Towards a UML profile for the description of
dynamic software architectures

Mohamed Hadj Kacem!, Mohamed Nadhmi Miladi!, Mohamed Jmaiel',
Ahmed Hadj Kacem!, and Khalil Drira®

! University of Sfax, laboratory LARIS-FSEGS, B.P. 1088 Sfax, Tunisia,
mohamed . had jkacem@fsegs.rnu.tn

2 LAAS-CNRS, 7 Avenue du Colonel Roche 31077 Toulouse, France

Abstract. In this paper, we propose a unified approach based on vi-
sual notations for describing dynamic component-based software archi-
tectures. Our approach allows describing the static, the dynamic and the
behavioral aspect as well as the architectural constraints to be respected
during the architecture evolution. We specify, using UML2.0, the static
aspect of a software architecture in accordance with an architectural
style, the dynamic aspect using the graph transformation rules, and the
behavioral aspect based also on the UML2.0 notation. These specifica-
tions are defined according to the proposed notation integrating UML2.0
and OCL language. Indeed, all constrains, all functional and some struc-
tural actions can be expressed using the OCL language. These three
aspects offer to the architects an intuitive and complete way to specify
the software architecture.

1 Introduction

The dynamicity criteria gain more and more importance in software architec-
tures design. Such dynamic architectures represent systems that do not simply
comply a fixed and static structure, but can react and evolve to certain require-
ments or events at run-time reconfiguration of its components and connections.
Indeed, during its life cycle, the dynamic architecture evolves in various manners:
by activating and/or deactivating components and by building and/or deleting
connections [1].

The architecture evolving must be achieved without disturbing the services
provided by the application. The adaptability of these architectures to these
changes is a recent requirement which needs a frequent evolution and a dynamic
configuration.

This has constituted for a few years an active research field and development
articulated around the study of dynamic software architectures [2], [3], [4], [5],
[6]. The principal objective is thus to model and to control the evolution and
the reconfiguration of architectures by expressing their conformity compared to
a given architectural style.

Our research enters in this framework. In this paper, we suggest a denota-
tional approach based on a unified chart. It allows to describe the static, the

25

dynamic and the behavioral aspect as well as the architectural constraints to be
respected during the system evolution.

Our approach seeks to take advantage of the expressive capacity of several
notations and formalisms such as UML2.0 [7], OCL (Object Constraint Lan-
guage)[8], [9] and graph grammars [10]. Thus, we describe the static aspect of
software architecture, in accordance with an architectural style, with UML2.0
notation. We express the dynamic aspect with a new notation, based on UML2.0,
representry graph rewriting rules. We describe the behavioral aspect with a no-
tation based again on UML2.0. To describe the functional part: the application
pre-condition which aims to control the evolution in accordance with the system
properties, we use the OCL languages.

This integration, based on UML2.0 notation, offers to the architects an in-
tuitive specification technique, easy to apprehend and understand and which
presents a high power of expressiveness. The transformation rules take into ac-
count the structural and functional constraints ensuring thus the system consis-
tency during its evolution.

This paper is organized as follows: In section 2, we present a discussion of
related work. We briefly examine the advantages and the disadvantages of the
ADLs as well as the formal approachs and the UML2.0 notation. We highlight
their capacities to describe the static and the dynamic aspects of software archi-
tectures. Section 3 details our approach which describes the software architecture
by considering the static, dynamic and behavioral aspect. This approach is il-
lustrated with an example. Ultimately, in section 4, we present a conclusion and
the perspectives of our work.

2 Related work

The study of the description techniques and the reconfiguration of software ar-
chitectures enables us to identify mainly three types of research.

2.1 ADLs

ADLs or (Architecture Description Languages) [11], [12] emerge as a solution
and respond to these problems partly by allowing the definition of a precise and
common vocabulary for the actors having to work around the software architec-
ture specification. They offer a well-defined set of notations for the description of
an application architecture. Basically, an ADL allows the developer to describe
the abstract organization of his system in terms of coarse-grained architectural
elements such component, connector, port and configuration or architecture [13].

