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Deep Domain Adaptation for Face Recognition using images
captured from surveillance cameras

Samik Banerjee!, Avishek Bhattacharjee”, Sukhendu Das®

Abstract: Learning based on convolutional neural networks (CNNs) or deep learning has been a major
research area with applications in face recognition (FR). However, performances of algorithms designed for
FR are unsatisfactory when surveillance conditions severely degrade the test probes. The work presented
in this paper has three contributions. First, it proposes a novel adaptive-CNN architecture of deep learning
refurbished for domain adaptation (DA), to overcome the difference in feature distributions between the
gallery and probe samples. The proposed architecture consists of three components: feature (FM), adaptive
(AM) and classification (CM) modules. Secondly, a novel 2-stage algorithm for Mutually Exclusive Training
(2-MET) based on stochastic gradient descent, has been proposed. The final stage of training in 2-MET
freezes the layers of the FM and CM, while updating (tuning) only the parameters of the AM using a few
probe (as target) samples. This helps the proposed deep-DA CNN to bridge the disparities in the distributions
of the gallery and probe samples, resulting in enhanced domain-invariant representation for efficient deep-DA
learning and classification. The third contribution comes from rigorous experimentations performed on three
benchmark real-world surveillance face datasets with various kinds of degradations. This reveals the superior
performance of the proposed adaptive-CNN architecture with 2-MET training, using Rank-1 recognition rates
and ROC and CMC metrics, over many recent state-of-the-art techniques of CNN and DA.

Keywords: Face Recognition; DA; Deep Learning; Low-Resolution; Denoising Auto-encoders.

1 Introduction

Deep learning (DL) has attracted several researchers in the field of computer vision due to its ability
to perform face and object recognition tasks with higher accuracy than the traditional shallow
learning systems. For biometric authentication, face recognition (FR) has been preferred due to its
passive nature. Recent works using deep networks [PVZ15, Tal4, SKP15, Sul5] for FR follow a
purely data-driven approach, where the representations are directly learned from the pixels of the
face. However, most solutions of FR fail to achieve higher accuracies when the training and the
testing conditions vary. For face images captured using surveillance cameras, which are highly
degraded, most FR systems fail to perform satisfactorily even with near-frontal test probes, since
the gallery is obtained in controlled laboratory settings.

In a variation of transfer learning methods, domain adaptation tasks [Pall, GGS13, Sal0, Gol2a]
attempt to minimize the discrepancy in the probability distributions of the source (gallery) and
target (probes) domains. In this paper, we propose a novel adaptive-CNN architecture termed
‘deep-DA’, to perform FR efficiently using images from surveillance cameras. The network with 3
modules is trained using a novel 2-stage Mutually Exclusive Training (2-MET) process to minimize
the disparity of the gallery and probe samples. The first stage of the 2-MET trains the network,
while the final stage amends the network trained at stage 1 to accomplish the task of domain
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STAGE 1

STAGE 2

Fig. 1: Adaptive-CNN Architecture with 3 modules for 2-MET training (best viewed in color). The “lock”
icon indicates that the module is frozen at that stage. ‘#N’ indicates the number of subjects in the dataset used.

adaptation (DA), such that the disparity in appearance between the gallery and probe samples is
minimized. The adaptive-CNN architecture, reforms itself to adapt to the change in the gallery &
probe samples, which are pre-processed [BSD14] to obtain tightly cropped face [As14] images.

A mutually exclusive 2-stage training of deep-DA, using 2-MET turns out to be significant for
achieving high accuracy, where the design of the AM is inspired by stacked denoising auto-
encoders [Vi08]. This structure has the capacity to adapt to the testing environment, and in addition
overcomes noise and aliasing artifacts present in the probe images acquired with surveillance cam-
eras. This paper has three major contributions: (a) it proposes a novel adaptive-CNN architecture;
(b) learning process consists of a novel 2-stage Mutually Exclusive Training (2-MET); (c) rigorous
experimentations performed using 3 real-world datasets captured using surveillance cameras to
exhibit superior performance of our proposed method.

