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Periocular Recognition Using CNN Features Off-the-Shelf

Kevin Hernandez-Diaz', Fernando Alonso-Fernandez' and Josef Bigun'

Abstract: Periocular refers to the region around the eye, including sclera, eyelids, lashes, brows
and skin. With a surprisingly high discrimination ability, it is the ocular modality requiring the least
constrained acquisition. Here, we apply existing pre-trained architectures, proposed in the context of
the ImageNet Large Scale Visual Recognition Challenge, to the task of periocular recognition. These
have proven to be very successful for many other computer vision tasks apart from the detection and
classification tasks for which they were designed. Experiments are done with a database of periocular
images captured with a digital camera. We demonstrate that these off-the-shelf CNN features can
effectively recognize individuals based on periocular images, despite being trained to classify generic
objects. Compared against reference periocular features, they show an EER reduction of up to ~40%,
with the fusion of CNN and traditional features providing additional improvements.
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1 Introduction

Periocular biometrics represent a trade-off between using the iris (which may not be avai-
lable in long distances due to low resolution, e.g. surveillance) and the face (which may be
partially occluded, either accidentally or intentionally). It has attracted noticeable interest
in recent years, being one the most discriminative regions of the face [AFB16]. It is also
very suitable for non-cooperative biometrics, since it can be captured largely relaxing the
acquisition conditions. In addition, it has shown to be more resistant to expression varia-
tion [SBK15], aging [Jul1l], plastic surgery [JR12], or gender transformation [MRA14],
as compared with the entire face. Apart from serving as a stand-alone modality, it can also
be combined with iris or face [AMB15] to improve the overall performance.

Convolutional Neural Networks (CNNs) have become a very popular tool in many vision
tasks. Their application to biometrics is however limited, with recent works on face recog-
nition [PVZ15] and detection [Lil5], iris recognition [Ng18], soft-biometrics, and image
segmentation [BK17]. One reason of such limited research is the lack of big amounts of
training data, as required by deep learning methods. Inspired by the work of Nguyen et al.
in iris [Ng18], this paper leverages the power of existing pre-trained architectures which
have proven to be successful in very large recognition tasks. This eliminates the neces-
sity of designing and training new CNNs for the specific task of periocular recognition,
which may be infeasible given the mentioned lack of large-scale data. In particular, we
choose those from the series of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). These are trained on more than a million images of the ImageNet database?,
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Fig. 1: Extraction of periocular features from different CNN layers.

and it can classify images into 1000 object categories. Apart from obtaining leading posi-
tions in ILSVRC, these off-the-shelf networks have also proven very successful in many
other tasks apart from the object detection and classification for which they are desig-
ned [Ral4]. Here, we investigate those architectures in the context of periocular recogni-
tion. We compare them against traditional baseline Local Binary Patterns (LBP) [OPMO02],
Histogram of Oriented Gradients (HOG) [DT05] and Scale-Invariant Feature Transform
(SIFT) key-points [Lo04]. We employ a database of 1,718 periocular images captured with
a digital camera at several distances. Our experiments show that Off-the-Shelf CNN featu-
res from these popular architectures can outperform traditional features, with Equal Error
Rate (EER) reductions of up to ~40%. We also show that fusion of CNN and traditional
features provides additional performance improvements.

2 Periocular Recognition Using CNN Features

This section describes the basics of the CNN architectures used. Features are extracted
from the different layers (Figure 1). Apart from convolutional layers, we also extract fea-
tures from max pooling, ReLU, dropout, and fully connected layers. For this purpose, we
employ the pre-trained models in Matlab 12018a.

AlexNet [KSH12] obtained the 1% position in ILSVRC 2012. The network achieved a
breakthrough in this competition, with a top-5 error of 15.3%, more than 10.8% percentage
points ahead of the runner up. It has 25 layers (including 5 convolutional layers).