ADLs formalize software architectures by offering a simple, yet flexible, rep-
resentation. An ADL may comprise a formal or semi-formal descriptive textual
language, a graphical language, or both. ADL provides the conceptual framework
for representing software at the architecture level. Most ADLs were developed
to focus on specific aspects of software architecture.

26

We noted that the majority of ADLs are concentrated on the static descrip-
tion of architectures but the dynamic of architecture is not enough expressed.
Our study [11] enabled us to identify several weak points in ADLs. These weak
points are in several orders. Indeed, the dynamic of architectures is not well sup-
ported by ADLs although there are some proposals which are interesting Darwin
[14] and Olan [15]. Moreover, the dynamic of software architecture is not much
expressed. ADLs are interested only in the systems having a fixed number of
configurations which have to be known in advance Wright [16]. Thus, it is not
possible to perform arbitrary reconfiguration operations and particularly those
which are external during the application execution.

In addition, except the Wright language, ADLs based approaches do not
allow to distinguish various architectural styles. Finally, most of them are not
formally defined. This prevents rigorous analysis and verification of architectural
properties.

Finally, we can say that the dynamic aspect is not well supported by ADLs.
In spite of the great number of interesting proposals, these solutions are not
enough thorough. The majority of ADLs, are able to manage only systems having
a finite number of configurations which should be known in advance. Then, it is
impossible to arbitrarily execute reconfiguration operations during run-time.

2.2 Formal approaches

The formal approaches to specifying dynamic software architectures that we
consider fall into four categories: graph-based approaches [10], [17], [18], pro-

cess algebra approaches [19], [20], logic-based approaches[21], [22], and other
approaches [23], [24]. In this paper, we are interested in graph-based approaches
and particularly in the graph transformation.

To specify the software architectures and the architectural styles it is possible
to use a graph grammar to represent the style and a graph to represent a specific
system’s architecture. Graphs are not only a common formalism in the specifica-
tion of static software architectures but can also describe dynamic architectures.
They represent the most intuitive mathematical formalism for modeling struc-
tures. In this context, [10] proposes to represent the software architecture using a
graph and the architectural style with a context-free graph grammar. This kind
of grammars does not allow to describe certain logical properties which permit,
for example, to reason about the instance number of a given component. Re-
configuration is described with a set of rewriting rules whose definition is rather
simple and comprehensible. Theses rules explain clearly the topological changes,
but they do not allow to express certain logical conditions such as the absence
of a communication link between two software components. [23] proposes an
approach for formal specification of dynamic architectures of component based
systems. This approach is based on an integration of graph-based semantics in
the framework of the Z formal language. This facilitates the task of the devel-
oper by offering a specification technique which is easy to apprehend and which
enables him to rigorously reason about architectural styles. Furthermore, this

27

approach allows to formally describe the dynamic of a software architecture us-
ing graph rewriting rules. These rules take into account the properties specifying
the constraints for performing reconfiguration operations which ensures the con-
sistency of a system during its evolution. This approach describes the static, the
dynamic aspect and the functional constraints but it requires a knowledge and
an expertise of Z notation and graphs grammars.

Graph transformation is applied to describe the evolution of software archi-
tecture in a formal way. But like the majority of the formal approaches, graph
transformation is based on mathematical notations which requires a knowledge
and an expertise by users.

2.3 UML

Several works seeks to describe the evolution of software architectures by us-
ing UML. Research to represent architecture in UML can be approached in two
ways. The first called “as is”. It consists to using the existing UML notation
to represent the software architectures. The second extends the vocabulary and
semantics of UML to match its modeling capabilities to the concepts of architec-
tures. The second way can be divided again into “heavyweight” and “lightweight”
way. The heavyweight way [25] adds new modeling elements or replaces exist-
ing semantics by directly modifying the UML metamodel. The lightweight way
[26], [27] defines new modeling elements by means of the extension mechanism
of UML but does not modify the UML metamodel.

To conclude, and according to the studies that we achieved, we noted that
UML allows to describe the static aspect of a software architecture in accordance
with an architectural style. UML, and in spite of the various offered diagrams,
does not allow describing the dynamic of software architectures. Indeed, based
on the offered notation, it is impossible to follow the architecture evolution in
terms of creation and removal of components and/or connections. This is why,
several research works [2], [17], [28] seek to combine UML with other formalisms
in order to support the dynamic of the software architecture description.