2 Deep Domain Adaptation (Deep-DA)

For the task of DA, we are given a training (source) domain Dy = {(x{,y!)}!* | with n, labeled
data, and a distinct test (target) domain D, = {(x,y4)}!" | that contains a small amount of labeled
data, denoted by n,, with varied characteristic probability distributions, g. The aim of deep-DA is
to bridge the cross-domain discrepancy, and build a classifier y = 0(x) which can minimize the
target risk &(0) = Pr(, ;)~4[0(x) # y] using target supervision.

2.1 Adaptive-CNN Architecture

The adaptive-CNN architecture proposed in this paper is a deep CNN based on 3 modules, namely:
Feature module (FM), Adaptive module (AM) & Classification module (CM); shown in figure 1.
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2.1.1 Feature Module (FM)

The feature module (FM) mainly focuses on the generalized holistic features on the face. FM
consists of 3 convolutional layers, interlaced with Rectified Linear Unit (ReLU) [ZF13] and a
MAXPOOLING layer. As the data flows through a deep network the weights and parameters alter
them, sometimes making the data too big or too small, referred to as “internal covariate shift”. By
normalizing the data in each mini-batch, this problem is largely avoided, adapted from the method
proposed in [IS15], y; = BNyg (xi) = ¥ + B, where the normalization term is given by
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where, Ly and Oy is the overall mean andstandard deviation of the training set. Refer [IS15] for more
details of the parameters. The shifted (normalized) values of y are passed to the subsequent layers.

2.1.2 Adaptive module (AM)

During stage-1 of 2-MET AM is frozen, passing the data unattenuated for input to the next
layers, i.e.feed-forward without any modifications. DA involves the transformation of the extracted
features from the target to the source domain. In line with this, we have positioned the AM module
after the FM module which acts as the feature extraction module in CNN architecture. During
stage-2 of training, the AM works as a stacked denoising auto-encoder modified from Vincent
et al.[Vi08]: the shrinkage (encoder) and expansion (decoder) sub-modules. AM comprises of 3
convolution layers in the shrinkage sub-module interlaced with the ReLU and 2 maxpooling layers
([p1,51) = Pool(z;), where z; is the feature map fed to the layer [, p; is the pooled map and s; is the
stride of the pooling). One convolutional layer having a 1 x 1 kernel is incorporated, as inspired by
[SZ14], to introduce more non-linearity into the model. The shrinkage sub-module also contains 2
fully-connected (fc) layers. A dropout layer, with 50% probability, is also kept at the conjunction
of the shrinkage and expansion sub-modules, to prevent overfitting.

The expansion sub-module in the AM is constructed as the mirror image of that of shrinkage.
The unpooling layers correspond to each of the pooling layers in the previous sub-modules, as,
71 = Uy, p; [ZTF11], where Uy, is the unpooling layer corresponding to stride s; for the layer /. The
three deconvolutional layers aim to reconstruct the images corresponding to the convolutional
layers of the shrinkage sub-module. The reconstruction [ZTF11] of y; (comprising of ¢ color
channels) is formed by convolving each of the 2-D feature maps, z; ;, with filters f,; ; and summing

~ K . .
them as: yf = Y, ' | zx s * fkc7 ;» where * is the 2D convolution operator.

2.1.3 Classification Module (CM)

The classification module (CM) has four fc layers which are mainly tailored for a particular
task [Yol4]. Each fc layer learns a non-linear mapping, hf = fZ(W’hffl +b;), where hf is the
hidden representation of point x; at the [-th layer, W/ and b’ are the weights and bias of the
I-th layer, and f! is the activation at rectifier units (ReLU), as: f'(x) = max(0,x) for hidden

layers, or logsoftmax units, as: f!(x) = %exp(x) where, a = Z‘f'

Ife={w y:‘l denotes the set of all CNN parameters in CM, the empirical risk of CNN is

,exp(x;) for the output layers.
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Fig. 2: For three real-world surveillance datasets: (a) The input gallery images, (b) The output showing the
selected activation of one of the filters at CONV20 layer (see figure 1) after stage 1 of training. The green
shaded areas show the discriminative areas of the face, while the red indicates the non-discriminative areas.

