
Some Process Patterns for Enterprise Architecture
Management

Christoph Moser1, Stefan Junginger1, Matthias Brückmann2, Klaus-Manfred Schöne2

1BOC AG
Wipplingerstraße 1

A-1010 Vienna
{christoph.moser,stefan.junginger}@boc-group.com

2ZIVIT
Wilhelm-Fay-Straße 11

D-65936 Frankfurt
{matthias.brueckmann,klaus-manfred.schoene}@zivit.de

Abstract: The purpose of EAM patterns can be seen to supplement existing EAM
frameworks, which often only provide generic approaches in implementing,
maintaining, and analysing an Enterprise Architecture. This is done by providing
additional concepts, tailorable to the EAM problems at hand. This paper extends
the existing EAM patterns approach of the Technical University of Munich by
defining a concept for EAM process patterns. Some EAM process patterns are
presented in detail.

1. Introduction

Numerous frameworks for EAM are discussed in literature (for an overview see for
example [Sc06]). Some of them are extremely complex regarding the number of
concepts they consider. On the other hand, practitioners stress that only pragmatic and
not too complex EAM approaches lead to a successful implementation within an
organisation [Ke07]. This conforms to the experiences of the authors of this paper – two
of us are with BOC, a company providing EAM solutions (ADOit, ADOben) and EAM
consulting and two of us are enterprise architects at ZIVIT, one of the largest IT Service
Providers in Germany's public administration.

We see EAM patterns as a powerful tool for implementing EAM within an organisation,
especially for enhancing efficiency with the purpose of saving money and time. In the
following we use the concepts presented in the EAM pattern catalogue of the Technical
University of Munich, Germany [Bu08]. An important feature of the tool (ADOit) we
use is its metamodelling capability [BO08]. Most ADOit users define their own EAM
metamodel. These metamodels are derived from their EAM objectives and usually
consist of only a few concepts (in contrast to complex metamodels described in many
EAM frameworks).

19



In [Bu08] methodology, viewpoint and information model patterns are distinguished.
Methodology patterns are derived from so-called concerns. When implementing EAM
(with ADOit) we use a similar approach which is depicted in figure 1.

Processes

EAM Tool

EAM Objectives

Metamodel Reports

: interrelationship : is derived from

Processes

EAM Tool

EAM Objectives

Metamodel Reports

: interrelationship : is derived from

Figure 1: Approach for implementing EAM

Starting from the EAM objectives we define within an EAM implementation project
a) the metamodel (sometimes also called data model or information model), b) the
needed reports and c) the processes for implementation, maintenance, and utilisation of
the EA. The element "Metamodel" maps to the information model concept of [Bu08], the
element "Reports" maps to the viewpoint concept1 and the element “Processes” is part of
the methodology patterns. The EAM objectives correspond approximately to the concern
concept described in [Bu08]. However, we see EAM objectives on a higher level: We
distinguish EAM objectives such as documentation of the application landscape,
consolidation of the application landscape (e.g. by removing redundant applications or
harmonising the application landscapes of different locations/countries), consolidation of
hard- and software and SOA governance. Of course, these EAM objectives overlap (and
so do the patterns to achieve them).

An important element of EAM approaches not considered in detail within the
methodology patterns of [Bu08] is the processes.2 By "Processes" we mean the processes
that define how EAM is done (not the business processes which are supported by IT). In
our EAM implementation projects we experienced that there is a set of recurring
"process patterns", e.g. different patterns how an EA repository can be built up and kept
up-to-date, which roles shall be responsible for performing which tasks. It has to be
noted, that some EAM frameworks (like TOGAF [TO06] and FEAF [CI99]) provide
generic procedural models for implementing EAM. However, these procedural models
can only be used as a starting point because of their high level of abstraction. In contrary,
we see EAM processes on a much more detailed level. Akin to the support of service
management processes in ITIL by a Configuration Management System (CMS) [OG07],
EAM processes might be supported by an EAM tool (in this case, the EAM tool ellipse
in figure 1 needs to be extended).

