
Maintaining Nonparametric Estimators over Data Streams

Björn Blohsfeld Christoph Heinz
Bernhard Seeger

Department of Mathematics and Computer Science
Philipps University Marburg

35032 Marburg, Germany
{blohsfel, heinzch, seeger}@mathematik.uni-marburg.de

Abstract: An effective processing and analysis of data streams is of utmost impor-
tance for a plethora of emerging applications like network monitoring, traffic manage-
ment, and financial tickers. In addition to the management of transient and potentially
unbounded streams, their analysis with advanced data mining techniques has been
identified as a research challenge. A well-established class of mining techniques is
based on nonparametric statistics where especially nonparametric density estimation
is among the essential building blocks. In this paper, we examine the maintenance of
nonparametric estimators over data streams. We present a tailored framework that in-
crementally maintains a nonparametric estimator over a data stream while consuming
only a fixed amount of memory. Our framework is memory-adaptive and therefore,
supports a fundamental requirement for an operator within a data stream manage-
ment system. As an example, we apply our framework to selectivity estimation of
range queries, which is a popular use-case for statistical estimators. After providing
an analysis of the processing cost, results of experimental comparisons are reported
where synthetic data streams as well as real-world ones are considered. Our results
demonstrate the accuracy of the results being produced by estimators derived from our
framework.

1 Introduction

Situations abound in which data continuously arrives in a transient data stream, e. g. in
network traffic, health monitoring, financial applications, and sensor networks. These
data-intensive applications generally require an immediate processing of the arriving ele-
ments without storing them persistently on disk. Since traditional DBMS are not designed
for supporting potentially infinite data streams, data stream management systems (DSMS)
have emerged as a new technology recently. In addition to its push-oriented implementa-
tion of underlying operators, a fundamental difference to database technology is the ability
of a DSMS to rearrange the query plan at runtime. In particular, the operators of a DSMS
should be adaptive with respect to their resource consumption.

An important issue for DSMS are techniques for computing synopses and statistical esti-
mators over unbounded data streams as well as other complex analytical tasks. Though
many efficient and accurate synopses have been proposed in the literature, the integration

385

of theses synopses within a DSMS has received only very little attention so far. Several
drawbacks of synopses, see also [CM04], limit their practical application in DSMS. First,
with very few exceptions, synopses are tailor-cut to a specific task. Second, synopses are
typically not memory-adaptive as they do not support reducing or increasing memory at
runtime. Third, synopses are directly applicable only to discrete data why continuous data
requires an additional discretization step. Fourth, a synopsis corresponds to a compression
of the data stream. If the arriving data only represents a sample of the original stream (as
it might occur when load shedding is performed within the DSMS), synopses are accurate
with respect to the sample, but not necessarily with respect to the original stream. Fifth,
though synopses give excellent asymptotic error guarantees, there might be large constants
hidden in the asymptotic costs.

In this paper, we address these issues by proposing a framework for maintaining nonpara-
metric statistical estimators over data streams. It can be specialized in two directions: the
estimation technique and the analytical task. First, many techniques known from nonpara-
metric statistics like histograms and kernel methods can be plugged into the framework
such that the resulting estimators are similar to their traditional counterparts. Second, the
framework supports a large number of analytical tasks like selectivity and density esti-
mation. Many analytical tasks based on density estimation, e. g. density-based clustering
[EKSX96], can therefore directly be set into the streaming context. One important feature
of our framework is that all derived estimators are memory-adaptive, i. e., they allow a
dynamic increase or decrease of their memory while still providing valid results. Thus, the
framework satisfies an essential requirement of a DSMS. A fundamental difference of our
approach to synopses is that the primary goal is to adopt to the underlying data distribution
rather than to the elements seen so far.

After showing that our framework is theoretically sound and generally provides accu-
rate estimators, we study a simple but popular analytical task, namely the estimation of
the selectivity of range queries over data streams. For that, we consider two elemen-
tary selectivity estimators using the empirical cumulative distribution function (ECDF)
and kernel-based methods, respectively. The results of our experiments obtained from
synthetic and real-world data streams reveal the robustness of ECDF in comparison to
kernel-based methods. Moreover, the ECDF estimator derived from our framework offers
much higher accuracy (for a given memory size) than a counterpart directly derived from
reservoir sampling. In comparison to estimators with infinite storage, our ECDF estima-
tors provide almost the same accuracy while consuming only a small amount of memory.
Furthermore, we also consider a popular quantile-based synopsis [LMR98] in our experi-
ments. Our results show that this synopsis is generally inferior to our ECDF estimator.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss related
work. Section 3 outlines the requirements for estimators over data streams. In Section 4,
we present a reservoir-based approach while our general framework and its parameters are
developed in Section 5. In Section 6, we study a concrete use-case of our framework and
analyze maintenance cost as well as memory distribution. An experimental evaluation of
the presented methods is given in Section 7. Section 8 concludes the paper with a summary
of the most important results and provides prospects for future research.

386

2 Related Work

In the context of data stream processing, new challenges and research issues arise as Bab-
cock et al. discussed in their seminal work [BBD+02]. Recently, data stream management
systems (DSMS), e. g. [MWA+03, ACC+03], have been designed and first prototypes
have been implemented. In addition to the basic management of data streams, advanced
mining methods are of particular interest in a DSMS [DH03]. For example, the MAIDS
project [ACC+04] provides a system prototype for online multi-dimensional stream data
mining. StatStream [ZS02] adapts different statistical methods for data streams. Giga-
scope [CJSS03] as another DSMS supports specific queries for network applications like
monitoring and traffic analysis. Recently, there has also been interest in adopting common
data mining techniques to the data stream model, e. g. clustering [AHWY03].

