
An Overview on Querying and Learning in Temporal

Probabilistic Databases

Maximilian Dylla∗

Google

Paris, France

maxdylla@google.com

Abstract: Probabilistic databases store, query and manage large amounts of uncertain
information in an efficient way. This paper summarizes my thesis which advances
the state-of-the-art in probabilistic databases in three different ways: First, we present
a closed and complete data model for temporal probabilistic databases. Queries are
posed via temporal deduction rules which induce lineage formulas capturing both time
and uncertainty. Second, we devise a methodology for computing the top-k most
probable query answers. It is based on first-order lineage formulas representing sets of
answer candidates. Moreover, we derive probability bounds on these formulas which
enable pruning low-probability answers. Third, we introduce the problem of learning
tuple probabilities, which allows updating and cleaning of probabilistic databases, and
study its complexity and characterize its solutions.

1 Introduction

In the last decade, we saw another big rise in the amount of digital information. Database

systems play a key role in managing this data because of their abilities in storing, querying,

and updating large data collections. One of the basic assumptions in database systems is

that the data is certain: a data record is either a perfect implementation of some real-world

truth or, if it does not hold, absent in the database. In reality, however, a large amount

of data is not deterministic, but rather uncertain. For example, coarse-grained input can

result in uncertainty. For instance, a sensor with limited precision is inherently uncertain

with respect to the precise physical value. Moreover, ambiguity can cause uncertainty. For

instance, most sentences in natural language allow more than one interpretation, some-

times even leaving the reader in doubt. One way to store, query and manage large amounts

of uncertain data are probabilistic databases (PDBs) [SOCK11]. My thesis [Dyl14] ad-

vances the field of probabilistic databases in several ways, where this paper serves as a

brief overview.

Contributions and Outline. In Section 2, we devise a temporal-probabilistic data model

which supports both time and probabilities as first-class citizens. In Section 3, we present

∗This research was conducted while attending Max Planck Institute for Informatics. The views and conclu-

sions contained herein are those of the author and should not be interpreted as representing the official policies

or endorsements, either expressed or implied, of Google.

493

an approach for computing the top-k query answers, which feature the highest probabil-

ities among all answers. Our main technical tool are first-order lineage formulas, which

can represent both entire sets of query answers and partially evaluated grounding states.

We formally derive probability bounds for these formulas, enframing the probabilities of

all answers represented by the formulas. In Section 4, we establish a methodology to learn

tuple probabilities from labeled lineage formulas. We characterize the problem theoreti-

cally by investigating its complexity as well as the nature of its solutions.

2 Temporal Probabilistic Databases

In recent years, temporal databases [Jen00] (where tuples are valid only at some points in

time) and probabilistic databases [SOCK11] (whose tuples exist with a probability only)

have emerged as two intensively studied areas of database research. So far, the two fields

have however been investigated largely only in isolation. In this section, we sketch a tem-

poral-probabilistic database (TPDB) model [DMT13, Dyl14] supporting both temporal as

well as probabilistic data.

Example 1. Our running example is based on information extraction which aims to

automatically harvest factual knowledge from web sources. The temporal probabilistic

database of Figure 1 captures a number of extracted facts around the actor “Robert

DeNiro” and their origin, that is, the web domain they were extracted from. The prob-

WeddingExtraction FromDomain

Person1 Person2 Did Valid Time p Did Domain p

I1 DeNiro Abbott 1 [1976-04-28, 1976-04-29) 0.2 I5 1 Wikipedia.org 1.0
I2 DeNiro Abbott 2 [1976-04-28, 1976-04-29) 0.9 I6 2 People.com 1.0
I3 DeNiro Hightower 2 [1997-01-01, 1998-01-01) 0.6

DivorceExtraction

Person1 Person2 Did Valid Time p

I4 DeNiro Abbott 1 [1988-09-01, 1988-12-01) 0.4

Figure 1: An Example Temporal Probabilistic Database

ability of each tuple represents to which degree we believe this extraction is correct. Tuple

I1 expresses that DeNiro got married to Abbott on April 28th, 1976, which is encoded

into the time interval [1976-04-28, 1976-04-29). The time and probability annotations to-

gether express that this tuple is true for the given time interval with probability 0.2, and it

is false for this interval with probability 0.8. Note that we allow relations without temporal

annotations, e.g., FromDomain, whose tuples are valid at all time points.