1 For a broader discussion on the concepts of concern, view and viewpoint refer to [AI00] and [Sc04].
2 However, in [Er08] improvement potential for the current version of the EAM pattern catalogue is discussed.
It is outlined, that besides additional improvements, the methodology patterns will contain more structured
process descriptions in the upcoming version of the EAM pattern catalogue.

20



The remainder of the paper is organised as follows. In chapter 2 EAM processes are
discussed, a definition of EAM process patterns is given and the pattern language we use
to describe EAM process patterns is presented. Chapter 3 presents concrete EAM
process patterns. The interplay and usage of these patterns is discussed, by integrating
these with EA metamodels and EA reporting patterns. Finally, chapter 4 gives an
outlook on future research fields. To illustrate the concepts presented in this paper we
refer to the EAM implementation at ZIVIT. Details about this implementation can be
found in [Ju08].

2. A Pattern Form for EAM Process Patterns

There is not much literature about EAM processes (in comparison to publications about
EAM modelling frameworks). Of course, the EAM processes needed depend on the
EAM objectives. If, for example, the EAM objective is to standardise soft- and hardware
a process is needed on how this standardisation should take place. Additionally, it has to
be decided which processes are seen as part of EAM as it possesses – and of course has
to possess – a tight integration with disciplines such as business process management,
strategy management, (IT) service management, demand management, (project)
portfolio management, requirements management, software development, risk and
compliance management. Hence, some organisations see demand and portfolio
management as part of EAM and others do not.

To classify EAM process patterns concerning their utilisation within EAM processes, we
use the high level EAM process landscape shown in figure 2. The process landscape is
generic regarding EAM objectives and even abstracts from descriptions as they can be
found for example in [De03], [TO06], [Ke07], [BO08], [Mo08].

Architecture
Cycle

Process 4:
Monitor and

Control
Roadmap and
Architecture

Process 0:
Develop/Update

EAM Strategy (incl.
Processes,

Metamodel and
Reports)

Process 1:
Document/Update

and
Evaluate Current

Architectures

Process 2:
Develop Target

Architectures

Process 3:
Define Roadmap

and
Project Portfolio

Operational
EAM /

ProjectsOperational
EAM /

ProjectsOperational
Projects

Figure 2: High level generic EAM process landscape

There is a separate research field dealing with process patterns. For example in the
BPM/workflow area business process patterns are examined for many years [Aa03].
However, they usually focus on non-domain specific elements in business process
models such as control structures. Therefore, the results from this research area do not fit

21



to our intention of EAM process patterns. In the software engineering community there
are many publications about process patterns for the software development process
[Co95]. Furthermore, concepts described in CMMI and ITIL can be seen as process
patterns, too – although not described this way [OG07], [CM06]. ITIL states for
example, that the main purpose of its CMS is the provision of up-to-date and secure
information via the configuration items used to support all service management
disciplines [OG07]. Hence, there is a major overlap with process patterns for keeping an
EA repository up-to-date ("Process 1" in figure 2). The concepts developed in these
fields fit better to our objectives – just the application area is different (EAM vs.
software development/IT service management). We define an EAM process pattern as a
"reusable element of an EAM process (model)". Usually, an EAM process pattern is
parameterised in the sense that exact activities and roles executing the activities are
defined when applying the pattern.

We describe EAM process patterns using the following "pattern form":

• Name: Concise, strong name for the pattern.

• Summary: Short description of the process pattern.

• EAM process: Description in which EAM process this pattern can be used. For
this purpose we classify the patterns according to the process landscape shown
in figure 2.

• Problem: Indication of the situation to which the pattern applies, and if
applicable the entry conditions to perform it.

• Solution: Description of the process pattern including the steps/activities to be
performed. We use BPMN to illustrate the patterns.

• Resulting Context: Description of the situation/context which will result from
performing the process pattern solution.

• Related Patterns: Indication of patterns that this pattern is composed of, is a
part of, or is associated to. To describe the associations to metamodel
(information model) and reports (viewpoints), we refer exemplarily to EAM
patterns described in [Bu08].

• Known Uses/Examples: Description where/how the process pattern has been
applied.

3. EAM Process Patterns: Some Examples

This chapter identifies an extensible set of reoccurring patterns in EA processes and
shows the best use practices for them. The patterns are derived from the practical
experience of the authors in EAM and literature.