Our work is based on methods from nonparametric statistics like kernel-based density esti-
mation. These are of particular interest in the area of data mining where density estimation
is a core operation for many probabilistic learning methods like density-based clustering
[EKSX96]. For high-dimensional classification problems, a combination of decision trees
and local kernel density estimates is proposed in [FGS95]. Kernel density estimation is
also applicable to biased sampling [KGKB01] where the local density for a given point is
examined. In the context of traditional databases, kernel density estimation can be applied
to estimate the selectivity of range queries on metric attributes [BKS99, KJJ99, GKTD00].
For a general exposition of kernel density estimation see [Sco92].

Closely related to our work are techniques for summarizing data streams, also termed
sketches and synopses. Accurate multi-dimensional histograms over data streams are pro-
posed in [GIKT02]. The basic idea is to maintain a sketch that allows to create a multi-
dimensional histogram on demand from random mappings. The method gives approxi-
mate guarantees about the quality of the estimate. The techniques proposed in [GGI+02]
also include the construction of a small sketch from the stream that produces approximate
histograms. The proposed two-stage algorithm first generates an initial histogram approx-
imation that permits the construction of a histogram with the desired accuracy in the sec-
ond stage. The computation of approximate aggregate queries is addressed in [GKMS01]
where a one-pass computation is proposed that employs randomized linear projections
of the underlying signal. The approximate computation of quantiles is another problem
that can be solved by using synopses [LMR98]. The problem of maintaining kernel den-
sity estimates over data streams is issued in [CQWZ03] where an appropriate merging of
neighboring kernels is proposed. All of these approaches are dedicated to a specific ana-
lytical task, whereas we present a framework that allows to plug in arbitrary nonparametric
estimators whose memory consumption can be dynamically rearranged.

An essential aspect of our framework is memory adaptivity that has not been addressed for
estimation techniques and synopses on data streams so far. Memory adaptivity is however
a critical requirement for an operator within a DSMS [BBD+02], where resources have to
be rearranged among the operators at runtime. For DBMS, a related problem is addressed
in [KW02] where a framework is presented for reconciling summary data structures.

387

3 Preliminaries

In the rest of the paper, we assume a stream to be an infinite sequence of d-dimensional
vectors over numerical domains. For example, a traffic sensor might generate a stream
that continuously delivers the speed of cars. For the sake of simplicity, we first consider
one-dimensional data. The multi-dimensional case works analogously by setting the pa-
rameters of the framework appropriately. The data model is closely related to the ordered
aggregate model [GKMS01], but contrary to, the numerical domain is assumed to be con-
tinuous. This assumption is generally valid for spatiotemporal databases where sensors
deliver the position of moving objects. In order to apply common synopses in this sce-
nario, a discretization of the domain is unavoidable and introduces an additional error.

In [DH03], the following criteria are proposed for the design of data analysis methods on
high-speed, transient, and potentially infinite data streams:

1. The processing time for a single data element is as small as possible and ideally
constant.

2. Only a fixed amount of main memory is available, independent from the total num-
ber of already seen elements.

3. The methods require only one scan over the data stream.

4. At any time, the methods provide valid results.

5. The produced results are equivalent to those obtained by ordinary data mining meth-
ods.

6. Conceptual drifts and changes in the data stream are captured with past data included
that has not become outdated.

Under the given restrictions we are particularly interested in an anytime method with the
following two properties: First, the method should return the best answer possible even if
it is not allowed to run to completion. Second, the method may improve on the answer if
it is allowed to run longer. Data analysis methods that meet these requirements typically
deliver approximated results where the accuracy depends on the available memory.

The need for memory-adaptivity is a topic we particularly stress in this paper. Therefore,
the following criterion is added to our list:

7. The algorithms dynamically adapt to changing resource capacities, especially mem-
ory and CPU.

Memory-adaptive estimators are important for a DSMS due to the following reasons.
Queries on streams are typically long-running and therefore, the optimal assignment of
memory at the start time of the query could be suboptimal at a later point in time. Con-
sider for example a situation when the system becomes overloaded. Then, the DSMS
requires from the operators to reduce their computational costs that generally requires a

388

reduction of their allocated memory. Another example is when a user is not satisfied any-
more with the accuracy of the estimation. Then, the DSMS should be in the position to
improve accuracy by increasing the available memory for the estimator. In combination
with the requirement of delivering valid results anytime, data analysis methods need to
adapt the memory consumption at runtime without re-starting the method from scratch. A
natural invariant is then to require a relationship between the amount of available memory
and the quality of the result such that the more memory is available the better the results
are and vice versa. This is a very strong requirement since most mining algorithms over
data streams are based on allocating a fixed amount of memory once at initialization time.

Sketch of the problem

The main problem addressed in this paper is the development of a framework for contin-
uously maintaining sound and accurate nonparametric estimators over data streams. The
framework in turn could also be a kind of platform for more advanced data mining func-
tionality. Thus, conventional mining methods based on nonparametric estimators might be
directly plugged in without taking specific stream requirements into account. The resulting
estimators should satisfy all requirements listed above. In particular, memory-adaptivity
is an important aspect for estimators that has not been addressed previously.

4 Reservoir-based Sampling

In this section, we present a first method based on reservoir sampling that only partially
fulfills our requirements mentioned above. An initial approach for continuously maintain-
ing a nonparametric estimator over a data stream is to maintain a subset of the stream,
termed reservoir, with a fixed number of elements. By using the elements from the reser-
voir, an arbitrary estimator can be computed during runtime. To ensure the validity of the
estimator, the reservoir has to consist of independent and identically distributed values,
also called an iid-sample. A well-known approach for maintaining an iid-sample over a
data stream is reservoir sampling [Vit85] that continuously generates an iid-sample of an
unbounded data stream without the need of accessing past data.