GoogLeNet/Inception vl [Sz15] is the winner of ILSVRC 2014 with a top-5 error of
6.7%. Its novelty is the use of inception modules. These employ convolution filters of
different sizes in the same layer, allowing multi-level feature extraction. To reduce the
number of parameters, convolutions of 1x1 are first applied. Improvements were added
in later versions by redesigning the filter arrangement in the inception module, and by
employing more inception modules [Sz16, Sz17]. Here, we use GoogLeNet/Inception v1,
with 144 layers (including 22 convolutional layers).

ResNet [Hel6] introduced the concept of residual connections to ease the training of
CNNs. By reducing the number of training parameters, they can be substantially deeper.
The key idea is to make available the input of a lower layer to a higher layer, bypassing
intermediate ones. With an ensemble of residual networks, they won ILSVRC 2015, with
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a top-5 error of 3.57%. Here, we employ ResNet50 and ResNet101, having 177 and 347
layers (including 50 and 101 convolutional layers respectively).

VGG and VGG-Face. Runner-up of ILSVRC 2014, VGG [SZ14] is a deeper network (in
comparison to AlexNet in 2012) in which complexity is kept tractable by using very small
33 convolutional filters sequentially that emulate larger ones. The most popular versions
are VGG16 and VGG19 (with 16 and 19 convolutional layers respectively). Here, we
employ VGG16, which has 41 layers in total. They later presented VGG-Face [PVZ15],
based on VGG16, evaluated with ~1 million images from the Labeled Faces in the Wild
[HuO07] and YouTube Faces [WHM11] datasets.

3 Experimental Framework

3.1 Baseline Systems

As baseline descriptors, we employ the most widely used features in periocular research
[AFB16]: LBP, HOG, and SIFT. In HOG and LBP, the image is decomposed into 8 x8
non-overlapped regions. Then, HOG and LBP features are extracted from each block. In
HOQG, the histogram of gradient orientations is built, with each bin accumulating corre-
sponding gradient magnitudes. In LBP, each pixel is assigned a 8-bits label by threshol-
ding the intensity with each pixel in the 3x3 neighborhood. The binary labels are then
converted into decimal values and accumulated into an histogram. Both HOG and LBP
are quantized into 8 bins histogram per block. Histograms from each block are then nor-
malized to account for local illumination and contrast variations, and concatenated into a
single descriptor of the whole image. Authentication with HOG and LBP is done by sim-
ple distance measures. Euclidean distance is usually used [Pal1], but it has been observed
that the 2 distance gives better results with normalized histograms, therefore we will use
it in this work. Regarding the SIFT descriptor, key-points extraction is done first using
difference of Gaussians functions in the scale space. A feature vector of 4 x4 x 8 = 128 is
then obtained by computing 8-bin gradient orientation histograms (relative to the dominant
orientation to achieve rotation invariance) in 4 x 4 sub-regions around the key-point. The
recognition metric is the number of paired key-points between two images. We employ
a free implementation of the SIFT algorithm*, with the adaptations described in [A109].
Particularly, it includes a post-processing step to remove spurious pairings by imposing
additional constraints to the angle and distance of paired key-points.

3.2 Database and Protocol

We employ the UBIPr periocular database [PP12]. It was acquired with a CANON EOS
5D digital camera in 2 sessions, with distance, illumination, pose and occlusion variability.
The distance varies between 4-8m in steps of 1m, with resolution from 501x401 pixels
(8m) to 1001 x801 (4m). For our experiments, we select 1,718 frontal-view images from
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Fig. 2: Images from the UBIPr database (relative scale difference between images is shown).

86 individuals (corresponding to users with 2 sessions), having 86 x2=172 available eyes.
Two images are available per eye and per distance, resulting in 172x2=344 images per
distance. All images have been annotated manually, so radius and center of the pupil and
sclera circles are available. Images of each distance group are resized via bicubic inter-
polation to have the same sclera radius (we choose the average sclera radius R, of each
distance group, given by the ground truth). We use the sclera for normalization since it
is not affected by dilation (as it is the case of the pupil). Then, images are aligned by
extracting a square region of 7.6R; x 7.6R; around the sclera center. This size is set em-
pirically to ensure that all images have sufficient margin to the four sides. Further, images
are converted to gray-scale, and contrast is enhanced by Contrast-Limited Adaptive His-
togram Equalization (CLAHE) [Zu94] to compensate variability in local illumination. We
employ CLAHE since it is usually the preprocessing choice with images of the eye region
[RU10]. An example of normalized images is shown in Figure 2. Additionally, we posi-
tion a mask on the whole iris region, in line with [Pall]. This is to ensure that periocular
recognition is not achieved by using information from captured high quality iris patterns
[Sel6]. Finally, we resized the images to match the input size of each CNN, and subtract
the pixel-wise mean image of the whole database to improve recognition.