22



3.1 Pattern: Centralised Manual Data Acquisition/Maintenance

Summary: Architecture artefacts of a certain type (class) are maintained in the EA
repository by a central role, usually the enterprise architects.

EAM Process: Process 1.

Problem: This process pattern can be applied if the EA repository shall be filled or
updated.

Solution: A small group, usually enterprise architects, is manually maintaining the EA
repository. However, normally even in small organisations the enterprise architects need
input from experts of different domains. Depending on the used metamodel domain
experts could be business process experts, application owners and ICT experts. The tasks
of this pattern are depicted in figure 3.

If the architecture artefact is isolated it is simple to update the EA repository. However,
usually architecture artefacts are strongly interrelated between each other. For example,
an application and all interfaces offered by it usually build a logical entity. All artefacts
of the logical entity need to be updated ideally within a small time span to avoid
inconsistencies (like dangling interfaces when deleting an application). This reduces the
time during which the EA repository is in a non-consistent state.

Figure 3: Tasks of the EAM process pattern "Centralised Data Acquisition/Maintenance"

Resulting Context: The EA repository is updated and in a consistent state. Data
consistency and a logical structure of the architecture artefacts are granted.

Related Patterns: This pattern might be used in combination with the "release
workflow pattern". The methodology pattern "Management of Homogeneity" (see
[Bu08], M-21) is one example for using this pattern to catalogue the technologies within
a centrally maintained structure.

Known Uses/Examples: The pattern applies especially for those architecture artefact
types, where the required know how for structuring is not widespread within the
organisation or an overall structure needs to be developed first.

23



An example is the definition of a hierarchically structured process landscape, usually
defined by a small team of business experts. Another example is described in [Ju08]. In
this case software, technology and hardware artefacts are centrally maintained by the
enterprise architects (see figure 4). The enterprise architects – amongst other things – are
responsible for provision of the mentioned artefacts in an organisation-wide agreed
structure. Any application owner would use these artefacts for describing his application
by assigning those architecture artefacts to his application. In the given scenario
applications – in contrast to technologies, hardware and software – are maintained
decentralised (see chapter 3.2).

Applications

SoftwareTechnology Hardware

use/based on

Decentral

Central

Application Owners

maintain

Enterprise Architects

maintain

Applications

SoftwareTechnology Hardware

use/based on

Decentral

Central

Application Owners

maintain

Enterprise Architects

maintain

Figure 4: Example for centralised and decentralised maintenance of an EA repository

3.2 Pattern: Decentralised Manual Data Acquisition/Maintenance

Summary: Parts of the EA repository are manually maintained by domain experts.

EAM Process: Process 1.

Problem: This process pattern is used for defining and maintaining architecture artefacts
for which a central maintenance is not feasible. This applies especially to architecture
artefacts where the needed knowledge for documenting and analysing is widespread
within the organisation; e.g. a large group of application owners.

Solution: The domain expert updates the EA repository for architecture artefacts he is
responsible for. If required, he requests architecture artefacts from other domain experts
or from a central role (usually the enterprise architects). For example software or
hardware artefacts might only be defined by enterprise architects or used interfaces
might be defined by other application owners. The tasks are depicted in figure 5.

To assure high quality of the contents of the EA repository changes to architecture
artefacts should be stored in a change log. Within the change log it is recorded which
changes have been done by whom and when. A more powerful way is to use the "release

24



workflow pattern" (see "Related Patterns"). Furthermore, the owners of architecture
artefacts should confirm the accurateness of their data on a regular basis, to demonstrate
the accurateness to the possible users (this could of course be seen as a separate pattern).
It has to be noted that this process pattern implies interesting requirements (intuitive
GUI, access rights, operation of the EAM tool etc.) to the EAM tool at hand.

Figure 5: Tasks of the EAM process pattern "Decentralised Data Acquisition/Maintenance"

Resulting Context: A decentrally maintained architecture artefact is added or updated.

