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Abstract: This paper evaluates various information-theoretical methods for the 

generation of health signals in the Organic Robot Control Architecture (ORCA). 

Also a new method based on the joint probability distribution of signals is 

proposed. The results show that the new method is superior to the known ones for 

the studied worst-case artificial and real scenarios. As an example for the 

application of health signals in ORCA, an adaptable path planner is described 

which considers the health status of a partially damaged robot. 

1 Introduction 

Autonomous mobile robots are becoming more and more complex in order to be able to 

execute more and more challenging tasks. Therefore, they also need sophisticated 

control systems which are able to master their complexity. With the complexity of a 

system the probability that it becomes faulty also increases. For mobile robots there are 

not only internal faults but also interaction faults with its environment. To ensure a high 

reliability and availability these faults have to be handled by the control system for 

achieving fault tolerance. Classical fault tolerance techniques which are mostly based on 

some kind of replication are, however, not suitable, since they require a considerable 

amount of additional redundant components which mean higher cost and energy 

consumption. Instead the natural redundancy of the system should be exploited and a 

fail-soft behaviour achieved. 

Natural organisms show a high degree of fault tolerance in order to be able to survive. 

An example is the immune system which allows to checking the body for infections and 

reacts by destroying the intruders to restore health. Often self-organisation is used in 

organisms to allow a flexible response to abnormal situations. Organic computing is an 

approach to make these properties also available to complex embedded computing 

systems.  

ORCA (Organic Robot Control Architecture) is a software framework developed at the 

University of Lübeck which supports the implementation of organic computing 
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principles in particular for robotic systems. In ORCA so-called health signals are used to 

represent the health status of the robot. If the health signal drops, the control system 

reacts by organizing itself to continue the robot’s mission in the best still possible way.  

Thus, the generation of such health signals, which is the main subject of this paper, plays 

an important role in ORCA. Health signal generation is a very challenging task since it 

must be able to distinguish between normal healthy behaviour and abnormal faulty 

behaviour for very many, also unforeseen situations. An explicit fault model usually 

assumed in classical fault tolerance would become much too complex and is therefore 

not applicable.  

Several concepts have already been proposed for health signal generation. One approach 

is inspired by the immune system and uses fuzzy rules with adaptable weights to detect 

abnormal situations [BrR08, JaM08]. Another concept is based on information theory 

and uses e. g. mutual information of signals for health signal generation [LJE07]. The 

latter approach will be further elaborated in this paper. 

It has been an ongoing scientific interest to rate and measure the degree of information 

for given data sets in general. Different interpretations and approaches can be found in 

[HeQ95, PMV03, CoT06]. This includes for example varying normalizations of the 

mutual information like the ones presented in [LJE07] and [SHH99] that serve as a basis 

for this work. 

The paper is organized as follows. First the ORCA framework is briefly presented in 

Chapter 2. Then the information-theoretical background used for health signal 

generation is given in Chapter 3. Besides already known approaches, also a new method 

based on the joint probability distribution of signals is introduced. To assess the quality 

of health signal generation, in Chapter 4 artificial worst case as well as real scenarios are 

evaluated for the proposed methods. Finally, Chapter 5 describes an example of the use 

of health signals for adaptable path planning for partially damaged robots. 

2 Organic Robot Control Architecture (ORCA) 

2.1 ORCA Framework 

ORCA is a hierarchical and modular architecture which is based on two types of 

modules. Basic Control Units (BCUs) provide the basic functionality of the control 

system. The organic behaviour is implemented by separate Organic Control Units 

(OCUs). They constantly monitor the BCUs. In case OCUs detect an anomaly, they are 

able to change the behaviour of the BCUs so that the anomaly is handled in the best still 

possible way. The BCUs alone are sufficient to assure the functionality of the robot in 

the normal case, OCUs come only into play for abnormal situations.  