We carry out verification experiments, with each eye considered a different user. For gen-
uine trials, we compare all images of a user among them, avoiding symmetric compari-
sons. This results in 7,722 user scores. Concerning impostor experiments, the first image
of a user is used as enrolment image, and it is compared with the second image of the
remaining users, resulting in 172x171=29,412 scores. Fusion experiments are also done
between different comparators. We use linear logistic regression fusion. Given N compa-
rators which output the scores (s1;,52;,...sx;) for an input trial j, a linear fusion of these
scores is: f; = ap+ay -s1j+az-s2j+ ... +ay -syj. The weights ag,ay,...ay are trained
via logistic regression [AlO8] using two-fold cross validation. We use this trained fusion
approach because it has shown better performance than simple fusion rules (like the mean
or the sum rule) [AlO8]. Nonetheless, this is a weighted sum rule, though the coefficients
are optimized by a specific rule [Bi97].

3.3 Results

Normalized periocular images are fed into the feature extraction pipeline of each CNN.
To investigate the representation capability of each layer, we report the corresponding re-
cognition accuracy using features from each layer. The extracted CNN feature vectors are



Periocular Recognition Using CNN Features Off-the-Shelf 5

alexnet googlenet resnet50

50 5 10 15 20 25 0 50 100 150 200
Layer Layer

30 resnet101 » vgg-face

20

o

w

w5

10

50 100 200 300 400 10 15 20 25 30 35 10 15 20 25 30 35 40
Layer Layer Layer

Fig. 3: Verification results (EER) of different CNN layers.

compared by simple distance or similarity measures. In particular, we evaluate the Eucli-
dean distance, the x? distance, and the cosine similarity. The EER is given in Figure 3. As
it can be observed, the y? distance and the cosine similarity consistently provide better re-
sults than the Euclidean distance. This is an indication that the norms of the feature vectors
are not informative, because cosine similarity and Euclidean distance are mathematically
equivalent if vectors have the (Euclidean) norm 1. It is also worth noting that EER has the
minimum in some intermediate layers for all CNNs. The lowest EER is obtained at (refer
to Figure 3): layer 13 with cosine similarity (AlexNet), layer 34 with y? distance (Goo-
gLeNet), layer 73 with y? distance (ResNet50), layer 170 with x2 distance (ResNet101),
layer 27 with 12 distance (VGG16), and layer 25 with xz distance (VGG-Face). The more
intricate architectures of GoogLeNet (with inception layers which act as small networks
inside a larger network) and Resnet (which skips connections to bypass nodes) may ex-
plain the oscillations observed between consecutive layers. The simpler architecture of
AlexNet and VGG (which consists of single layers stacked one after the other) results in
a smoother behavior. Also, according to [Ng18], the inception modules in GoogLeNet are
able to quickly converge to the minimum, as can be seen in Figure 3. ResNet, on the other
hand, results in a minimum at a deeper depth (specially ResNet50) due to skipping con-
nections between layers. AlexNet and VGG also converge at deeper depths. AlexNet has
its minimum around layer 13, which in the Matlab implementation employed is after the
4" convolutional layer (out of 5 convolutional layers). VGG networks have the minimum
in layers 25-27, which is after the 11" convolutional layer (out of 16 convolutional layers).
Since VGG filters are smaller, it is expected that it takes more convolutional layers than
other networks until the optimum performance is achieved.