Related Patterns: This pattern might be used in combination with the "release
workflow pattern". The methodology pattern "Management of Interfaces" (see [Bu08],
M-21) requires assigning interfaces to applications. Typically a multitude of applications
and interfaces need to be recorded/maintained. If these need to be kept up-to-date within
an EA repository, it is nearly impossible to achieve this by a centralised maintenance.

Known Uses/Examples: Most organisations possess at least dozens of applications and
there are usually hundreds of interfaces between them. In this case, a decentralised
approach for maintaining the applications and belonging interfaces is preferable (see
[Ju08] and figure 4).

3.3 Pattern: Automatic Data Acquisition/Maintenance

Summary: This process pattern allows for keeping the EA and corresponding
architecture models automatically up-to-date and consistent by importing models not
controlled by the EA architects.

EAM Process: Process 1

Problem: Often manual maintenance of the EA is not feasible. Reasons might be the
low "willingness" of domain experts to provide the required data who are often forced to
maintain multiple data sources, by providing nearly the same data, for example
architectural models (like process architectures) which might not initially be developed
to support the EAM initiative, but are valuable for EAM.

25



Solution: Precondition to this pattern are agreed upon data delivery contracts
(comprising interface description to the source system, transformation rules, data quality
etc.), as proposed by [Fi06]. A major challenge is to define the transformation rules to
transform the delivered "external source models" into the required format given by the
metamodel of the EA repository. Furthermore an adequate EAM tool needs to be in
place, capable to import the data of multiple data sources. The proposed process pattern,
depicted in figure 6, is based on the process for data maintenance discussed in [Fi06].
The source models need to be checked against the data delivery contract. If this quality
check (content and data consistency) fails, the data provider is responsible for
performing corrective measures and for delivering the data in the agreed quality. After
passing the quality check the data is transformed and imported into the EA repository.
The intended changes need to be evaluated by the various EA stakeholders before being
propagated into the released part of the EA. Helpful mechanisms such as logical deletion
of architecture artefacts, means for baselining and multi-dimensional versioning are
discussed in [Mo08].

Figure 6: Tasks of the EAM process pattern "Automatic Data Acquisition/Maintenance"

Resulting Context: The EA is updated, by importing architecture artefacts from external
sources.

Related Patterns: This pattern might be used in combination with the "release
workflow pattern". The Release Workflow might be used to accept automatically
updated architecture artefacts. The methodology pattern "Analysis of the Application
Landscape" (see [Bu08], M-13) determines which business processes are supported by
which applications. To avoid multiple data acquisition efforts process landscapes might
be imported from a BPA/BPM tool.

Known Uses/Examples: Practical experiences are described for example in [Fi06].

3.4 Pattern: Architecture Control by Applying a Release Workflow

Summary: The objective of applying a Release Workflow is to ensure that only
authorised and identifiable architecture artefacts are recorded within the EA repository.

26



EAM Process: Process 1, Process 2, Process 3, Process 4.

Problem: Especially if the "Decentralised Manual Data Acquisition/Maintenance" is
applied there is the danger that the data in the EA repository is not accurate. This process
pattern tries to overcome this by allowing only authorised changes of architecture
artefacts.

Solution: If architecture artefacts are to be added, modified, replaced or removed the
RWF pattern can be applied, see figure 7. [Mo08] propose a RWF realised as a status
automaton that defines the states "Draft", "Audit", "Released" and "Archived". Changes
are drafted (by defining a new versioning branch) and submitted for acceptance (without
changing the released EA). When approved (usually by the enterprise architects in
accordance with predefined architecture principles, see [TO06]), the new version is
released into the EA and the old version is archived.

Figure 7: Tasks of the EAM process pattern "Release Workflow"

Resulting Context: The EA repository is updated and in a consistent state. Changes
have been approved after adequate quality assurance.

Related Patterns: All process patterns for data acquisition/maintenance might be
combined with this process pattern.

Known Uses/Examples: In [Ju08] the RWF is applied to architecture artefacts of the
type "Application". Changes to applications are performed decentrally by the responsible
application owners. Hence, they need to be authorised by enterprise architects.

3.5 Pattern: Lifecycle Management

Summary: The objective is to evaluate the state of architecture artefacts and to pick
retirement candidates, to keep the EA as consolidated as possible.

