worms can reuse (i.e., directly call) code
of different applications. This approach is not limited to passive use of the host code. A
worm can as well change portions of the code to fits its purpose. Such a tactic does not
only reduce the detectability of a worm, but also makes its removal much harder.

2.2 Ductile Worms

Ductile worms are able to modify its replicas in syntactically and/or semantically nontriv-
ial ways.

A major step in this direction was marked by Simile (2002), which was remarkable for
its metamorphic appearance, as it was able to re-write its own code from generation to
generation. To produce a new replica, Simile first disassembles its code into a machine-
independent intermediate language. This abstract representation is then modified, while
preserving semantic equivalence. Finally, the abstract code is assembled to produce ma-
chine code. To hinder detection, redundant and unused code is added [PFS02].

Simile is a perfect example of a virus that comes very close to the concept of malware en-
gineering: it relied on a carefully engineered obfuscation engine, was well-tested, applied
efficient mutation techniques to limit its discovery and was highly dynamic.

However, ductile worms are not limited to syntactic modifications. In fact, well-engineered
worms may also change the semantics of the code, for example by varying the timing-
conditions or the payload. It is not even necessary to enforce that all replicas of a worm
are functional. During semantic modifications, a worm can risk a certain extent of code
corruption, if it is guaranteed that a significant portion of all replicas are functional (in
particular, are able to produce functional replicas itself). Such a strategy is particularly
effective, if a worm contains a small test engine, enabling it to test its replicas for correct-
ness. To implement this idea, the worm uses a metamorphic engine to produce semanti-
cally modified replicas, which it tests using its embedded testbed. If the replica is deemed
correct, the worm exposes this replica in the wild, otherwise it simply produces a new
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replica. Even if such a correctness test does not give 100% accurate results, it still helps to
reduce the number of defect worm replicas sent to newly infected hosts, thereby increasing
its infectious potential. For practical purposes, such a testbed must be fast enough so that
millions of mutations can be checked within reasonable time.

2.3 Curious Worms

Paraphrasing Bruce Schneier, the patch model for system security has dramatically failed,
i.e., published vulnerabilities are immediately exploited by malicious code authors. Clas-
sic worms utilized previously published exploits. As argued above, Witty is a dramatic
witness of the fact that such exploits can be incorporated into malware in extremely short
time. On the other hand, the patch model makes sure that such exploit-based malware can
be exterminated in a simple way. There is no principle reason, however, why a piece of
curious malware should not be able to use program analysis techniques in order to actively
search for vulnerabilities present in the host system. In the security literature, various
methods for identifying vulnerabilities (in particular buffer overflows) by static program
analysis have been described [GJC+03, XCE03, WFBA00], albeit usually on the level of
code and not on the level of executables. Ironically, these methods can in principle be
applied with malicious intentions. Certainly, such worms are not expected to spread very
rapidly, but this is not necessarily an indicator of low quality (see Section 2.5).

The most obvious obstacle for such a malicious approach is the complexity of the analysis
which has to be performed. Let us consider buffer overflows as an example. Identifying
buffer overflows can be broken down into two tasks: identifying potentially vulnerable
function entrypoints and searching for parameters which violate the stack integrity. While
the second task can easily be automatized by exhaustive search, the first is more challeng-
ing as witnessed by the above cited literature. Unless one looks for very specific static
signatures of vulnerable code pieces, we can hardly expect that a worm with small code
size will achieve this goal. Nevertheless, malicious code for intrusive program analysis
can be hidden in large software such as web browsers, which incur heavy network and
CPU load anyway. In this scenario (which we refer to as WORM-at-home in analogy to
the SETI-at-home project), infected browsers can even communicate vulnerabilities in a
peer-to-peer fashion.

Another option to identify function entrypoints and expected values of parameters is to
explore publicly available documentation, such as the man pages under UNIX.

2.4 Concurrent Worms

A natural approach to obfuscate the functionality and spreading of the malware is to trans-
port the payload in several pieces, which need to interact on an infected host in order to
achieve the intended damage. If these pieces are present in different software packages
(or in different communicating devices, recall the Bluetooth worm [Blu04]), their mali-
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cious interaction may occur very rarely and in a nonpredictable way. In combination with
randomization, such malware may be as nasty to track and identify as concurrency errors,
which are notoriously hard to detect.

Alternatively, a resource-heavy payload (including, for example, code to create large hit
lists [SPW02]) can be distributed slowly in a very low-key unobtrusive approach. The
activation code, consisting of a small number of bytes, is rapidly distributed at a later time.
Such an approach allows to combine rapid spread with a coordinated attack plan.

2.5 Latent Worms

The authors of latent worms have a completely different motive than juvenile worm writ-
ers. Instead of aiming at infecting a huge number of hosts as quickly as possible (such
worms were termed Warhol or flash worms by [SPW02]), the authors of latent worms try
to maintain a stable population of infected hosts over an extended and continuous period
of time. To this end, they employ worms that spread slowly using the techniques of the
previous sections to remain undetected. These worms contain payloads which can be uti-
lized for illegal purposes. A basic example for illegal activities enabled by latent worms
is “access for sale” [SS03], where an attacker sells access to a number of infected hosts.
As another example, latent worms can be utilized as launchpad for fast spreading worms,
providing a large initial population of infected machines.

