
Which programming languages for
minicomputers in process control?

V. HAASE
UN!COMP, 8/ankenloch, W. Germany

A

Computer involvement in industrial and scientific
process control shows a very significant increase
in the application of very small computers. This
is due to the fact that hardware costs are falling,
whereas the cost of designing, installing and
maintaining special-purpose systems is not
becoming lower. This calls for general-purpose
electronics in measurement and control: the
minicomputer. This is the reason for the fact that
this end of the computer spectrum is not populated
so much by small brothers of medium- or large
scale real-time computer systems, but by special
systems designed for - and in many cases by -
the engineer used to working with special-purpose
control hardware. This hardware is now replaced
by a 4 to 16 K, 8- to 24-bit machine with storage
cycles between 0.5 and 5 µsecs, in most cases
capable of, but not necessarily equipped with, all
kinds of conventional and process-control capabili
ties which medium-scale computers have as peri
pherals. The whole thing costs no more than a
special-purpose hard-wired system.

Nevertheless, the lack of relationship between
minis and !arger systems often causes a software
gap between minis and midi- resp. maxi compu
ters. Hardware-mindedness of both designers and
users, and the fact that minis are used in environ
ments which are not frequently changed, have led
to the development of special-purpose software
(instead of the special-purpose hardware that
existed before!) - nonmodular code including both
operating system and application program func
tions.

Programming was (and is) done in some kind
of assembly language. In the course of time, here
and there, FORTRAN and BASIC compilers or
interpreters were developed (non-real-time
applicable) and the idea of indirect programming
came up (minis were used more in changing tasks,
laboratories, test-stands, etc.). As the indirect
method is of little use if a !arger computer is not
at hand (which is often the case if a program has
to be changed in the field), it is necessary to think
about programming languages and compilers to
solve real-time problems with small computers.

B

There is an extensive literature on real-time
languages, but little implementation experience.
The minicomputer has attracted few papers. We
shall therefore try to express the apparent contra
diction between the (unpublished) feelings of com
puter scientists and the experience of users,
namely, that both kinds (small and big) of real
time computers should not be programmed in the
same way, at least not using the same higher level
language.

There exist special � of (real-time) pro
gramming languages that are especially suited for
compilation and execution on minicomputers.
They will be explained and proved as follows.

If we look at higher level problem-oriented

special-purpose programming languages that could
be used on minicomputers in process control, we
may distinguish several groups of languages:

1. Macro assemblers.
2. So-called 'low-level' languages

(e.g. PL/360).
3. Real-time dialects or subsets of procedural

languages (e.g. R-T-FORTRAN).
4. System writing languages (e.g. POLYP).
5. Special real-time-languages (INDAC,

PEARL) which may also be based on other
languages (e.g. PAS).

6. Problem-oriented languages (e.g. fill-in
the-blanks language).

On the other hand we may lay down criteria (func
tional requirements) for real-time languages:

a. Easy to use.
b. Machine-independent (at least, 'control

lable' machine-dependent).
c. Effective.
d. Timing in 'programmer 's hands'.

among others. We add for the mini:
e. Executable.
f. Compilable on a machine with less than 16K

working store (no mass store).
Everybody knows that items b. and c. (especially
in connection with e. and f.) are contradictory.
We therefore have to find a compromise matching
the lists of language types and requirements:

1. Macro assemblers are effective (c), pro-

19

vide timing- control (d) and cope with the mini
requirements (e, f); they are not machine
independent (b) and not always easy to use (ä).

2. Low-level languages can be designed to
fulfil criteria a., c., d., e. and f., but they are
explicitly machine-dependent (b) and therefore,
for example, very useful for system writing.

3. Real-time dialects and subsets of FORTRAN
and similar languages have shown that they are
not able to solve both real-time and efficiency
problems, i.e. inherent problems of batch pro
cessing languages (c, d). Perhaps this could be
achieved, but not in mini-environments.

4. System-languages are sometimes claimed
to be the solution for process control and any
real-time problems. They are, in fact, but only
in the hands of very clever programmers.
However, ease of use (a) and timing and tasking
features are not ideal (d).

5. Newly designed real-time languages would,
of course, be the best solution (if they fulfil the
functional requirements). The problem of
generality versus efficiency can be solved for
!arger systems, including backing storage
(INDAC, PEARL), but for minis this is not pos
sible. The design concept has to be modified so
that both assembly type and procedural type
languages are combined in a new language.
Should this lead to a modular structure of the
language itself, implementation costs could also
be reduced (PL/1 + PAS/1, and PROCESS
BASIC, to be introduced here).

6. Special problem-oriented languages will
not be considered here, as they are no common
solution for real-time problems (and in many
cases also designed in a descriptive type: no
timing = d).

C

If we combine the efficiency of an assembly
language, handy macros for handling real-time
functions (timing, interrupt-handling), and the
machine-independence and ease-of-use of BASIC
or FORTRAN - the whole of which can be com
piled and executed on a mini - we obtain the
language we are searching for. Of course, these
properties cannot be present simultaneously in
every language element (under our marginal con
ditions), but we can try to have them in an
additive structure. This seems to be sufficient in
the majority of-cases, e.g. one frequently needs
a special algorithm for data reduction (that is
present in a higher level language library), but
not the I/O driver for a special device used in
some other installation (that has to be program
med very efficiently).

My solution for a programming language for
minicomputers in process control is a composite
language, the elements of which come from:

20

1. A procedural language (BASIC) that is easy
to learn, use and compile.

2. An assembly language, covering both
machine instructions and macro-instruct
ions (if it is sufficient, the normal
assembler of your machine).

lt is necessary that these two components can
be mixed at the statement level - not only at the
module (= linkage editor) level - and it is to be
provided that user-named items (data and labels)
can be defined in one and used in the other state
ment type.