Time. As a fist step, we introduce our notion of time. We consider the time universe UT as

a linearly ordered, finite sequence of time points, e.g., days, minutes or even milliseconds.

Then, a time-interval consists of a contiguous and finite set of time points over UT , which

we denote by a half-open interval [tb, te) where tb, te ∈ UT and tb before te.

Example 2. Regarding Figure 1 we can choose UT to be the sequence of all days of the

20th century.

494

Temporal Relation. Before we formally define TPDBs, we establish a useful property

of temporal relations, e.g., WeddingExtraction. Assume we drop Did as an argument of

WeddingExtraction, then a probabilistic database engine might conclude that DeNiro got

married twice on April 28th, 1976 with different probabilities. To resolve this issue, we

enforce the time-intervals of tuples with identical non-temporal arguments ā (e.g., the first

three columns of WeddingExtraction) to be disjoint, termed duplicate-free [DBG12].

Definition 1. A temporal relation instance R is called duplicate-free, if for all pairs of

tuples R(ā, tb, te), R(ā′, t′b, t
′
e) ∈ R it holds that:

ā = ā′ ⇒ [tb, te) ∩ [t′b, t
′
e) = ∅

The above definition is fulfilled for all relation instances of Figure 1, since I1, I2, and I3
have differing non-temporal arguments.

Temporal Probabilistic Database. Now, we define a temporal probabilistic database as

the triple (T , p,UT) [DMT13, Dyl14]. Here, T is the set of all tuples across all relations

(which we assume to be duplicate-free). Furthermore, p is a function p : T → (0, 1] which

assigns a non-zero probability value to each tuple. The probability values of different

tuples are assumed to be independent. Finally, UT is the time universe as defined before.

Example 3. For the database of Figure 1 we have T = {I1, . . . , I9} and p(I1) = 0.2.

Temporal Deduction Rules. To derive new knowledge from a TPDB, we employ tempo-

ral deduction rules. These can be viewed as generally applicable “if-then-rules”. Formally,

deduction rules have the shape of a logical implication with a conjunction of both positive

and negative literals in the body and exactly one positive literal in its head. This class of

rules coincides with safe Datalog without recursion [AHV95] or nested select-project-join

queries in SQL.

Example 4. Given the tuples of Figure 1 we first aim to reconcile the facts, i.e., when

DeNiro got married and divorced, by writing these two temporal deduction rules:

Wedding(P1, P2, Tb, Te)
︸ ︷︷ ︸

head

←

(
WeddingExtraction(P1, P2,Did , Tb, Te)

∧ FromDomain(Did , D)

)

︸ ︷︷ ︸

body

(1)

Divorce(P1, P2, Tb, Te) ←

(
DivorceExtraction(P1, P2,Did , Tb, Te)

∧ FromDomain(Did , D)

)

(2)

Both rules propagate the persons P1 and P2 and the time interval as specified by [Tb, Te)
to the head relation, e.g., Wedding or Divorce. More interestingly, we are now able to

deduce the time interval of their marriage starting at the beginning of the wedding and

ending at the end of the divorce:

Marriage(P1, P2, Tb,1, Te,2)←

(
Wedding(P1, P2, Tb,1, Te,1) ∧
Divorce(P1, P2, Tb,2, Te,2) ∧

Te,1<
T Tb,2

)

(3)

Thereby, we consider only weddings that took place before divorces as stated by the con-

dition Te,1 <
T Tb,2. If a couple is still married, we let the time interval of their marriage

495

start at the wedding until the last possible time point (denoted by the constant tmax).

Marriage(P1, P2, Tb, tmax) ← (Wedding(P1, P2, Tb, Te) ∧ ¬Divorce ′(P1, P2)) (4)

Here, the existence of any divorce independent of time is modeled by the projection:

Divorce ′(P1, P2) ← Divorce(P1, P2, Tb, Te)

Queries. Based on deduction rules we define a query to be a conjunction of head literals.

Example 5. Extending Example 4, we formulate the query Wedding(P1, P2, T1, T2) ∧
Divorce(P1, P2, T2, T3), which asks for persons P1, P2 who got divorced right after their

wedding.

Lineage. Next, we instantiate the deduction rules over the TPDB, i.e., we employ the

rule to deduce new tuples, which is called grounding. Thereby we trace the deduction

history of the new tuples. In database terminology this is called data lineage [BDSH+08],

which we represent by a propositional formula. More detailed, lineage relates each new

tuple with the tuples T via the three Boolean connectives ∧, ∨ and ¬. These reflect the

semantics of the relational operations that were applied to deduce that tuple.