Fig. 1 shows as simple example a differential drive of a wheeled mobile robot 

[MMG12]. There is a BCU on the drive layer which provides the interface of the drive to 

higher layers (not shown) with primitives like FORWARD, TURN LEFT, TURN 
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RIGHT etc. Its main function is to compute the corresponding speeds for the two motors 

which are given to separate motor controllers for the right and the left motor. These 

BCUs alone already implement the full functionality of the drive in the fault-free case. 

To support fault tolerance two additional OCUs are provided, one for each motor 

controller. They monitor their BCU for abnormal behaviour. If a motor shows e. g. a 

slower speed because it is damaged, they can counteract by changing the parameters like 

the set point of their motor controller. 

ORCA has already been applied successfully to the walking robot OSCAR and allows it 

e.g. to continue walking even with damaged legs or to adapt to difficult terrain 

[MBG11]. 

 

Figure 1: BCUs (white) and OCUs (gray) for a differential drive in ORCA. (Figure taken from 

[MMG12].) 

2.2 Health Signals 

An important concept of ORCA are health signals. They give an indication of the health 

status of a BCU which is monitored by an OCU. In abnormal situations the health signal 

drops and causes an OCU to intervene similarly to the natural immune system in case of 

an infection of the body. For the differential drive in Fig. 1 the motor controller BCUs 

generate a health signal which indicates the health state of their motors respectively. 

These health signals can be passed to other OCUs and combined to the health state on a 

higher layer, e. g. in the example in Fig. 1 for the whole drive. 

3 Information-Theoretical Background 

This chapter gives a brief introduction to the required information-theoretical 

background in section 3.1 by defining some basic identifiers and measures that are used 

to describe or rate signals. On this basis, section 3.2 presents special normalizations of 

the mutual information measure. Finally Section 3.3 introduces the signal classification 
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��� as a measure to evaluate the similarity of two signals by analyzing their joint 

probability. 

3.1 Signal Analysis 

Let � �� ��	A �BA C A �DEBF be a discrete signal of length �, where �� with � � � � � � � is 

the current value at time �. For each signal � there is a finite sample space �� �
���A ��F. In this context �� � ����F	A ���FBA C A ���F�EB� is the set of elementary events 

in �, where each item ���F ! �� with � � " � # � � has a probability of occurrence 

$����F F ! %�A�& resulting in the vector �� � �$����F	FA $����FBA C A $����F�EBFF. 

Hereafter $  with � � " � # � � is used as a short form for $����F F. 

A visual representation of �� is a histogram. This means that the elementary events in �� 

are plotted against their respective probabilities. 

Let �� � ��� A ��F and �' � ��' A �'F be the sample spaces of two signals � and (. The 

joint sample space of these signals is then given as ��' � ��� ) �' A ��'F. The product 

set is defined as �� ) �' � *+���F A ��'F,-. " � �AC A # � �
/ � �AC A0 � �1. Hereafter � ,  is used as a 

short form for +���F A ��'F,- and $ ,  stands for the joint probability $+� ,-. 

A visual representation of ��' is a two dimensional histogram, where �� is plotted 

against �' and the joint probability of each possible combination is depicted as an 

intensity value.  

The entropy of a given signal � is defined as 23���F �� �4 $ 5673 $ 89!:; , where < is 

used to set the base of the information measure. Common values of < are 2 (bit), = (nat) 

and 10 (Hartley) [HeQ95]. The joint entropy of two signals � and ( is defined 

accordingly as>23���'F � �4 $ , 567? $ ,89@!>:;A . 

3.2 Mutual Information 

Different definitions of the mutual information can be found throughout literature 

[HeQ95, PMV03, CoT06]. One possible definition focuses on the entropies of the 

involved signals and their joint entropy. In this context the mutual information is defined 

as B3��A'F � 23���F C 23��'F � 23���'F and may reach maximal values if the joint 

entropy is minimal. It is furthermore possible to use normalized versions of the mutual 

information like BD3��A (F � > EF>��A'F
GF�H;FIGF�HAF [LJE07] or BJ3��A (F � > GF�H;FKGF�HAF

GF�H;AF  

[SHH99]. 