Figure 1 illustrates the general procedure for building estimators based on reservoir sam-
pling assuming a sample of 5 elements. From this sample, an arbitrary nonparametric esti-
mator f̂(·) can be derived at runtime. Despite its straightforward implementation, reservoir
sampling offers some significant drawbacks. First, reservoir sampling is not fully memory-
adaptive. While the size of the reservoir can be reduced by dropping elements randomly,
it is not possible to increase the size of the reservoir at runtime without accessing past
data. Second, the estimator only depends on the elements in the reservoir, while all other
elements of the stream do not contribute. In particular for small reservoirs, this may cause
a poor accuracy of the estimator. Third, an unavoidable drawback of reservoir sampling is
that the chance of an element being part of the reservoir linearly decreases with the num-

389

Figure 1: Reservoir-based nonparametric estimator

ber of elements seen so far in the stream. Consequently, the reservoir generally consists
of out-dated data that might not represent the current status of the stream. This is not
desirable in many stream applications where users are primarily interested in recent data.

5 Our Framework

In this section, we present the details of our framework for a memory-adaptive mainte-
nance of arbitrary nonparametric estimators over data streams. In order to deploy our
framework, a user has to specify the nonparametric estimation technique f̂ that is suitable
for supporting the specific analytical task. For example, if a user is interested in density
estimation, a kernel-density estimator might be a suitable choice. Moreover, the size of
the available memory (M) has to be set in advance. For the sake of simplicity, we first
assume that M is a constant and postpone the discussion of a dynamic M . Then, the data
stream is partitioned into blocks of fixed size smaller than M . The basic idea is to compute
a local estimator for each block. The cumulative estimator corresponds to a convex linear
combination of the local estimators derived from already consumed blocks. The actual
estimator generally does not fit into memory. Therefore, a lossy compression is performed
each time the actual estimator is updated.

In the following subsections, we present the details of our approach. First, we show how
the estimation can be computed in a single scan over a stream. As examples, we discuss
different estimation techniques that are suitable for being plugged into our framework.
Moreover, we introduce different kinds of weighting strategies that allow to put emphasis
on recent data. Then, we present the details of our compression technique and discuss
the error induced by the compression. Finally, we discuss the suitability and memory-
adaptivity of our framework as well as another parameter, the convex merge step.

5.1 Single-scan computation

In this subsection, we describe the basic computation step of our framework.

Definition 1 Let us consider a data stream that consists of N elements, N = j ·B, j, B ∈

390

N, where B denotes the block size. Let f̂i(x), i = 1, ..., j be an estimator for the i-th block
of the data stream. We define a cumulative estimator for the first N elements with respect
to the weights ωi, 1 ≤ i ≤ j as

ĝj(x) =
j∑

i=1

ωif̂i(x), where
j∑

i=1

ωi = 1 and ωi ≥ 0 ∀i = 1, ..., j. (1)

A cumulative estimator inherits the basic properties of its block estimators. Let f̂i(x), i =
1, ..., j, be block estimators with expectation θ, i. e. E(f̂i(x)) = θ, where θ denotes the
parameter that should be estimated. This means that each of the block estimators is un-
biased. Then, the unbiasedness of the cumulative estimator follows from E(ĝj(x)) =
j∑

i=1

ωiE(f̂i(x)) = θ.

The method for computing the cumulative estimator as introduced in Definition 1 is not
suitable for data streams. Therefore, we present a single-scan algorithm that supports
an iterative computation of the cumulative estimator over the data stream. The idea is to
define a binary function that takes as input the cumulative estimator of the first i blocks and
the block estimator of the (i+1)-th block. A linear combination of both inputs returns the
cumulative estimator for the first i + 1 blocks. The following theorem proves the iterative
computability of cumulative estimators.

Theorem 1 Let ĝj(x) be a cumulative estimator where j denotes the number of already
processed blocks. Then, for all cumulative estimators ĝj exists a sequence of weights ω̃i

with 0 ≤ ω̃i ≤ 1, i = 1, ..., j, ω̃1 = 1, such that

ĝi(x) =
{

f̂1(x), i = 1
(1 − ω̃i)ĝi−1(x) + ω̃if̂i(x), 2 ≤ i ≤ j.

(2)

Sketch of the proof

Let j ∈ N, ωi ≥ 0 (1 ≤ i ≤ j),
j∑

i=1

ωi = 1, and ĝj(x) =
j∑

i=1

ωif̂i(x). Without loss of

generality let ω1 > 0. We use ω̃i := ωi/
i∑

k=1

ωk in the recursive representation of ĝj(x)

ĝj(x) = (1 − ω̃j)ĝj−1(x) + ω̃j f̂j(x) =
j−1∑
i=1

j∏
l=i+1

(1 − ω̃l)ω̃if̂i(x) + ω̃j f̂j(x). (3)

It holds ω̃j = ωj/
j∑

k=1

ωj = ωj . For i = 1, ..., j − 1 follows:

j∏
l=i+1

(1 − ω̃l)ω̃i =
j∏

l=i+1

(
1 − ωl

l∑
k=1

ωk

)
ωi

i∑
k=1

ωk

=
j∏

l=i+1

(l−1∑
k=1

ωk

l∑
k=1

ωk

)
ωi

i∑
k=1

ωk

= ωi.