Example 6. If we apply the rules of Equations (10) and (11) to the tuples of Figure 1, we

obtain the lineage formulas depicted in Figure 2(a). There, Equation (10) can be instan-

(a) Lineage Formulas of Example 6 (b) Lineage and Deduplication

Figure 2: Lineage

tiated twice to deduce Wedding(DeNiro,Abbott,1976-04-28,1976-04-29), which results in

the two conjunctions in the middle. Then, both conjunctions are connected by a disjunction

representing these two options.

In general, if we execute temporal deduction rules, the newly deduced tuples may not nec-

essarily define a duplicate-free relation. We illustrate this issue by the following example.

Example 7. In Example 6, we deduced tuples about DeNiro’s wedding to and divorce from

Abbott which are displayed on the bottom of Figure 2(b). Applying the deduction rules of

Equations (3) and (4) to these tuples yields the tuples in the middle of the figure, which

have equivalent non-temporal arguments, i.e., DeNiro and Abbott, but their time-intervals

are overlapping, which contradicts Definition 1 of duplicate-free relation instances.

496

Hence, in order to convert a temporal relation instance with duplicates (as shown in the

middle of Figure 2(b)) into a duplicate-free temporal relation (as shown on the top of

Figure 2(b)), we provide the following definition [DMT13, Dyl14]. Let λ(I) stand for the

lineage formula attached to a deduced tuple I .

Definition 2. Let a temporal relation R, non-temporal constants ā, a time point t ∈ UT ,

and a set of tuples T be given. Then, L is defined as the set of lineages of tuples R(ā, tb, te)
that are valid at time point t:

L(R, ā, t, T) := {λ(I) | I = R(ā, tb, te) ∈ T , tb ≤ t < te}

We create duplicate free tuples I ′ = R(ā, tb, te) such that for any pair of time points

t0, t1 ∈ [tb, te) it holds that:

L(R, ā, t0, T) = L(R, ā, t1, T) (5)

Furthermore, we define the new tuples’ lineages to be:

λ(I ′) :=
∨

φi∈L(R,ā,tb,T)

φi (6)

In short, for each time-point t we create the disjunction of all tuples being valid at t (see

Equation (6)). More detailed, for a given relation instance and the non-temporal arguments

of a tuple, L is the set of all tuples’ lineages that share the same non-temporal arguments

and which are valid at time point t. Hence, consecutive time-points for which L contains

the same lineage formulas form the new intervals (see Equation (5)).

Example 8. Applying Definition 2 to the tuples shown in the middle of Figure 2(b) yields

the tuples shown at the top of the figure. For instance, if we inspect L at the time points

1988-11-30 and 1988-12-01, we notice that {((I6∧ I2)∨ (I1∧ I5))∧ (I5∧I4), ((I6∧ I2)∨
(I1 ∧ I5)) ∧ ¬(I5 ∧ I4)} ?= {((I6 ∧ I2) ∨ (I1 ∧ I5)) ∧ ¬(I5 ∧ I4)}, so two different tuples

have to be kept in the relation.

Probability Computations. Since in a probabilistic database, each database tuple exists

only with a given probability, we can quantify the probability that each deduced tuple

exists. Formally, we compute the probability P (φ) of any lineage formula φ over tuples

in T as the sum of the probabilities of all subsets W ⊆ T . For this, we consider only

subsets, which satisfy φ, i.e., W |= φ, by setting all tuples in W to be true and all others

to be false [SOCK11]:

P (φ) :=
∑

W|=φ

P (W) where P (W) =
∏

t∈W

p(t) ·
∏

t∈T \W

1− p(t) (7)

In practice, we can compute the probability P (φ) ± in many cases ± directly on the struc-

ture of the lineage formula φ. Let Tup(φ) ⊆ T denote the set of tuples occurring in φ.

Then, the following efficient computations can be employed [SOCK11]:

Definition Condition

P (I) := p(I) I ∈ T
P (

∧

i φi) :=
∏

i P (φi) i ?= j ⇒ Tup(φi) ∩ Tup(φj) = ∅
P (

∨

i φi) := 1−
∏

i(1− P (φi)) i ?= j ⇒ Tup(φi) ∩ Tup(φj) = ∅
P (¬φ) := 1− P (φ)

(8)

497

Example 9. Considering the lineage formula of DeNiro and Abbot’s wedding in Fig-

ure 2(a), we obtain P ((I6 ∧ I2) ∨ (I1 ∧ I5)) = 1− (1− P (I6 ∧ I2)) · (1− P (I1 ∧ I5))
by applying the third line of Equation (8). Then, the second and first line yield 1 − (1 −
p(I6) · p(I2)) · (1− p(I1) · p(I5)) = 0.92.