In the remainder of this paper, we employ the best configuration of each CNN mentioned
above. DET curves and performance figures of those cases are shown in Figure 4 (left) and
Table 1 (center). We also provide the performance of LBP, HOG and SIFT descriptors,
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and the EER of the SIFT+LBP+HOG combination from a previous study using the same
database with only frontal images [PP12]. It should be noted that another setup of the
matchers is used in that study which may explain the different results, including different
ROI selection, a different fusion scheme and the use of Euclidean distance with LBP and
HOG. As it can be observed, the CNNs outperform the EER of the baseline features in
all cases, as well as the FRR in most cases. The best results are given by the ResNet
architectures, which also happens to be the deepest and the best performing ones at the
ILSVRC challenges. The best CNN is ResNet101, with an EER of 5.6% and a FRR of
14% at FAR=1%. This is about 40% less than the performance of the baseline features.
GoogLeNet and VGG also provide good FRR performance. AlexNet, on the contrary, is
the worst performing CNN, which may be attributed to its simpler and shallower structure.
It is also interesting to note that VGG-Face does not perform as well as VGG or other
CNN:ss, despite being tuned to work with face images.

To study complementarity between CNN and baseline features, we also carry out fusion
experiments, with results given in Figure 4 (right) and Table 1 (right). The performance in
all cases is further improved w.r.t. the individual systems. The best combination involves
(again) ResNet101, with an EER of 5.1% and a FRR of 11.3%. This is only a 8% impro-
vement in the EER, but nearly a 20% improvement in the FRR. This is interesting for high
security applications, since operating points are usually defined at small FAR values.

baseline CNNs baseline+CNNs

system EER FRR system EER FRR system EER FRR
LBP 17.8%  48.0% alexnet 84%  26.1% alexnet 6.9% 17.5%
HOG 113% 31.2% googlenet  7.0% 15.9% googlenet  6.0% 13.3%
SIFT 16.6%  30.1% resnet50 64%  15.4% resnet50 5.8% 12.7%
all 9.1% 21.8% resnetl0l  5.6% 14% resnetl0Ol  5.1% 11.3%
all* 16.0% n/a vgglo 6.8% 16.6% vgglé 6.1% 13.2%
*According to [PP12] vgg-face 6.7%  17.9% vgg-face 5.5% 13.5%

Tab. 1: Verification results of the baseline systems (left), of the best layer of each CNN (center), and
of the fusion experiments (right). FRR is given at FAR=1%.

4 Conclusions

This paper deals with the task of periocular recognition using off-the-shelf CNN archi-
tectures, pre-trained in the context of the ImageNet Large Scale Visual Recognition Chal-
lenge. Originally trained for generic object recognition, they have also proven to be very
successful for many other vision tasks [Ral4]. In this paper, we test the popular AlexNet
[KSH12], GoogLeNet/Inception [Sz15], ResNet [Hel6], and VGG [SZ14, PVZ15] archi-
tectures. Features are extracted from different layers, with comparison between feature
vectors done by simple distance or similarity measures. They are evaluated with a data-
base of frontal periocular images taken with a digital camera. Our experiments show that
these popular architectures can outperform traditional features encompassing Local Bi-
nary Patterns, Histogram of Oriented Gradients, and Scale-Invariant Feature Descriptors
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Fig. 4: Verification results (DET curves). Left: individual systems (baseline systems and best layer
of each CNN). Right: fusion experiments (CNN+baseline systems).

[Pal1], with EER reductions of up to ~40%. This shows the effectiveness of those generic
objects classifiers to the periocular recognition problem as well.

Future work includes extending our framework to another periocular databases, both with
visible and near-infrared illumination, and to non-frontal images. Another approach to
cope with the lack of large databases in the periocular domain is to fine-tune off-the-
shelf pre-trained architectures as the ones employed here. A common approach to reduce
complexity is to keep initial layers fixed and only fine-tune some high-level layers, because
earlier layers usually contain generic features useful to many related tasks, but later layers
become progressively more specific to the problem at hand. Exploiting features from video
frames to improve performance is another avenue, thanks to architectures capable to cope
with dynamic information, such as Recurrent Neural Networks.
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