(a)

represented as ming é Y, 6 (0(x),y¢), where € is the cross-entropy loss function, and 6 (x¢)
is the conditional probability that the CNN assigns a label y{ to x{. The training of AM is done
exclusively at stage 2 of 2-MET, which is described below.

2.2 2-stage Mutually Exclusive Training (2-MET)

To achieve the outcome of superior domain-invariant recognition, a novel training algorithm is
designed in two stages, outlined in sub-sections 2.2.1 and 2.2.2. The two stages involve mutually
exclusive updates of different parameter sets. The parameters of the FM and CM are updated in
stage 1, where the AM appears as Identity layers (frozen, with no parameter update). The output
of trained module from stage 1 is then passed onto stage 2, where the Identity layers of the AM
are replaced by the layers similar to a stacked denoising auto-encoder. The parameters of the FM
and CM at this stage are frozen, and the update of the parameters is done only for the AM. Thus,
the parameter updates take place for the modules in a mutual exclusion mode in 2-MET. This
exclusive mode of training is necessary, else the deep layers (in FM and CM) will fail to overcome
(map) the discrepancies in the source and target domains.

2.2.1 Stage 1 (for training FM and CM)

This stage of the adaptive-CNN network is trained using the gallery samples. The model is trained
using SGD with standard backpropagation [Le89] using a batch size of 200 samples, momentum of
0.9 and weight decay of 0.005. Weight decay here is not merely a regularizer; it reduces the models
training error [KSH12]. We initialized the weights in each layer using a zero-mean Gaussian
distribution with standard deviation of 0.01. We initialized the neuron biases in the convolutional
as well as fully-connected hidden layers with a constant 1.

The outputs of the FM are directly transferred to the input of CM by the stack of identity layers of
the AM. The update of parameters in FM and CM helps the convolutional layers to automatically
learn the discriminative features of the face, as shown in figure 2, where one sample from each of
the three real-world surveillance datasets (described later in section 3) are shown in (a), while in
(b) the output of a filter is shown, where greener the area more discriminative it is.
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2.2.2 Stage 2 (for training AM)

A pre-trained model obtained from stage 1 is fine-tuned for adaptation under target supervision at
this stage. Our aim is to transfer the trained model to adapt for the target task without updating a
large set of its parameters.

In our proposed model, the AM unit attempts to map the disparity in the distributions between the
source and the target domains to overcome DA. At stage 2 of training, the output of a FM unit,
zp = FM(xp) (with target samples, xp € Pr, available for DA, as input) is fed at the input layer of
AM; while the same, zs = FM(xs) (output of another identically pre-trained FM) but with the set
of corresponding gallery samples, xg € Dg, given subject/class-wise (C?) as input, is subsequently
available at the output layer of AM (see figure 1(b)), for comparison with the output ( = AM(zp))
of AM. The training process at stage-2 involves the minimization of the objective function (_¢)
(as in [Zh15]) by back-propagation, where

j ZJV(ZS,Z)+OC$(9,§P)+B9(K3,KP) 2)

where, a and 3 are the coefficients providing relative importance of each term. The first term in
the objective function is the reconstruction error between zg and Z, which is defined in SSD form

as:
np

s )= LI -2 3

We assume here that np contains the target probe samples including those obtained by data
augmentation.

The second term in equation 2 is the loss function of softmax regression used to perform the task
of classification by the softmax layer at the end of CM (pre-trained at stage-1). Specifically, this
term is:

np C GfTéP
Z(0,8p) ———ZZl{yp—J}log e @)
i=1j= —

where, 51’3 is the output of the layer preceding the soft-max regression layer, 8/7 (j € C) is the
parameter set corresponding to the j-th node of the softmax layer, and yj;, is the predicted label.
The minimization of this term implicitly helps to preserve the class labels for the features of the
target samples in stage-2.