391

5.2 Estimation Techniques

The specific choice of an estimation technique within our framework depends on the con-
sidered task. We will exemplarily present two nonparametric estimation techniques. More-
over, we sketch further applications built on top of the estimation techniques that can thus
also run on data streams.

Important for statistical estimation techniques is to view the data stream as sample of a
random variable. The random variable is characterized by its probability density function
(pdf) and its cumulative distribution function (cdf) [Sha99]. The cdf can be estimated with
the empirical cumulative distribution function.

Definition 2 Let (X1, ..., XB) be the elements of a block (that is assumed to be an iid sam-
ple of an unknown distribution). The empirical cumulative distribution function (ECDF)
is then defined as

FB(x) :=
1
B

B∑
i=1

I(−∞,x](Xi), where IA(x) =
{

1, x ∈ A
0, x �∈ A

. (4)

The ECDF provides excellent estimates of a random variable’s cdf as it is the one with the
lowest variance [Sha99] among all unbiased estimators. The only drawback is its staircase
shape that prevents its use for density estimation. The ECDF can directly be applied to
estimating the selectivity of range queries.

The distribution of a random variable is typically defined in terms of its pdf. A very popular
class of estimators for the pdf is built on top of so-called kernels [Sco92]. A kernel-based
density estimator (KDE) is essentially the sum over kernel functions that are centered at
sample points.

Definition 3 Let (X1, ..., XB) be the elements of a block (that is assumed to be an iid
sample of an unknown distribution). The kernel density estimator (KDE) is defined as

f̂(x) :=
1

Bh

B∑
i=1

K

(
x − Xi

h

)
(5)

where K denotes the kernel function and h denotes the bandwidth.

The KDE inherits some basic properties like smoothness from its kernel function. If the
kernel function is continuous, the resulting KDE will also be continuous. The most fre-
quently used kernels are sufficiently smooth, positive, and symmetric. Moreover, kernel
functions with a compact support, e. g. the Epanechnikov kernel [Sco92], are particularly
advisable for selectivity estimation of range queries since the evaluation of the estimate is
inexpensive. The bandwidth h, which controls the influence region of a point, is a crucial
parameter for the quality of an estimate. One of the extensively discussed strategies for
the bandwidth choice is the normal scale rule [Sco92]. This rule is among the very few
where an online computation is possible.

392

The following list gives a few examples of analytical tasks that can be supported when an
accurate density estimate is available: identification of the top-k most frequent intervals,
the total frequency of elements in [a, b], and an estimation of the moments. Moreover,
when the kernel function is sufficiently often differentiable, the estimator also guarantees
the same degree of differentiability. This allows to estimate the local extremals of the
density function of a data stream.

In addition to the presented techniques, there exists a plethora of other nonparametric
estimators that can be plugged into our framework, e. g. histograms.

5.3 Weighting Strategies

Our framework supports arbitrary weighting strategies if the corresponding weights only
fulfill equation (1). Given an appropriate sequence of weights, the proof of Theorem 1
shows how to define the associated weighting sequence. We will present two popular
weighting strategies as examples.

Arithmetic weighting: All block estimators f̂i(x) are weighted equally:

ĝj(x) =
1
j

j∑
i=1

f̂i(x).

The weight sequence (ω̃i)i≥1 for iterative computations results from ω̃i = 1
i . For the

cumulative estimator ĝi(x), i ≥ 2 follows ĝi(x) = i−1
i ĝi−1(x) + 1

i f̂i(x).

Exponential weighting: The new block estimator receives weight α:

ĝi(x) = (1 − α)ĝi−1(x) + αf̂i(x)

where α ∈ (0, 1] is the smoothing parameter. For j processed blocks, the i-th weight is
ωj

i = α(1 − α)j−i, i ≥ 2. For the estimator after j processed blocks holds ĝj(x) =
j−2∑
l=0

α(1 − α)lf̂j−l + (1 − α)j−1f̂1. Exponential weighting emphasizes recent data while

decreasing the impact of older data. This technique is also known as exponential smooth-
ing. Exponential weighting also supports a kind of implicit deletion of elements similar to
methods that maintain an estimator for a sliding window.

5.4 Compressed-cumulative Estimators

The cumulative estimator as introduced in Definition 1 still does not take the memory limi-
tations of size M into account. Each block estimator requires a certain amount of memory
and therefore, the overall memory consumption of the cumulative estimator increases lin-
ear in the size of the stream.

393

Figure 2: compressed-cumulative nonparametric estimator

In order to limit our memory usage to M , we slightly modify the recursive computation
of the cumulative estimator as given in equation (2). After a new cumulative estimator
is built, a lossy compression is computed such that its final size is only a fraction of M .
Figure 2 illustrates the basic idea that is formally defined in the following.

Definition 4 Let ĝj be a cumulative estimator after the j-th block was processed. Then
ĝc

j is termed a compressed-cumulative estimator of ĝj , if ĝc
i is a compression of (1 −

ω̃i)ĝc
i−1 + ω̃if̂i, 2 ≤ i ≤ j and ĝc

2 is a compression of ĝ2 such that the occupied memory
of ĝc

j , j ≥ 2 is smaller than a fraction of M .

There is no limitation on the choice of the specific compression technique as long as it
produces high accuracy for a fixed amount of memory. We decided to use cubic splines
[Pre74] for compressing the one-dimensional cumulative estimators. Cubic splines are
within the class of interpolating polynomials the ones with the least bending. The com-
putation costs for generating a spline with n interpolation points is O(n), while the eval-
uation cost is constant. Moreover, the memory requirement for a cubic spline is O(n).
Cubic splines have proven to be valuable in different application scenarios. Splines were
already used for approximating kernel density estimation [KJJ99], primarily for reducing
the evaluation cost of an off-line estimator. Note that this is different to our approach
where splines are used for reducing the size of an on-line estimator.