C1

Since these ideas came up when a special project
was considered (the usefulness of a process
oriented programming language to be implemented
on the UNICOMP 201) some aspects of this
machine will be mentioned.

UNICOMP 201 is a 20-bit machine with working
storage expandable up to 32K. Since the limited
instruction repertoire, as far as arithmetic is
concerned, is balanced by a great variety of
operation- and addressing-modes (system-user
states; literal, working store, indirect, external
store and 'execute' operands), real-time program
ming can be done quite nicely.

A convenient macro-assembler makes use of
'supervisor-call' instructions, causing the execu
tion of a subroutine package present at runtime
that can be implemented as a 'firmware' module
(a fast read-only-memory). These macro
instructions include both fixed point (multiple
precision, too) and floating point arithmetic, and
interrupt and I/O handling instructions. For the
design of a language with the desired features,
the algorithmic part must be replaced by a com
mon procedural language. We have chosen BASIC
for reasons of easy learnability and compilability.

To improve efficiency, BASIC had to be
expanded by a data-type INTEGER (INDEX) that is
used for counting and field addressing operations.
As labels are represented by line numbers in
BASIC also, the assembly type statements of
Process-Basic are allowed to have and to refer
to integer labels. The name-syntax of BASIC is
not changed (for compatibility reasons), so that
all names in assembly type statements that do not
consist only of one letter and one number are
unique for the assembly part of the program.

The three levels of Process-Basic statements
comprise:

Level 1 (BASIC):

INPUT, READ, PRINT, DATA, RESTORE Input and

Output
GOTO, IF, FOR, NEXT, GOSUB, RETURN, STOP, END

Control
DEFFN, DIM, INDEX

LET

Definitions

Assignment

Level 12 (Macros):

OUT,OTN,INP,INN,OSM,ISM,OLS,ILS,KTL,PLA,SAZ:

1/0 Operations done in parallel or sequential ly,
with or without formatting, using symbolic or
direct addressing.

ISS,ISL,RIT:

Interrupt answer definition, enable, disable.

Multiple precision arithmetic, block transfers,
text editing and test instructions are also
handled on macro level.

Level 13 (machine instructions):

Operations Modifications

BRI (l oad)
UMS (s tore) 1 i teral
ADD
ADU

working store address

KON (and) indirect address
EOR 1/0 address
ERH (+ l) X

VER (-l) execute
SPR (j ump) sl!lpervisor call
UPS (subrout.)
SAN jmp =O
SUN jmp f 0
SKU jmp car =O

All three levels of statements can be mixed line
wise as shown in the following example:

more string handling functions, the latter real
time macros).

As for the compiler implementation for small
machines, two philosophies are applicable.
First, for very small core size two pass systems
are to be preferred; the object code will be
punched. Certain on-line text-editing is possible,
but no incremental compilation. The object code
may be both relocatable and linkable. Secondly,
if one can afford to hold both dictionary and object
code in core, one pass systems which allow
incremental compilation can be preferred. The
object code can be either executable at once or be
used as input into a linkage editor.

The compilers will be very similar, as the
structure is defined by the general syntax parser.
Directory- and code-generating routines are used
as subroutines by the general routine. Certain
optimisation (in the field of space versus time
efficiency) can be performed in that the code
generator has two possibilities which can be
chosen by the programmer: more in-line or more
subroutine-like code (e.g. loop-heads, if-state
ments). The advantages of BASIC can be seen in
the general expression definition, the name syntax
allowing a directly addressable directory and the
very clean statement type recognition.

The type of language described here is thus a
good solution, both for the implementer (good
price /performance ratio) and the user of a small
machine (handyness and flexibility).

.EQUAL. TIMER='006'

.EQUAL. ADC1 ='5F1'
FOR I=1 TO 10

device definition control statements
on assembler level

100
11 0
120
122

200
210
220

BRI 30 ADC1
UMS 22 I
NEXT I
.PSW. '0100'
BRI 30 TIMER
DIV 00 333
UMS 20 T1

C2

loop coded in BASIC intermixed with
machine code

address of an interrupt routine

macro instruction, time converted to
secs

1. KEMENY, KURTZ, 'BASIC'.

The actual software (as planned) will be based on
the existing UNICOMP software; it will consist
of operating system, compiler, linking loader,
test and text-editing routines.

2. FRÖHLICH, 'SAMMI, assembly language for
UNICOMP 201 '.

Discussion
The operating system (2 to 4K) is modular in

the sense that a list-driven event (interrupt)
handling routine, the device driving package and
supervisor-call-interpretation macros can be
tailored by the user according to his special pur
poses. The compile-time-0S can be different
from the execution-time-0S (the former including

Q. Why must the compiler run on the BK machine?

A. Frequently the computer is out in the field at
some plant, and the users will wish to be able to
do their own program development. Also they
may not have access to bigger machines.

21

Q. Will not the advent of satellite computers alter
this?

A. lt will still be awkward if you have to go to
another computer which is remote.

Q. Line by line interleaving of assembly
language and high level language statements
implies that the compiler cannot attempt inter-

22

statement optimisation. Do you accept this
reduction in efficiency?

A. Yes, we are much happier that the program
mer is aware of this and has to deal with inter
statement optimisation explicitly (e.g. by use of
INDEX) than that he leave this to the compiler.
We allow a testing phase using an interpreter to
give debugging facilities, with only tested parts
of the program compiled.

	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828