EAM Process: Process 1, Process 4.

27



Problem: To control architecture artefacts efficiently during their entire lifespan, it is
necessary to assign lifecycle states to architecture artefacts. By assigning lifecycle states
to architecture artefacts stakeholders are guided in their architectural work. Planning
activities are supported and development of the EA in accordance with the technology
roadmap – comprising the agreed set of software, hardware and technologies to be used
– of the organisation is possible.

Solution: Prerequisite to lifecycle management is that for each type of architecture
artefact (modelling class within the metamodel) the possible lifecycle states are defined.
Furthermore conditions to transfer an architecture artefact from one state into another
need to be defined. [Mo08] for example propose the states "Planned", "In Test",
"Implemented", "In Phase-out" and "Retired". Once the state "In Phase-out" is assigned
to an architectural artefact planning to manage the possible migration to a new target
artefact is triggered, see figure 8.

Figure 8: Tasks of the EAM process pattern "Lifecycle Management"

Resulting Context: All architecture artefacts feature a lifecycle state. Monitoring of the
EA is possible and tracking/analysis of architecture roadmap compliance is possible.

Related Patterns: For the assignment of lifecycle states any of the aforementioned data
acquisition/maintenance process patterns might be used. An example for applying this
process pattern is the methodology pattern for reducing the heterogeneity of the
technologies of the application landscape (see [Bu08], M-3). This process pattern might
be applied to assign the lifecycle states to the technologies in use.

Known Uses/Examples: [Ju08] discusses lifecycle management for architecture
artefacts of the type software, hardware and technology. For the given problem the
lifecycle of these artefacts is monitored with the goal of saving maintenance costs. To
avoid running into more costly extended maintenance or even supreme maintenance,
these artefacts are centrally monitored. By applying adequate reports (see [Ju08] for
details) necessary initiatives after a status change (e.g. setting up a project to adapt
applications affected by a status change of their underlying database management
systems) can be derived.

3.6 Pattern: Verification and Audit

Summary: Audits confirm that the artefacts of the EA conform to the agreed standard
and verify, if the current situation (real world) reflects the details in the EA repository.

EAM process: Process 1, Process 4.

28



Problem: This pattern can be applied to ensure consistency and actuality of the EA. It is
of major importance to assure that the EA repository, providing the basis for any
architectural work is up-to-date because otherwise planning deficiencies, caused by
utilisation of inconsistent and outdated data might appear.

Solution: [CM06] differentiates various types of audits for keeping a CMS accurate.
Most important for EAM appear a) Documentation Audits, conducted to confirm that
EA records and architecture artefacts are complete, consistent, and accurate and b)
Physical Audits, conducted to verify that the current architecture (real world) conforms
to the technical documentation that defines it. Possible deviances need to be eliminated.
Furthermore it is to be checked, whether identified deviances affect current initiatives. If
necessary, corrective measures need to be triggered. Verification and Audit is usually
performed by the enterprise architects. Figure 9 depicts the pattern.

Figure 9: Tasks of the EAM process pattern "Verification and Audit"

Resulting Context: Inconsistencies and bad quality are uncovered and corrective
measures are triggered.

Related Patterns: The aforementioned process patterns for data
acquisition/maintenance might be triggered if "Verification and Audit" uncovers any
inconsistencies.

Known Uses/Examples: Verification and Audit are common practice in the fields of
Software Engineering and Service Management.

4. Closing Remarks

Although already implemented in some organisations, EAM is not yet a commodity
[Jo06], [Ke07]. One reason is of course that it is difficult to calculate a ROI and the
realisation of the benefits of EAM needs some time (usually years). Additionally, in our
opinion the successful implementation of EAM mainly depends on a successful
implementation of the EAM processes. Finally, the EAM processes are depending on the
EAM objectives of the organisation and their integration with processes of other
disciplines such as definition/update of the IT strategy, portfolio management, project
management etc. Therefore, it is difficult to find an appropriate level to do research
about EAM processes and exchange experiences. We see EAM process patterns as a
powerful tool to do so. Therefore, we would appreciate a research community dealing
with EAM process patterns. The patterns presented in this paper might be a first step
towards this vision. The presented patterns cover some aspects of maintaining an EA
repository. Of course, there are many more patterns for other EAM processes. In

29



addition to the patterns themselves the used pattern forms need to be reviewed and
probably refined.