In the context of health signal generation it is highly undesirable to use unbound 

measures like B3  and BD3. Therefore, this paper presents variants of these measures that 

are normalized with reference to a given signal. The goal of this approach is to achieve 

codomains that are bound by a [0, 1] interval. The basic idea of the normalization step is 
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to scale a given mutual information measure with the best possible fit of two signals. 

This results in the following three definitions: 

B3>� ��A (F � > B3��A (F
B3��A �F 

BD3���A (F � BD3��A (F
BD3��A �F 

BJ3���A (F � BJ3��A (F
BJ3��A �F 

 A detailed derivation can be found in [Maa14]. 

3.3 Signal Classification 

As mentioned in section 3.1 the joint entropy of two signals can be represented as a two- 

dimensional histogram. The distribution of elementary events within such a histogram 

depends on the characteristics of the involved signals. If two signals have a perfect 

match, their elementary events occur only in identical pairs. Therefore the two- 

dimensional histogram of �'' � ��' ) �' A �''F exhibits a diagonal. The more two 

signals differ from each other, the more their elementary events migrate away from the 

diagonal. In the worst case all elementary events are equally spread across the whole 

histogram. 

The basic idea behind the signal classification approach is to rate the deviation of each 

elementary event �  from the diagonal LM in the joint probability distribution. Fig. 2a 

gives a visual impression of this approach. The diagonal of a perfect match goes from 

the bottom left corner to the top right corner and is called LM. The spatial boundaries are 

given by the two points �NOPQA ROPQF and �NOSTA ROSTF which are the minimal and maximal 

elementary events of two signals U and V. The deviation of �  is measured as the 

perpendicular distance WXYZZZMW of �  to its foot on LM. This results in the fact that different 

maximal deviations are possible, depending on the position of the foot point. Fig. 2b 

illustrates this effect. As can be seen the vectors [M  and [\ZZM show the relation W[M W ] W[M,W. For 

an actual rating in the context of health signals such a behaviour is undesirable because 

each elementary event should be considered with the same weight. 

To smooth the weights of varying elementary events, the deviation of �  is observed on a 

relative basis as # � W M̂9W
W_M9W . In this way the deviation is observed relative to its potential 

maximum. It has to be noted that this relation is only correct for square histograms, but 

is also used for rectangular histograms due to performance aspects. 

Based on the previous considerations a precursor signal classification is defined as 

�>��A (F � 4 # $ �EB `	  with $ ! ��'. Furthermore, a normalized version of this function 
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is defined as ����A (F � a>��A'F
� . This allows it to bind the classification to a range of [0, 

1]. As a last step the final signal classification is defined as 

�����A (F � � � ����A (Fb 
A detailed derivation of the signal classification and an appropriate allocation of c can 

be found in [Maa14]. 

  

 (a) Two-dimensional histogram (b) Distance relations 

Figure 2: (a) shows a two-dimensional histogram for the two signals U and V. The diagonal LM 
represents a perfect match of U and V. The elementary event �  deviates from this match. (b) 

illustrates different maxima that occur for varying foot points on LM. (Figures taken from [Maa14].) 

4 Health Signal Generation 

This chapter presents test scenarios for the previously introduced methods for health 

signal generation. These methods are then evaluated and compared with a reference 

method for all test scenarios. 

4.1 Methods 

The basic idea of the information-theoretical approach is to use signal properties like 

entropy, mutual information or probability distribution to distinguish normal signals 

from abnormal ones and to compute a health signal based on the extent of the deviation.  

A straight-forward approach to measure the similarity of two signals � and ( is to 

simply compute the sum of absolute differences between them  

def��A (F � >gh� � i h
DEB

 `	
A 

which is in the following taken as a reference. 
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Furthermore, the three mutual information-based measures defined above  

B3�A BD3�A BJ3� 

are used for health signals. 