If none of the cases of Equation (8) applies, we employ the following equation, called

Shannon expansion [SOCK11], which is applicable to any propositional lineage formula:

P (φ) := p(I) · P (φ[I/true]) + (1− p(I)) · P (φ[I/false]) (9)

Here, the notation φ[I/true] for a tuple I ∈ Tup(φ) denotes that we replace all occurrences

of I in φ by true. Repeated applications of Shannon Expansions, however, result in an

exponential runtime.

Further Properties. As layed out in [DMT13, Dyl14] the sketched data model is closed

and complete, i.e., it can express all instances of temporal probabilistic data. Furthermore,

the data model can be extended by consistency constraints.

3 Top-k Querying

Instead of computing all answers to a query in a bottom-up manner as in Section 2, the

focus of this section is computing only the top-k answers with the highest probabilities

among all answers. For that, we start at the query and expand deduction rules until we

reach the database tuples, which is called top-down grounding [AHV95].

First-Order Lineage. During top-down grounding, not all variables variables will be

bound to constants. Hence, we now extend propositional lineage of Section 2 to first-

order lineage [DTM13, Dyl14], which can contain variables and quantifiers. In contrast

to propositional lineage, first-order lineage does not represent single query answers, but

rather entire sets of answers. Each answer in such a set will be characterized by constants

binding the query variables. To facilitate the construction of first-order lineage, we write

all quantifiers of variables only occurring in the body of a deduction rule explicitly.

Example 10. We equivalently rewrite the deduction rules of Equations (10) and (11) as

follows:

Wedding(P1, P2, Tb, Te) ← ∃Did , D

(
WeddingExtraction(P1, P2,Did , Tb, Te)

∧ FromDomain(Did , D)

)

(10)

Divorce(P1, P2, Tb, Te) ← ∃Did , D

(
DivorceExtraction(P1, P2,Did , Tb, Te)

∧ FromDomain(Did , D)

)

(11)

Note that in the above deduction rules all variables not occurring in the head literal, i.e.,

Did and D, are bound by existential quantifiers.

Grounding. Instead of starting at the database and instantiating the deduction rules to

deduce new tuples, as before, we now begin at the query and in each step resolve a literal.

498

If the literal matches the head literal of a deduction rule, we replace it by the body of the

rule. Otherwise, if the literal matches a database relation, we replace it by database tuples.

Finally, if the no tuple and head literal matches, we substitute it by false. Whenever we

bind a variable to constants a1, . . . , an, we employ the equivalence

∃XΦ ≡ Φ[X/a1] ∨ · · · ∨ Φ[X/an] (12)

where [X/ai] substitutes the variable X by the constant ai.

Example 11. We consider the query Wedding(DeNiro, P, T1, T2), which asks for wed-

dings of DeNiro. First, we replace the literal by the deduction rule body of Equation (10):

∃Did , DWeddingExtraction(DeNiro, P,Did , T1, T2) ∧ FromDomain(Did , D)

The above first-order lineage formula represents a set of query answers, one for each tuple

of constants binding P , T1, and T2. If we next exchange FromDomain(Did , D) for the

tuples of I5 and I6 of Figure 1, we obtain

(WeddingExtraction(DeNiro, P, 1, T1, T2) ∧ I5)
∨(WeddingExtraction(DeNiro, P, 2, T1, T2) ∧ I6)

(13)

where the disjunction results from Equation (12). The lineage formula still represents the

same set of answers.

Probability Bounds. Next, given a first-order lineage formula Φ, we construct two propo-

sitional formulas φlow and φup whose probabilities then serve as lower and upper bound

on Φ, respectively.

Definition 3. Let Φ be a first-order lineage formula in negation normal form.

1. We construct the propositional lineage formula φup by substituting every literal

R(X̄) in Φ with true if R(X̄) occurs positive in Φ, and by false otherwise.

2. We construct the propositional lineage formula φlow by substituting every literal

R(X̄) in Φ with false if R(X̄) occurs positive in Φ, and with true otherwise.