Since the compression introduces an additional error in each step, the development of the
total cumulated error is of particular interest. Here, the total cumulated error refers to the
compression error between the cumulative and the compressed-cumulative estimator.

Theorem 2 Let εj be the error term of the j-th compressed estimator, i. e.,

ĝc
j(x) =

{
(1 − ω̃j)ĝc

j−1(x) + ω̃j f̂j(x) + εj , j ≥ 3
(1 − ω̃2)f̂1(x) + ω̃2f̂2(x) + ε2, j = 2

. (6)

For j ≥ 2, ω̃1 = 1, and ε1 = 0, we obtain

ĝc
j(x) =

j∑
i=1

ω̃if̂i(x)
j∏

l=i+1

(1 − ω̃l) +
j∑

i=1

εi

j∏
l=i+1

(1 − ω̃l). (7)

394

Proof by induction over j.

The overall error after j processed blocks is a discounted sum of the compression er-
rors occurring in each step (see equation (7)). For the weighting strategies presented in
Section 5.3, this permits the computation of upper bounds. Let ε := max

k≤j
{|εk|} be the

maximum error. For the arithmetical weighting, it follows

εc
j =

j∑
i=1

εi

j∏
l=i+1

(1 − ω̃l) ≤ ε

j∑
i=1

j∏
l=i+1

(1 − 1
l
) =

j + 1
2

ε.

This shows that there is at most a linear dependence between the maximal error and the
number of processed blocks. However, this is a rather pessimistic upper bound since we
might expect that different error terms annihilate each other. For the exponential weighting
with a smoothing parameter α ∈ (0, 1], we obtain the following upper bound:

εc
j =

j∑
i=1

εi

j∏
l=i+1

(1 − α) ≤ ε

j∑
i=1

(1 − α)j−i ≤ 1
α

ε.

In this case, the cumulated error is indeed independent from the number of processed
blocks. Moreover, it is bounded by the maximum approximation error so far. Upper
bounds for other weighting strategies can be obtained in a similar fashion.

In addition to this deterministic way of expressing errors, another approach is to derive
probabilistic error bounds. Since each block estimator is a random variable, it follows
that the cumulative estimator is also a random variable. The compression is essentially a
functional operator that still depends on the sample values. Again, we can model the error
as a random variable. Under the assumption of a normal distributed error in each step i,
i. e. εi ∼ N(µi, σi), we define the actual overall error as

εc
j :=

j∑
i=1

εi

j∏
l=i+1

(1 − ω̃l). (8)

In accordance with equation (7), this implies

εc
j ∼ N

(
j∑

i=1

µi

j∏
l=i+1

(1 − ω̃l),
j∑

i=1

σ2
i

j∏
l=i+1

(1 − ω̃l)2
)

. (9)

Thus, the variance of the overall error εc
j after j processed blocks consists of the weighted

error variances of the single blocks with later variances carrying more weight.

The question about the quality of the resulting estimator arises, i. e., how good are the
results we receive from the compressed-cumulative estimator? This essentially depends
on the considered task and on the underlying estimation technique. Given an estimation
technique with error guarantees, the quality of the compressed-cumulative estimator can
be determined starting with its representation in equation (7).

395

5.5 Suitability and Memory-adaptivity of our Framework

In this section we will discuss the suitability of our framework for the data stream model
as introduced in Section 3. Since the stream is processed in units of a block, each element
is processed once with little overhead, i. e., requirements 1 and 3 are fulfilled. Note that the
processing costs are actually constant with respect to the number of processed elements.
A more precise analysis is only possible for a specific use-case as discussed in Section 6.
Due to the compression, our estimation technique requires only a fixed amount of memory
and thus, requirement 2 is also satisfied. Since each of the data elements has an influence
on its according block estimator, it immediately follows that the element has an impact
on the compressed-cumulative estimator. This is in contrast to reservoir sampling where
an element has either a substantial impact or no impact at all. We also argued that the
compression error is expected to be low. Thus, requirements 5 and 6 are also fulfilled.
Requirement 4 is also met since the current estimator always provides a valid estimation
that constantly improves at runtime (at least up to a certain point in time).

Still an open question is how we are able to be memory-adaptive as postulated in require-
ment 7. In order to be memory- and CPU-adaptive, we propose to distribute the available
memory of size M among three components: the i-th cumulative-compressed estimator, a
full buffer that contains the (i + 1)-th block and an input buffer that receives the elements
of the (i+2)-th block. This architecture allows to receive new elements while at the same
time the (i + 1)-st estimator is computed. It might happen that CPU resources are so lim-
ited that the input buffer will be filled up before the new estimator is entirely computed.
Then, reservoir sampling is simply applied to the input buffer as a fallback strategy.

At each point in time where we have updated the estimator, our method asks the mem-
ory manager whether additional memory can be allocated or occupied memory has to be
deallocated. Each of the three components can then dynamically adapt to a changing size
of the available memory. It is obvious that we can adjust a buffer size when the entire
of the current elements are processed. Moreover, the size of the input buffer can also be
decreased. An increase of memory is only possible if reservoir sampling is not currently
used to fill up the buffer (otherwise the property of a sample is not fulfilled anymore).
Concerning the compressed-cumulative estimator, the memory amount of the lossy com-
pression, which in turn controls the compression quality, can be increased or decreased.
Note that there is an inherent trade-off in the memory distribution among the three com-
ponents. The more memory the compressed-cumulative estimator occupies, the smaller is
the error caused by the compression. However, this is achieved with a smaller memory
for the buffers where the quality of the corresponding block estimator decreases with the
reduced number of elements. Moreover, a small input buffer also increases the probability
for using reservoir sampling as our fallback strategy. Since the quality of all three compo-
nents relies on their available memory, an adequate memory management is a challenging
task within our framework.