Also the new method for signal classification  

�����A UF 

which is based on the joint probability distribution of two signals S and X is evaluated. 

4.2 Test Scenarios 

In the following the quality of health signal generation for the information-theoretical 

approach shall be evaluated. For this purpose, nine representative scenarios are defined 

and the health signal generation according to the five methods described above are 

compared.  

All scenarios assume three different observed signals:  

- an optimal signal for the given situation  

- a similar fault-free signal 

- a faulty signal.  

Scenarios 1 to 6 are artificial worst-case scenarios, scenarios 7 to 9 use real measurement 

data from damaged robots. In the first three scenarios and the real scenario 7 the 

abnormal signals differ in their levels form the normal ones, in scenarios 4 to 6 and 8 

there is a loss of structure in the abnormal signal, e. g. due to noise. All scenarios are 

described in detail in [Maa14]. As an example scenario 9 is elaborated in the following.  

A real mobile robot has been used for health signal generation (Fig. 3). It uses two kinds 

of sensors for obstacle avoidance: two ultrasonic distance sensors (US) on the left and 

right front side with the cones shown in Fig. 3 and an infrared distance sensor (IR) 

pointing in the forward direction with a very narrow cone pictured as a red line. The 

BCUs of the robot execute a simple reactive obstacle avoidance behaviour which is 

based on potential fields and vector addition. The resulting robot trajectory is 

represented by the dotted line. An OCU monitors the signals from the US and IR 

sensors. For the experiment, the average of the US sensor signals is taken as a fault-free 

reference signal �. The fault-free signal of the IR sensor is signal (B demonstrating a 

fault-free normal case. In order to inject a fault, the IR sensor is detached from its A/D 

converter resulting in a low level noisy signal (j for this abnormal case. All three signals 

are smoothed by a median filter to reduce noise and smooth signal inconsistencies that 

are caused by the layout of the sensors.  
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Figure 3: Mobile Robot with US- and IR-Sensors from Scenario 9. (Figure taken from [Maa14].) 

4.3 Results 

For the real world scenario 9 described above, the measured signal � for the optimal 

case, signal (B for the similar normal fault-three case and signal (j for the abnormal 

faulty case are shown in Fig. 4a. All three signals have a similar course until the fault is 

injected at � � klk. Then signal (j of the IR sensor drops to a low nearly constant level 

while the normal fault-free signals � and (B continue to run very similarly to each other 

while the robot continues moving.  

In Fig. 4b to Fig. 4f the corresponding health signals according to the five methods 

presented in Chapter 4.1 are pictured. As can be seen all health signals react to the fault 

in (j by dropping, however, with different characteristics. For the fault-free sensor 

signal (B, all health signals have a lower value than expected. 

The two mutual information-based measures in Fig. 4b and 4d look similar and are able 

to clearly distinguish between the normal and abnormal situation. However, also in the 

fault-free case they only have a low health value although the system is healthy. This is 

better for Fig. 4c, but here the difference between the faulty and fault-free situations is 

not so clear any more. The SAD method in Fig. 4e has a rather high health signal as long 

as no fault occurs and then drops clearly. However, it later rises to a high level again 

though the fault is still there. As can be seen from Fig. 4a, this happens because the 

signal level for the fault-free sensors � is also very low from � � ��l� to �l�� resulting 

in only a small absolute difference to the faulty signal (j. In summary, the health signal 

generation is not satisfactory for all these four methods. 