Let, k5 & kp be the probability density functions (PDF's) of g5 & gp respectively, where g5 & gp
are the flattened [KSH12] feature vectors zg and Z, respectively. The third term in equation 2 is the
KL-divergence between ks (feature distribution of gallery samples) & kp (feature distributions of
the transformed target probe samples). Thus, the third term can be expressed as:

9(1(5, Kp) = KLD(xs,xp) + KLD(kp, K'_g) (®)]

where KLD(T,S) is defined in equation 6. Minimization of this term in the objective reduces the
gap between the gallery and the probe samples, as in DA. The training criterion for denoising
auto-encoders used in TM, is based on the KLD (Kullback-Leibler Divergence) measure [KL51],

given as:
T
KLD(T,S)= Y T(xp)log (xp)
xs€Dg xpePr S('XS)

(6)
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Fig. 3: (a) The input probe images, (b) The output of the selected activation of one of the filters at CONV20
layer before stage 2 of training, (c) The same for one of the filters at DCONV1S5 layer (see figure 1) after stage
2 of training (color code as described in figure 2) (best viewed in color).

where, T (xp) and S(xs) represent the target and source distributions, with a constraint that xp and
xs represent a pair of target and source samples from class C'. Regularization of the parameters (as
done in [Zh15]) is implicitly incorporated in the Tensorflow based implementation of AM.

Figure 3(a) shows a few probe (target) samples, (b) shows the output of filters trained at stage
1 on the target samples, & (c) shows the output of the filters after stage 2 of 2-MET. Larger
discrimination is visible by green labeled areas in figure 3(c). This justifies our claim for stage 2 of
training in 2-MET. The AM at this stage also takes care of the background noise and aliasing effect
present in the image, being an inherent property of the stacked denoising auto-encoder [Vi08].
This stage needs lesser computational time than stage 1.

3 Datasets

The proposed technique is evaluated over 3 real-world face datasets obtained using surveillance
cameras namely, SCFace [GDG11], ChokePoint (CP) [Wol1] and FR_SURV_VID [RD11]; with
many state-of-the-art methods based on DA and DL techniques used recently for FR.

The SCFace dataset [GDG11] (a standard dataset for evaluating FR under surveillance, with gallery
and probe samples captured indoor) consists of 130 subjects. The training set consists of 9 mugshot
images per sample as gallery and 15 probe samples per subject, captured using 5 different cameras
at 3 different distances. While the average cropped gallery samples are 250 x 250 pixels, the probe
images range from 15 x 15 to 45 x 45 pixels, at an average.

The ChokePoint (CP) dataset [Wo1l1] contains the faces of 54 subjects in two profiles, captured
using three surveillance video cameras in an indoor environment. This is also a benchmark dataset
for testing the performance of surveillance FR. In total, the dataset consists of 48 video sequences
and 64,204 face images. In our experimentations, the images taken by the camera C1 are considered
as the training set, while that of the other pair (C2 and C3) are considered as the test samples. This
results in a average of 500 face images per subject in training and 2500 in the testing pool. The
datasets contains images of the same resolution averaging 80 x 80 pixels for the cropped face
images.

The third dataset has the highest complexity among all these datasets. This dataset is a mild ex-
panded version of the FR_SURYV dataset [RD11], called FR_.SURV_VID (FSV). The complexity of
the dataset lies in the fact, the gallery images are captured indoor, but unlike other afore-mentioned
datasets, the probe images are captured outdoor at uncontrolled environmental conditions with
poor illumination, contrast, aliasing, large blur and low resolution. The training set has 250 face
images (frontal pose) per subject on an average, with an average resolution of 150 x 150 pixels
when cropped to get the face region. The testing set (video frames), captured outdoor using a
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surveillance video camera has 700 samples per subject, with the average cropped face image
having a resolution of 33 x 33 pixels. The dataset has face images of 51 subjects. All these three
datasets have no occlusion and negligible variations in expression variation and face pose.