396

5.6 Convex Merge Step

We introduced the cumulative estimator as linear combination of nonparametric block es-
timators. Equation (2) also provides a recursive representation of the cumulative estimator
that ensures an iterative computation. If the separate block estimators are real-valued func-
tions like KDE and ECDF, the computation of the new cumulative estimator is a simple
convex linear combination of the old cumulative estimator and the new block estimator ac-
cording to equation (2). In a similar way, two histogram-based estimators can be merged
into one. However, a crucial question is how to process the merge step for non-real-valued
functions? Such functions occur for example when clustering and decision trees are com-
puted on streams. Then, a fundamentally different convex merge step of two nonparamet-
ric estimators is required. A deeper discussion is beyond the scope of this paper and the
problem will be addressed in our future research.

6 A Use Case: Selectivity Estimation

In this section, we exemplarily discuss the usage of our framework for a simple but popular
use-case, namely the selectivity estimation of range queries over one-dimensional numer-
ical data streams. We discuss an appropriate choice of parameters and the computational
complexity for the resulting estimators.

The initial step is to determine the nonparametric estimation technique that provides the
functionality for estimating the selectivity of range queries. Therefore, KDE and ECDF
as presented in Section 5.2 are well-suited since the selectivity of a range query is the
probability of a random variable lying within a certain range. Here, we focus on ECDF.
Next, we need an adequate compression technique wherefore we choose cubic splines. As
convex merge step, we compute the convex linear combination of two functions. Finally,
we use an arithmetic weighting, i. e., we weight each block estimator equally.

We discuss the computational complexity for each block for a fixed memory of size M .
For the sake of simplicity, the available memory is shared among only two components,
the block with B elements and the actual compressed cumulative estimator.
Let us examine the total cost of the j-th step of the estimator where the j-th compressed-
cumulative estimator is computed. We assume that each component receives a constant
fraction of memory, i. e. B = Θ(M) and n = Θ(M). The compression of a function with
a spline requires to evaluate the function at Θ(n) points. For the case of our compressed-
cumulative estimator, we evaluate the previous compressed-cumulative estimator in Θ(n)
and the ECDF of the new block in O(M log M). The latter complexity for the ECDF
results from an improved evaluation based on a sort-merge approach. First, the samples of
the block estimator are sorted and then all coefficients are iteratively updated by a single
scan over the block. The total cost of this approach is then O(M log M). This proofs the
following theorem:

Theorem 3 Let us consider ECDF as the underlying block estimator in our framework.
Furthermore, let the cubic spline and the block estimator receive a constant fraction

397

of main memory M , respectively. In order to compute the corresponding compressed-
cumulative estimator on a stream, the amortized cost per element is O(log M).

Many other applications are possible within our framework. In order to maintain for exam-
ple equi-width histograms over data streams, the convex merge step could be the convex
linear sum of the frequencies of each bucket. A rearrangement of the buckets number
permits a compression. Concerning decision trees, a convex merging of the decision trees
based on blocks has to be examined as well as the compression of the tree, i. e., how to
generate a compact representation of a tree that consumes only a fixed amount of memory?
These use cases clarify that our framework suits as point of origin for an advanced data
stream analysis.

7 Experiments

In this section, we report the results of some of our experiments with a special emphasis
on KDE and ECDF as estimation techniques.

7.1 Data Sets

In our experiments, we considered synthetic as well as real data sets. In order to express
the quality of different estimation techniques, we used a synthetic data set derived from a
known data distribution. We chose a piecewise smooth pdf, termed CP2, which is plotted
in Figure 3. Since smooth distributions seldom occur in real applications, we introduced
two jumps in CP2. The real-world data set was obtained from the Freeway Service Patrol

Figure 3: Pdf of the CP2 distribution

Project that collected traffic flow data from detectors integrated into a 10-mile long section
of a highway in California. Each stream element contains the length and the velocity of
a passing vehicle and a timestamp. We focused on the velocity that seems to be most
interesting for realtime analyses, e. g., what is the average speed during rush hour?

398

7.2 Methods and their Parameter Settings

We applied KDE and ECDF as estimation techniques to initialize our framework (see Sec-
tion 5.2). While ECDF requires no additional parameters, KDE received the following
settings: the Epanechnikow kernel was the kernel function and the normal scale rule was
used for computing the bandwidth [Sco92]. Furthermore, we used the arithmetical weight-
ing strategy to combine the block estimators and cubic splines to compress the estimators.
The framework itself is fully implemented within XXL, a publicly available Java library
for advanced query processing [XXL].

In order to compare the estimators of our framework with other well-known techniques, we
considered two different kinds of methods in our experiments. One is a synopsis for com-
puting approximate quantiles in a single pass [LMR98], which we used for the following
reasons. It provides the typical theoretical error bounds of synopses and its implementa-
tion is available in the Colt library [COL]. The other refers to estimators derived from
reservoir sampling as presented in Section 4.