The best results are observed for the new proposed probability distribution-based method 

in Fig 4f. It generates high health signal values for the normal case and clearly lower 

ones in case of the anomaly. It can be observed that �����A (jF shows a light reaction to 

the fault at first and then a strong reaction. This effect occurs because the signals were 

not completely assessed at once, but with a sliding window. The weaker reaction shortly 

after the fault can be explained by the fact that the window still holds fault-free values 

that keep the rating at a certain level. The health signal drops significantly, when the 

sliding window has gathered enough faulty data and the structure of the corresponding 

two-dimensional histogram changes.  
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 (a) Signals S, R1 und R2    (b) BB	� ��A UF 

  
 (c) BDB	� ��A UF    (d) BJB	� ��A UF 

  
 (e) def���A UF    (f) mn���A UF 

Figure 4: Results for Health Signal Generation in Scenario 9. (Figure based on [Maa14].) 
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A summary of all studied measures and all scenarios is shown in Tab. 1. Six categories 

are used to indicate the performance of all methods. If the resulting signals show positive 

and negative aspects the corresponding method is rated with ob> pP7qr> rsQtsQuPsv> r6>
sPrqsw>x6vPrPys>6w>Qs7SrPys> wsvz5rv>Sws> wsxwsvsQrst>{|>}>6w>~b>drw6Q7> rsQtsQuPsv>
Sws> vq6�Q>Sv>}}>6w>~~b> ��> S>Osrq6t> Pv>Q6r>Sxx5PuS{5s> PQ>S>7PysQ>vusQSwP6A> Pr> Pv>
OSw�st>�Prq>�b 
It can be seen that the new method based on joint probability distributions is superior to 

the three methods based on mutual information and SAD (Sum of Absolute Differences) 

for the studied scenarios. The measures based on mutual information are even worse 

than SAD in most cases and turn out to be not suitable for health signal generation. 

Table 1: Summary of the Evaluation of Health Signal Generation for Scenario 1 to 9. (Figure 

based on [Maa14].) 

Scenario B3� BD3� BJ3� def� ��� 

1 � � � } }} 

2 ~~ � ~~ } }} 

3 � � � } } 
4 � � � � } 

5 ~~ � ~~ � } 

6 o o o o } 
7 � ~~ ~~ } } 

8 � ~~ ~~ } } 

9 o o o o } 

5 Adaptive Path Planning 

In this chapter an outlook is given on how health signals can be used for adaptive path 

planning in difficult terrain for injured mobile robots (e.g. wheeled robots with damaged 

drives or walking robots with damaged legs [MBG11]). For this purpose, a classical 

wavefront-based path planner [BLL92, Jar95] is executed by a BCU. In case of a 

lowered health signal, the OCU modifies the map of the terrain by changing those areas 

which are too difficult to pass for the current health status of the robot into obstacles. 

Thus the BCU replans the path around them (see Fig. 5). A detailed description and 

evaluation of different approaches can be found in [MaM11, Maa14]. 
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Figure 5: Adaptive Path Planning for a mobile robot based on health signals (left: 100% healthy, 

right 90% healthy). Difficulties of the terrain are shown as grey levels, obstacles in red. (Figure 

taken from [Maa14].) 

6 Conclusion 

This paper has presented an evaluation of the quality of health signal generation for 

various information-theoretical methods in the ORCA framework. Health signals are 

used in ORCA by Organic Control Units (OCUs) in order to describe the health status of 

Basic Control Units (BCUs) monitored by them. It turned out that SAD as well as known 

mutual information-based measures do not always yield satisfactory results. Only a 

newly proposed method based on the joint probability distribution of signals showed the 

desired properties. It was also presented how health signals can be used to plan a suitable 

path through difficult terrain so that even partly damaged robots can reach their goal. 

Future comparative studies should also include other than information-theoretical 

methods like e.g. fuzzy rule sets. Moreover, it needs to be studied further which 

information about the health status of a BCU is actually required by higher levels like 

the path planner. The health signal alone only gives a quantitative measure on how 

healthy a robot is but does not say what kind of damage it has and what capabilities still 

remain. Therefore, it can be desirable that the OCUs at higher levels are able to request 

this information from OCUs at lower levels. 
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