More generally, well-engineered malware will be latent for two reasons: first, the tech-
niques described in the previous sections preclude worm detection. However, a fast
spreading worm consumes too many resources (e.g., network and CPU load) to remain
undetected. In particular, anomaly detection tools will indicate the presence of a mal-
ware, although removing the worm might be hard. Second, the effort required to engineer
such advanced worms can only be undertaken by resourceful and organized illegal enti-
ties, which will seek a suitable “return of investment”—in most cases this goal can only be
achieved over a longer period of time. On the other hand, latent worms require suitable en-
gineering techniques to remain operational despite potentially being known to anti-virus
systems during their lifetime; in addition, their existence may be uncovered by a single
detection event.

3 Code Obfuscation for Worms

Recently the cryptographic community has become interested in the concept of secure
code obfuscators [BGI+01, LPS04]. Informally, a code obfuscator is a probabilistic poly-
nomial time program O that takes a program M as input and produces a functionally
equivalent program M̂ as output, yet M̂ is “unintelligible” in some sense. The existence
of secure obfuscators has various deep consequences for security in general—from the
existence of homomorphic encryption functions over software watermarking towards soft-
ware copyright protection.
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In future malware, a cryptographically secure code obfuscator would be extremely dan-
gerous. Suppose that a worm with code W contains an obfuscation engine that outputs
functionally equivalent, but obfuscated code, Ŵ , which it distributes along the traditional
infection paths. Now, as Ŵ and W are functionally equivalent, Ŵ contains the obfusca-
tion engine as well and is able to produce obfuscated replicas. If the obfuscation is perfect
(in a sense to be described below), this would allow the construction of provably unde-
tectable worms: even with access to a single copy of the worm W , it would be impossible
for a virus analyzer to tell whether a specific program Ŵ is an instance of the known worm
W . Such an obfuscated worm would clearly be a new chapter in malware.

How can we tell whether an obfuscation is secure? Barak et. al. [BGI+01] introduced the
notion of black-box obfuscators. They call an obfuscation secure, if all information that
can be computed out of the code of an obfuscated program can already be computed out
of input/output pairs of the program. In other words, knowledge of the code does not help
in analyzing the program. Somewhat surprisingly, it is possible to show that under this
security notion, obfuscation is impossible to achieve. Barak et. al. [BGI+01] prove this
by constructing a class of functions F that is unobfuscatable in the sense that there exists
a property π of the functions f ∈ F that can be efficiently computed with access to an
arbitrary code that computes f , whereas π(f) can only be guessed with low probability
without code access.

However, this limiting result is not necessarily the end of secure obfuscators for two rea-
sons: first, the proof of Barak et. al. only shows that there exists a class of unobfuscatable
programs. It might be the case that obfuscation still works for a relatively large class of
practically relevant programs [LPS04]. Second, we believe that black-box obfuscators are
not directly applicable to the field of computer worms. Indistinguishability in the sense
of Barak et. al. hides every bit of information an analysis tool may be compute from a
program in probabilistic polynomial time. In fact, this type of security definition is closely
related to the concept of “learnability” in formal language theory (a function is called
learnable, if it can be reconstructed by a polynomial number of evaluations). We conclude
that black-box obfuscators are a theoretically important but too restrictive notion if we
want to capture the kind of code obfuscation we have to deal with in practice.

Consequently, we believe that finding a suitable notion of obfuscation which suits both
cryptographic principles and applications is a challenging and nontrivial question. We
will now discuss several approaches towards this goal:

• Indistinguishability. We can call a worm code obfuscated, if it is not possible to
decide (in randomized polynomial time) whether a specific program Ŵ is a possible
replica of a given self-obfuscating worm W . That is, even with knowledge of W , a
virus detector would be unable to efficiently test whether a specific program Ŵ is
a possible variation of the worm W . Note that this problem is certainly decidable
for randomized polynomial Ŵ and W by simulating all computation paths of W in
exponential time.

• False detection. A different way of describing obfuscated worm code is through
the false positives and false negatives of a virus detector. A false positive occurs, if
a detector incorrectly classifies an innocuous program as a worm, whereas a false
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negative occurs if the detector incorrectly classifies a worm as harmless. Although
false negatives are potentially more problematic, the usefulness of a virus detector
depends highly on both a low false positives and false negatives rate.

From this point of view, a worm can be called obfuscated, if every virus detector
that correctly classifies the worm in question, has either a huge false positives or
false negatives rate. In other words, even though the detector may correctly clas-
sify the worm together with its replicas as hostile, the detector overlooks other
viruses/worms or classifies harmless binaries as malicious. Clearly, such a behavior
would be unacceptable for practical purposes.

• Detection of existence. Another notion of obfuscation may rely on the observation
that future obfuscated viruses (or worms) can be implanted in innocuous files on the
infected host machine. In such a setting, we may call an obfuscation secure, if it is
not possible to decide whether a known virus W (or one of its potential replicas Ŵ )
is embedded in a given binary X .

We pose it as an open question whether obfuscation techniques can be found that are
indeed secure in one of the above mentioned security definitions.

4 Conclusion

In this paper, we have focussed on the risks of systematic malware engineering based on
advanced methods from computer science, as opposed to the traditional design approach
which is more ad hoc. We have argued that rapid distribution is not the only strategic option
for malware. In particular, latent worms that spread slowly but towards a predetermined
goal pose a significant threat to the Internet, even more so when combined with mature
obfuscation and mutation techniques. We have also argued that the notion of black-box
obfuscation brought forward recently by Barak et. al. is too restrictive, and have discussed
potential alternatives which will be the topic of future work. Unfortunately, the impossi-
bility results by Barak et. al. have evidently discouraged cryptographers from continuing
work in this direction; we believe that in the light of malware engineering and detection a
more fine-grained look at program obfuscation is worthwhile.
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