Most real-world face datasets provide few samples in the gallery for training shallow transfer
learning algorithms [PY 10, BSD14]. This may be generally inadequate for training deep-CNN
models. Hence, we use three different data augmentation techniques to artificially increase the
size of the dataset, as proposed in [CMS12, KSH12], by three label-preserving techniques. The
number of such target samples per subject, used for DA in each dataset, is artificially increased to
a few thousands for training the deep-DA model (see table 1).

3.1 Preparing the data for the task

The gallery and the probe images vastly differ in their quality. For all three rows in table 1, the
probe images are obtained using surveillance video cameras. They suffer from low resolution, low
contrast, poor illumination, aliasing, blur and background noise, all predominantly present in FSV
[RD11] dataset, making it the hardest of the lot. The gallery images have minimal background,
but the probe samples suffer from background variations. We observed largely unsatisfactory
performance (mentioned the face regions) to the learning/adaptation stages of deep-DA. All large
CNN architectures failed to directly bridge the gap in source and target domains even satisfactorily.
Hence, we relied on pre-processing compulsorily to obtain a reliable FR performance. To boost
the performance of the FR, face detection was hence followed by a pre-processing stage.

We obtain a tightly cropped image based on the Chehra proposed by Asthana ef al.[As14]. The
tightly cropped face image eliminates any background information present in the face image. To
cope with the low contrast and poor illumination setting present in the probe images of real-world
surveillance datasets, the tightly cropped face samples are passed through a contrast-stretching
stage, using the Power Law Transformation [FaO1]. The difference is resolution is overcome by
applying a face hallucination technique on the probe images, proposed by Jin and Bougannis in
[JB15]. The gallery samples are downsampled to match the resolution of the probe images. Further
pre-processing of the gallery samples to match the probe samples includes degradation of the
gallery samples using a Gaussian blur kernel followed by illumination normalization of the gallery
and the probe images performed based on the method proposed by Xu and Savvides [JXS15]. This
pre-processing is applied only for SCFace and FSV datasets, as the gallery and probe samples in
all other datasets are similar in resolution. This pre-processed data is used for training, fine-tuning
and testing.

Table 1 gives the number of training, testing and target samples used for experimentations, where
the total number of samples used for training/target-adaptation incorporates those obtained by
data augmentation [CMS12, KSH12] (i.e.additionally, several synthetic samples were generated).
The limited number of labeled test samples forces us to use a small fraction of them (see 3'¢
column under ‘Target’ label) for training the AM, which do not overlap with test probes used for
performance analysis. About 5-15% of the test samples were used for fine-tuning in DA. In our
case, the minimal number of samples used as the target set was empirically determined, based
on the criteria that increasing the same does not significantly improve the performance of our
method. This experimental condition was kept same, as done in most DA based applications
[BD16, Gol2a, Gol2b] published in the recent past.
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4 Experimental Details and Performance Analysis

Experimental setup is implemented with Keras using Tensor flow-backend, and run on a machine
with 17-6720K 3 GHz processor and dual Nvidia Titan X GPU, with 64 GB RAM. In the experi-
ments we start with a learning rate 0.03 which is gradually reduced through the training process.
Random initialization of weights is used and the model runs for 50 to 70 hours for training. The
margin o is set to 0.35. # samples used for training, adaptation and testing are given in table 1.
The inputs were sent in a mini-batch of 200 for training, and batch-normalization is carried on
the mini-batch. The input size to the network is 100 x 100 x 3 (see figure 1). In the following,

Tab. 1: The number of samples, used for experimentation. The target and test probes never overlap.

Datasets Training (Gallery) Target Testing (Probes)
SCFace [GDG11] 2000 200 3000
ChokePoint [Woll] 5000 1000 10000
FR_SURV_VID 4000 800 10000

results of the performance analysis are discussed for our proposed deep-DA, compared with that
of several recently published CNN & DA (shallow) models. The rigorous set of experimentations
are broadly divided into 3 categories as: 1. Experimentation on Real-world Datasets (section 4.1);
2. Unbiased Training (section 4.2) and 3. Cross-dataset Adaptation (section 4.3).