Example 12. We obtain φup from Equation (13) by setting the WeddingExtraction literals

to true, which yields (true ∧ I5)∨ (true ∧ I6). Hence, P ((true ∧ I5)∨ (true ∧ I6)) = 1.0
is an upper bound.

As shown in [DTM13, Dyl14], if φ1, . . . , φn represent all query answers we would obtain

by fully grounding Φ, then it holds that:

∀i ∈ {1, . . . , n} : P (φlow)≤P (φi) ≤ P (φup)

Furthermore, with each step of the top-down grounding these bounds bounds converge

monotonically to the probabilities of the answers. The resulting lower and upper bounds

for all answer candidates can be plugged into any top-k algorithm [IBS08] that will then

iteratively refine these lower and upper bounds until a termination condition is reached.

Pruning Answer Candidates. Given a set of answer candidates Atop , we can prune the

answer candidate Φ, if ∀Ψ ∈ Atop : P (φup) ≤ P (ψlow). Due to the monotonicity the

lower bounds of all answer candidates in Atop can only increase, whereas the upper bound

P (φup) can only decrease. Hence, Φ never reaches a higher probability than any answer

in Atop .

499

4 Learning Tuple Probabilities

Most works in the context of PDBs assume the database tuples along with their probabil-

ities to be given as input. Also the preceding sections of this paper followed this route.

Nevertheless, when creating, updating or cleaning a TPBD, the tuple probabilities have to

be altered or even be newly createdÐin other words: they have to be learned, which is the

topic of this section.

Example 13. Assume we are given the TPDB of Figure 1 along with the deduction rules of

Equations (10) and (11). Figure 3 shows the resulting lineage formulas, where, however,

Figure 3: Lineage Formulas

the probabilities of the tuples of the FromDomain relation are missing and marked with

question marks. Instead, we are given labels for the deduced tuples from which we intend

to learn the missing probabilities. For instance, a human assessor may have labeled the

wedding of DeNiro and Abbott on April 28th 1976 to be 80% correct.

Learning Problem. Formally, for a temporal probabilistic database (T , p,UT), we con-

sider Tl ⊆ T to be the set of database tuples for which we learn their probability values.

That is, initially p(I) is unknown for all I ∈ Tl. Conversely, p(I) is known and fixed for

all I ∈ T \Tl. To be able to complete p(I), we are given labels in the form of pairs (φi, li),
each containing a propositional lineage formula φi (i.e., a query answer) and its desired

probability li. Now, we define the resulting learning problem.

Definition 4. We are given a temporal probabilistic database (T , p,UT), a set of tuples

Tl ⊆ T with unknown probability values p(Il), Il ∈ Tl, and a multi-set of given labels

L = 〈(φ1, l1), . . . , (φn, ln)〉, where each φi is a propositional lineage formula over T and

each li ∈ [0, 1] ⊂ R is a probability for φi. Then, the learning problem is defined as:

Determine: p(Il) ∈ [0, 1] ⊂ R for all Il ∈ Tl
such that: P (φi) = li for all (φi, li) ∈ L

Intuitively, we aim to set the probability values of the database tuples Il ∈ Tl such that

the labeled lineage formulas φi again yield the probability li. We want to remark that all

probability values of tuples in T \Tl remain unaltered. Also, we note that the Boolean

labels true and false can be represented as li = 0.0 and li = 1.0, respectively.

500

Example 14. Formalizing the problem setting of Figure 3, we obtain T = {I1, . . . , I6},

Tl = {I5, I6}, L = 〈((I6 ∧ I2) ∨ (I1 ∧ I5), 0.8), (I5 ∧ I4, 0.4)〉.

Complexity. We next discuss the complexity of solving the learning problem. Unfortu-

nately, it exhibits hard instances. First, computing P (φi) might require many Shannon

expansions (see Equation (9)) causing exponential runtimes. But even for cases when all

P (φi) can be computed in polynomial time (i.e., when Equation (8) is applicable), there

are combinatorially hard cases of the above learning problem.

Lemma 1. For a given instance of the learning problem of Definition 4, where all P (φi)
with (φi, li) ∈ L can be computed in polynomial time, deciding whether there exists a

solution to the learning problem is NP-hard.

The above statement can be proven by encoding 3SAT into the learning problem [Dyl14].