7.3 Convergence and Memory Adaption

Our first experiment addresses the consistency of an estimator, i. e. how an increasing num-
ber of processed elements improves the approximation quality of an estimator. We used
a finite data stream consisting of 100000 elements drawn from the CP2 distribution. Dur-
ing the processing of the stream, we continuously maintained a KDE with the parameter
settings mentioned above to estimate the density. We continuously examined the current
estimator and measured its quality. Therefore, we computed the mean squared error (MSE)
on an equidistant grid consisting of 500 points:

MSE :=
1

500

500∑
i=1

(f(xi) − f̂(xi))2. (10)

We also examined the effects of memory-adaptivity by continuously increasing the amount
of available memory during runtime. We measured memory by charging one memory unit
for both a spline coefficient and a stream element. Overall, we compared three estimators.
The first estimator consumed constantly 400 memory units during runtime. The second
also started with 400 units, but received 100 additional units after each processed block,
i. e., its memory amount was continuously increased during runtime. The third estimator
constantly allocated 17600 memory units, which corresponds to the maximal memory
amount for the second one. All estimators distributed the memory units equally among
the spline and the new data block. Figure 4 depicts the results of this experiment. We
observe that all estimators improve very fast in the beginning. After 30000 elements,
the curves flatten. Overall, the results demonstrate the accuracy of the estimators. Of
particular interest are the results of the second estimator. The results show that increasing
the amount of available memory during runtime substantially improves the quality of a
compressed-cumulative estimator. Therefore, memory-adaptivity really pays off.

399

Figure 4: Increasing the memory

7.4 Selectivity Estimation Of Range Queries

This experiment refers to the use case presented in Section 6, namely the estimation of
the selectivity of range queries over data streams. We compared the performance of the
compressed-cumulative KDE and ECDF for synthetic as well as real data sets. Further-
more, we considered methods based on reservoir sampling.

We again performed experiments with a finite data stream consisting of 100000 elements.
While consuming this data stream, we continuously computed the different estimators
from the elements seen so far. We set the amount of available memory for all estimators
to 5000 memory units.

For each new estimator computed during runtime we performed selectivity estimations
of 1000 range queries. Each of them covered 2% of the range of the already processed
elements. The distribution of the range queries followed the data distribution of the data
stream. In order to compare the results, we used the mean relative error (MRE) as quality
measure:

MRE :=
1

1000

1000∑
i=1

|σi − σ̂i|
σi

. (11)

Here, σi denotes the range query selectivity computed by the best possible estimator based
on all processed elements of the stream. The estimate of the range query with the current
estimator is denoted as σ̂i.

First, we discuss the results for the synthetic data set generated from the CP2 distribution.
Figure 5 depicts the MRE from the estimators as a function of the number of processed
elements. As illustrated, the compressed-cumulative estimators significantly outperform
their counterparts based on reservoir sampling. While the compressed-cumulative estima-
tors gives a smooth curve with a continuously decreasing error, the curves of the reservoir-
based ones heavily oscillate around 5% and 7%. Their MRE is much higher than the MRE
of the compressed-cumulative KDE and the compressed-cumulative ECDF, which is about
1.5% and only 0.3%, respectively.

400

Figure 5: Selectivity estimation of range queries over CP2 data

The case of real-world traffic data reveals different results. Here, we considered all ve-
hicles with velocities between 10 and 30 meters per second. Except the compressed-
cumulative ECDF, which had an extremely small MRE of about 0.01% − 1%, the other
estimators produced poor results where the MRE was between 20% and 40%. The reason
is that the traffic data set consists of a limited number of distinct values and, in a kernel-
based approach, the KDE cumulates at these values. In order to overcome this problem,
we introduced an artificial noise uniformly distributed in [0, 5]. This noisy data deliv-
ered much better results. The compressed-cumulative KDE, the reservoir-based ECDF, as
well as the reservoir-based KDE produced an error of about 8%, while the compressed-
cumulative ECDF again proved to be the best technique with an error of about 0.5%.

In our last experiment, we compared the ECDF with the quantile synopses. Note that quan-
tile synopses are easily applicable to the problem of selectivity estimation of range queries.
Since the approximated quantiles presented in [LMR98] allow a one-pass computation, the
method is also suitable in our data stream scenario. The experiment is performed on the
traffic data set without noise (similar results can be observed for noisy data). We computed
the quantiles for different sizes of the data stream and used them to estimate the selectivity
of range queries. We measured the quality in terms of MRE by comparing these estimates
with the estimates obtained from using the accurate quantiles of the original data set. In or-
der to allow a fair comparison, we set the amount of available memory for the approximate
quantiles and the compressed-cumulative ECDF to the same size (38 KB). This results in
the following parameter setting for the quantile synopses [COL]: ε = 0.01 is the maxi-
mum approximation error of the quantiles, 10−5 is the probability that the approximation
error fails to be smaller than ε, and the size of the dataset is assumed to be unknown. Note
that the amount of memory does not cover the stack size of the programs. Figure 6 de-
picts the results of this comparison. In the beginning, the compressed-cumulative ECDF
is inferior to the quantile synopses. With an increasing number of elements, however, the
estimation error of the quantile method constantly increases, while the error of the ECDF
estimator decreases. Therefore, the compressed-cumulative ECDF provides substantially
better results than the quantile synopses at the end. The fact that the error of the synopses
may increase is surprising at a first glance, but is in agreement with theoretical findings

401

Figure 6: Selectivity estimation of range queries over traffic data

[LMR98] that the error can be kept under a threshold only if memory slightly increases.

From our experiments we conclude that the estimators built with our framework deliver
accurate estimates whose estimation approaches an unknown pdf. This is particularly
useful for estimating the selectivity of range queries. It is however remarkable that the
most simple nonparametric estimation technique, the ECDF, turns out to be the most robust
technique and is generally superior to others.