4.1 Experimentation on Real-world Datasets

The comparison of the performance of our proposed deep-DA technique with recent state-of-the-art
techniques for three real-world surveillance datasets is shown in table 2, using Rank-1 Recognition
rates. Number of samples per subject for training, adaptation and testing are as given in table 1.
The results in bold show the best performance accuracies. Existing CNN methods in rows 1 — 4
of table 2 are adapted to the target domain by freezing the convolutional layers and training only

Tab. 2: Rank-1 Recognition Rates for different methods over 3 real-world surveillance face datasets. Results
in bold, exhibit the best performance.

SI.  Algorithm SCface CP FSV
1 DeepFace [PVZ15] 52.67 73.26  40.32
2 DeeplID 3 [Sul5] 47.51 78.79  43.98
3 FaceNET [SKP15] 69.08 82.72 54.68
4  VGG-19 [SZ14] 59.35 80.14  46.32
5 Naive 35.24 61.59 18.62
6 FV_DCNN [Ch16] 63.78 80.62 52.32
7 SML_MFKC [BD16] 79.86 85.59 58.31
8 DAN [LWI15] 74.57 83.86 55.43
9 LSDA [Hol4] 77.65 87.76 53.29
10 deepMSDA [Chl14] 73.21 88.97 57.25
11 K-NNat FC100 78.72 86.25 69.71
12 Deep-DA (ours) 86.74 93.41 72.33
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(fine-tuning pre-trained models) the fc layers on the target samples. FaceNet [SKP15] performs
the best among these four methods, which uses triplet-loss function for learning. The naive method
(row 5) executes only the stage 1 of training (involving FM and CM), using a concatenation of
the target and gallery samples as the training set, and then testing with the probes. It is noticeable
that the methods (rows 6 — 10) which incorporate DA techniques for adapting hand-crafted or
convolutional features to the target domain, fare quite better in general than the other methods.
The others (rows 1 —4) suffer from the fact that the specific or higher layers do not easily adapt
to the target domain. All the other deep-transfer learning methods, in rows 8 — 10 of table 2 use
source supervision for adaptation, while variations of our proposed techniques in the last 2 rows
(11 —12) rely on the target supervision. The second best performing method at row 16, "K-NN
at FC100”, indicates that a K-NN classifier is used with the feature maps obtained at the FC100
block of final module of CM. Finally, our proposed method (deep-DA) achieves the best and
a significantly higher accuracy (see last row) than all other competing methods. The stacked
denoising auto-encoder module helps to minimize the noise and aliasing effect in the probe images,
which also boosts the performance. The third best (on an average) performing method is based on a
shallow technique, SML_MFKC [BD16], which also does a source to target transformation for DA.
To strengthen our claim, we also provide the CMC and ROC curves for the three datasets. Figure
4 shows the CMC and ROC plots for only the 5 best performing methods under comparison, for
better visibility. The red curve in each sub-plot depicts the performance obtained by our method,
which is superior to all other competing techniques.

4.2 Unbiased Training

Finally, to show the effectiveness of fine-tuning the deep-DA architecture using target samples in
2-MET training, we validate the effectiveness of our algorithm by unifying the gallery samples
of many datasets for training, while adapting using target samples from only a particular dataset
before testing on the same. A chimeric dataset is formed for training as given in left column of table
3, which can be considered as a large unbiased dataset not overfitted to any particular environment
of acquisition. The results are reported in table 3.