Inconsistent Instances. After discussing the complexity of the learning problem, we

characterize its solutions. First, there might also be inconsistent instances of the learning

problem. That is, it may be impossible to define p : Tl → (0, 1] such that all labels are

satisfied.

Example 15. If we consider Tl := {I1, I2} with the labels L := 〈(I1, 0.2), (I2, 0.3),
(I1 ∧ I2, 0.9)〉, then it is impossible to fulfill all three labels at the same time.

Number of Solutions. From a practical point of view, there remain a number of questions

regarding Definition 4. First, how many labels do we need in comparison to the number of

tuples for which we are learning the probability values (i.e., |L| vs. |Tl|)? And second, is

there a difference in labeling lineage formulas that involve many tuples or very few tuples

(i.e., |Tup(φi)|)? Before we proceed to the theorem, recall that we can express probability

computations P (φ) of a lineage formula φ as a polynomial following Equation (7). These

polynomials have degree at most |Tup(φ)| as shown in [Dyl14].

Theorem 1. If the labeling is consistent, the problem instances of Definition 4 can be

classified as follows:

1. If |L| < |Tl|, the problem has infinitely many solutions.

2. If |L| = |Tl| and the polynomials P (φi) − li have common zeros, then the problem

has infinitely many solutions.

3. If |L| = |Tl| and the polynomials P (φi)−li have no common zeros, then the problem

has at most
∏

i |Tup(φi) ∩ Tl| solutions.

4. If |L| > |Tl|, then the polynomials P (φi) − li have common zeros, thus reducing

this to one of the previous cases.

The proof [Dyl14] of the above statement is accomplished via Bezout’s theorem [DE10].

In general, a learning problem instance has many solutions, where Definition 4 does not

specify a precedence, but all of them are equivalent. The number of solutions shrinks by

adding labels to L, or by labeling lineage formulas φi that involve fewer tuples in Tl (thus

resulting in a smaller intersection |Tup(φi) ∩ Tl|).

501

Example 16. Employing Theorem 1 on the learning problem of Example 14, the third case

applies, since |L| = |Tl| and there are no common zeros. Hence, the theorem yields an

upper bound of
∏

i |Tup(φi)∩Tl| = |Tup((I6∧I2)∨(I1∧I5))∩Tl|·|Tup(I5∧I4)∩Tl| =
|{I6, I5}| · |{I5}| = 2. The only solution, however, is p(I5) = 0.4 and p(I6) = 0.83.

Solving the Learning Problem. Algorithmic solutions to the learning problem are beyond

the scope of this paper, but we refer the interested reader to [Dyl14] for several gradient

based approaches and a detailed experimental evaluation.

5 Conclusions

We presented a temporal probabilistic data model, devised how to compute the top-k query

answers with the highest probabilities, and showed how to learn tuple probabilities in

order to create or update probabilistic databases. For a more in-depth presentation of these

aspects we refer the interested reader to [Dyl14].

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Databases.
Addison-Wesley, 1st edition, 1995.

[BDSH+08] Omar Benjelloun, Anish Das Sarma, Alon Halevy, Martin Theobald, and Jennifer
Widom. Databases with uncertainty and lineage. VLDB Journal, 17(2):243±264,
March 2008.

[DBG12] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment. SIG-
MOD, pages 433±444. ACM, 2012.

[DE10] Alicia Dickenstein and Ioannis Z. Emiris. Solving Polynomial Equations: Founda-
tions, Algorithms, and Applications. Springer, 1st edition, 2010.

[DMT13] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A Temporal-Probabilistic
Database Model for Information Extraction. VLDB, 6(14):1810±1821, 2013.

[DTM13] Maximilian Dylla, Martin Theobald, and Iris Miliaraki. Top-k query processing in
probabilistic databases with non-materialized views. ICDE, pages 122±133, 2013.

[Dyl14] Maximilian Dylla. Efficient Querying and Learning in Probabilistic and Temporal
Databases. PhD thesis, Saarland University, Saarbrücken, Germany, 2014.

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A Survey of Top-k Query
Processing Techniques in Relational Database Systems. ACM Computing Surveys,
40(4):11:1±11:58, October 2008.

[Jen00] Christian S. Jensen. Temporal Database Management. PhD thesis, Aalborg University,
Aalborg, Denmark, April 2000.

[SOCK11] Dan Suciu, Dan Olteanu, R Christopher, and Christoph Koch. Probabilistic
Databases. Morgan & Claypool, 1st edition, 2011.

502