5. References

[Aa03] van der Aalst, W.M.P. et al.: Workflow Patterns. In: Distributed and Parallel Databases,
14(1), 2003, pp. 5-51.

[AI00] ANSI/IEEE Std 1471-2000; Recommended Practice for Architectural Description of
Software-Intensive Systems.

[BO08] BOC AG: Enterprise Architecture Management with ADOit. Wien, 2008.
[Bu08] Buckl, S. et. al.: Enterprise Architecture Management Pattern Catalog. Release 1.0,

Garching b. München, Germany 2008, http://srvmatthes8.informatik.tu-muenchen.
de:8083/file/EAMPatternCatalogV1.0.pdf (access: 2008-10-15).

[CI99] CIO Council: Federal Enterprise Architecture Framework. Version 1.1,
http://www.cio.gov/Documents/fedarch1.pdf (access: 2008-10-15).

[CM06] CMMI Product Team: CMMI® for Development. Version 1.2 (CMMI-SE/SW/IPPD/SS,
V1.1): Staged Representation, Carnegie Mellon Software Engineering Institute,
http://www.sei.cmu.edu/cmmi/models/index.html (access: 2007-08-15).

[Co95] Coplien, J.O.: A Generative Development-Process Pattern Language. In: Coplien, J. O.;
Schmidt, D. C. (Eds.): Pattern Languages of Program Design. Addison Wesley. 1995,
pp. 183-237.

[De03] Dern, G.: Management von IT-Architekturen. Vieweg, Wiesbaden, 2003.
[Er08] Ernst, A.: Enterprise Architecture Management Patterns. http://www.hillside.net

/plop/2008/ACM/ConferenceProceedings/papers/PLoP2008_18_Ernst.pdf (access: 2009-
03-01).

[Fi06] Fischer, R. et. al.: A Federated Approach to Enterprise Architecture Model Maintenance.
In: Reichert, M. et al. (Eds.): Enterprise Modelling and Information Systems
Architectures, LNI P-119, GI, Bonn, 2007, pp. 9-22.

[Jo06] Jonkers, H. et al.: Enterprise Architecture: Management tool and blueprint for the or-
ganisation. In: Information Systems Frontier (2006) 8, pp. 63-66.

[Ju08] Junginger, S. et. al.: Anwendungsportfoliomanagement mit ADOit im ZIVIT. In:
Riempp, G.; Stahringer, S.: HDM-Praxis der Wirtschaftsinformatik: Unternehmens-
architekturen. dpunkt-verlag GmbH, 262, 2008, pp. 29-38.

[Ke07] Keller, W.: IT-Unternehmensarchitektur. Von der Geschäftsstrategie zur optimalen IT-
Unterstützung. dpunkt.verlag, Heidelberg, 2007.

[Mo08] Moser, C. et. al.: Business Objectives Compliance Framework. Mechanisms for
Controlling Enterprise Artefacts. In: Kühne, T.; Reisig, W.; Steimann, F. (Eds.):
Modellierung 2008. Proceedings, March 2008, Lecture Notes in Informatics, Volume P-
127, pp. 74-88.

[OG07] Office of Government Commerce: ITIL – Service Transition. Appeared in the book
series ITIL - IT Infrastructure Library, The Stationery Office, London, 2007.

[Sc04] Schekkerman, J.: Another View on Extended Enterprise Architecture Viewpoints.
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/E2A-
Viewpoints_IFEAD.PDF (access: 2008-10-15).

[Sc06] Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks:
Creating or Choosing an EA Framework. Trafford Publishing, 2006.

[TO06] TOGAF: The Open Group Architecture Framework, Enterprise Edition. Version 9,
http://www.opengroup.org/architecture/togaf9-doc/arch/ (access: 2009-02-15).

[Za87] Zachman, J.: A framework for information systems architecture. In: IBM Systems
Journal, 26(3), 1987, pp. 277-293.

30