8 Conclusions

In this work, we presented a tailored framework for the maintenance of arbitrary non-
parametric estimators over data streams. This publicly available framework as part of the
XXL library is modularly designed and copes with a wide range of applications over data
streams that rely on nonparametric estimators. In summary, the estimators process a stream
block by block and compute for each of the blocks a separate estimator. A convex linear
combination of these estimators delivers an appropriate cumulative estimator. Due to the
limited resources, the cumulative estimator is eventually compressed adequately in an iter-
ative manner. In order to illustrate specific applications of our framework, we exemplarily
discussed the problems of density estimation over data streams and selectivity estimation
of range queries. For the latter problem, we considered two popular nonparametric tech-
niques, ECDF and KDE. In particular, the compressed-cumulative ECDF has shown to
be of practical relevance due to its robustness and its general superiority in comparison to
quantile synopses.

Another important and novel aspect guaranteed within our framework is memory-adaptivity,
a highly relevant issue for systems that analyze multiple data streams simultaneously and
henceforth need the capability of a dynamical adaption of varying system resources at run-
time. Our framework allows to control the memory consumption of its components during
runtime while still ensuring valid results.

402

In our future work, we will focus on theoretical quality statements for specific use cases of
our framework. Also we want to examine the suitability of other nonparametric estimation
techniques within our framework. In addition to these estimation techniques, we will ex-
amine new weighting strategies that are controllable during runtime, in order to emphasize
interesting regions of the data stream.

Acknowledgements
This work has been supported by the German Research Society (DFG) under grant no. SE
553/4-1.

References

[ACC+03] D. Abadi, D. Carney, Ugur Cetintemel, Mitch Cherniak, Christian Convey, Sangdon
Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A New Model
and Architecture for Data Stream Management. VLDB Journal, 2003.

[ACC+04] Loretta Auvil, Y. Dora Cai, David Clutter, Jiawei Han, Greg Pape, and Michael Welge.
MAIDS: Mining Alarming Incidents from Data Streams. In Proc. ACM SIGMOD,
2004.

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A Framework for
Clustering Evolving Data Streams. In Proc. VLDB, 2003.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and Issues in Data Stream Systems. In Symp. on Principles of Database Sys-
tems, 2002.

[BKS99] B. Blohsfeld, D. Korus, and B. Seeger. A Comparison of Selectivity Estimators for
Range Queries on Metric Attributes. In Proc. ACM SIGMOD, 1999.

[CJSS03] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav Shkapenyuk.
Gigascope: A Stream Database for Network Applications. In Proc. ACM SIGMOD,
2003.

[CM04] G. Cormode and S. Muthukrishnan. An improved data stream summary: The Count-
Min sketch and its applications. In LATIN, 2004.

[COL] COLT - Open Source Libraries for High Performance Scientific and Technical Com-
puting in Java. http://hoschek.home.cern.ch/hoschek/colt.

[CQWZ03] Zhiyuan Cai, Weining Qian, Li Wei, and Aoying Zhou. M-Kernel Merging: Towards
Density Estimation over Data Streams. In Proc. Int. Conf. on Database Systems for
Advanced Applications, 2003.

[DH03] P. Domingos and G. Hulten. A General Framework for Mining Massive Data Streams.
Journal of Computational and Graphical Statistics, 2003.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc.
ACM SIGKDD, 1996.

[FGS95] Usama Fayyad, Alexander Gray, and Padhraic Smyth. Retrofitting Decision Tree Clas-
sifiers Using Kernel Density Estimation. In Proc. ICML, 1995.

403

[GGI+02] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss.
Approximate Histogram Maintenance. In Symp. on Theory of Computing, 2002.

[GIKT02] Sudipto Guha, Piotr Indyk, Nick Koudas, and Nitin Thaper. Dynamic Multidimen-
sional Histograms. In Proc. ACM SIGMOD, 2002.

[GKMS01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. Surfing
Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries. In
Proc. VLDB, 2001.

[GKTD00] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeniconi.
Approximating Multi-Dimensional Aggregate Range Queries over Real Attributes. In
Proc. ACM SIGMOD, 2000.

[KGKB01] George Kollios, Dimitrios Gunopulos, Nick Koudas, and Stefan Berchtold. An Effi-
cient Approximation Scheme for Data Mining Tasks. In Proc. ICDE, 2001.

[KJJ99] Flip Korn, Theodore Johnson, and H. V. Jagadish. Range Selectivity Estimation for
Continuous Attributes. In Statistical and Scientific Database Management, 1999.

[KW02] A. König and G. Weikum. A Framework for the Physical Design Problem for Data
Synopses. In Proc. EDBT, 2002.

[LMR98] B. Lindsay, G. Manku, and S. Rajagopalan. Approximate Medians and other Quantiles
in One Pass and with Limited Memory. In Proc. ACM SIGMOD, 1998.

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
Query Processing, Resource Management, and Approximation in a Data Stream Man-
agement System. Proc. of the Conf. on Innovative Data Systems Research (CIDR),
2003.

[Pre74] Paddy M. Prenter. Splines and Variational Methods. John Wiley and Sons, New York,
1974.

[Sco92] David W. Scott. Multivariate Density Estimation : Theory, Practice, and Visualization.
John Wiley & Sons, New York, 1992.

[Sha99] Jun Shao. Mathematical Statistics. Springer Verlag, New York, 1999.

[Vit85] Jeffrey S. Vitter. Random Sampling with a Reservoir. ACM Transactions on Mathe-
matical Software, 1985.

[XXL] XXL - eXtensible and fleXible Library. Philipps University Marburg: The Database
Research Group, http://www.xxl-library.de.

[ZS02] Yunyue Zhu and Dennis Shasha. StatStream: Statistical Monitoring of Thousands of
Data Streams in Real Time. In Proc. VLDB, 2002.

404