')

(a)

SML_MFKC
~=deepMSDA
=——=DAN
—FaceNET
==deep-DA

v 2 3 4 3 & 71 8 9 10

SML_MFKC
—deepMSDA
—DAN
——FaceNET
—deep-DA

s 10 12

SML_MFKC
—deepMSDA

Recognition Acuuracy
°

Recognition Acuuracy

.
Rank

= =
< 5 ( )
] 3
0.5] SML_MFKC 0.5 SML_MFKC 0.5 ‘SML_MFKC
—deepMSDA —deepMSDA ——deepMSDA
=—=DAN —DAN =——DAN
==FaceNET =——FaceNET ==FaceNET
i —deep-DA g —deep-DA i —deep-DA
+ - L o 02 [ os o8 1 o 02 04 08 o8 1
FAR FAR Fan

Fig. 4: (a) The CMC and (b) the ROC curves, showing superiority of our model, on the three datasets, from
left to right, SCFace, ChokePoint and FR_.SURV_VID. The curves marked in red show the results of our
proposed method. Performances are shown only for the next 5 best performing methods (from those in table
2) used for comparison, as: SML_MFKC [BD16], deepMSDA [Ch14], DAN [LW15] and FaceNet [SKP15].
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Tab. 3: Recognition Rate (%) when trained with two different large scale Chimeric Datasets. The degradation
in performance range from 1 — 5%, when compared to last rows of table 2.

Training Datasets =~ Adapting & Testing Dataset Recognition Rate (%)

SCFace + SCFace 82.11
FR_SURV_VID + FR_SURV_VID 69.11
ChokePoint ChokePoint 90.32

None of the performances are better than those in the last rows of table 2, when compared dataset-
wise respectively. This simply indicates an obvious fact that the best performances for each of the
datasets under experimentation at at the bottom rows of table 2, when the same dataset is used for
training/testing/target-adaptation. The amount of degradation in performance, when training is
done using an unbiased, large chimeric dataset, range from 1 — 5% (compare last rows of table 2,
with the last column of table 3).

4.3 Cross-dataset Adaptation on surveillance datasets

In this mode of experimentation, the training dataset used at stage 1 of 3-MET is different than
that used for stage 2 (adaptation). Specifically, training at stage 1 of 2-MET is done using gallery
samples from a dataset, while the model is adapted to the target domain in stage 2 using target
samples from a different dataset. The probes for test dataset are chosen to be either of the ones
used for training at stage 1 or adaptation at stage 2 (latter being mostly a relevant use). The
results showing the performance analysis for all the different pairs of combinations of training
and adaptation datasets, are reported in table 4. Performance appears as a mixed bag. It appears
that the FSV dataset is the toughest dataset to adapt or learn (when comparing row-wise average
performances; also see lower rates at the last column of table 4). ChokePoint (CP) seems to be the
simplest among the three to learn, as a combination of CP in adaptation and test probes gives the
best accuracy (in general, 2" column from right has higher rates on an average). Our method is
highly sensitive to the combination of training and adaptation datasets. In all cases, the performance
degrades considerably if the training and adaptation datasets differ (compared to the accuracies
reported in the last two rows of table 2). Exhibiting such findings has been the main purpose of
this part of the experimentation.

Tab. 4: Rank-1 recognition rate (in %) of deep-DA for cross-dataset adaptation.

Sl | Training | Adapt- Test Probes
ation SCface CPpP FSV

[GDG11] [Woll]
1 | SCFace | CP 70.46 72.36 |-
2 | SCFace | FSV 75.16 - 61.25
3 | CP SCFace | 71.81 79.26 |-
4 | CP FSV - 78.65 59.17
5 | FSV SCFace | 78.24 - 66.87
6 | FSV CP - 80.16 | 63.02
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5 Conclusion

The proposed deep-DA method efficiently transforms the source data to the target domain under
limited target supervision. The three major contributions of the paper are: (a) it proposes a
novel adaptive-CNN architecture, called deep-DA; (b) training done with a novel 2-stage Mutually
Exclusive Training (2-MET); (b) rigorous experimentations performed on three real-world degraded
face datasets show the superiority of our method. The fine-tuning of the model at stage 2 of 2-MET
boosts the performance of FR. The 2-MET algorithm proposed in this paper maintains the principle
of DA, where the source model remains unaltered during training. Our method outperforms all
other recent state-of-art techniques for the 3 benchmark face datasets. Scalability of deep-DA may
be verified with large real-world degraded face datasets when available to researchers.
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