2.4 Synthesis

According this study, we notice that ADLs, the graph transformation and the
UML language contribute, each one of its manner, to the specification of software
architecture reconfiguration. The table 1 gives a short outline on their principal
advantages and limits.

According this study, we notice that graph transformation and UML language
are complementary. Indeed, the limits of the one are the advantages of the other.
In the following, we present an approach which integrates the two notations and
thus, allows to benefit from the advantages of the two approaches and to cover
their limits.

28

Table 1. Synthesis.

ADL Graph transformation UML
A || - Languages proposing |- A powerful notation for | - Language very used.
d || coherent solutions to modeling dynamic - Standard.
v || solve the reconfiguration | architectures. - Provide good means to
a || of component-based - Represent an intuitive | model component-based
n || architectures. mathematical tool for software architectures
t modeling structures. (contribution UML2.0).
a
8
e
L
i || - Multi notations and - Absence of standards. |- Weakness for modeling
m || multi languages. - Requires expertise. dynamic architectures.
i || - Absence of standards.
t

3 The proposed approach

We tried in [29] to extend ADLs to describe the static aspect in accordance
with an architectural style but by adopting an easier notation and known by
the community. We have adopted the UML notation. To solve UML insufficien-
cies, we combined UML with graph grammars in order to describe the dynamic
aspect. With this combination, we describe the dynamic of the system but the
combined notation used is difficult to understand and requires an expertise in
graph grammars.

We propose in this paper, a UML Profile allowing the description of the
static, dynamic and behavioral aspect. In the static aspect, we describe the soft-
ware architecture in terms of components and connections in accordance with an
architectural style. In the dynamic aspect, we describe the architecture evolution
in terms of creation and removal of components and/or connectors. In the behav-
ioral aspect, we describe the coordination between the various reconfiguration
operations.

To give more details on our approach, we develop in parallel, an illustrative
example. The Patient Monitoring System (PMS), which was used to illustrate
works of [23] and [10]. For each service of the private clinic (pediatric, cardiol-
ogy, maternity, etc.) we associate an event service to manage the communications
between nurses and bed monitors. For each bed monitor, the responsible nurse
periodically requests patient data (for example, blood pressure, pulse and tem-
perature) by sending a request to the event service to which it is connected.
This service transmits the request to the concerned bed monitors. When a pa-

29

tient state is considered to be abnormal, its corresponding bed monitor raises an
alarm to the event service to which it is connected. Then, this service transmits
the signal to the responsible nurse. To represent the communication architec-
ture of this system, we chose the Producer/Consumer style. So, the nurse and
the bed monitor behave respectively as a consumer component and a producer
component.

In addition to the architectural style constraints, an application can have spe-
cific properties which must be satisfied during the evolution of its architecture.
We will take some properties of the PMS system such as:

1. The system must contain at most 3 services.

2. A service contains at most 5 nurses and 15 patients.

3. A patient must be always affected with only one service. This later must
contain at least one nurse to take care of this patient.

A nurse must be connected to only one service.

A nurse cannot control more than 3 patients.

A patient can be controlled only by one nurse.

The existence of a patient implies the existence of a nurse.

N oot

3.1 Static aspect

The static aspect defines the type of components able to occur in the system
description and the type of connections which can link these components. It
defines also the set of the architectural properties which must be satisfied by
all configurations belonging to this style. To specify the static aspect, we use
the UML notation. Nodes represent components and arcs represent connection
between these components.

The representation of the static aspect is made up of three parts as depicted
in figure 1.

— Style Name: In this part, we describe the name of the system to specify.

— Architectural Style: In this part, we describe our system in accordance with
an architectural style. We specify the set of components and connectors
which constitute the system. The specification is described using UML2.0
notation.

— Gards: In this part, we describe the architectural constraints that system
must respect throughout its evolution. These constraints are expressed ac-
cording the OCL language (Object Constraint Language).

We return to our example and we describe the static aspect by considering
the architectural style constraints and the stated specific properties. The figure
1 describes the PMS system architecture according to the Producer/Consumer
style.

According to UML2.0, our system is described based on three components
(service, patient and nurse). The system can contain at most 3 event services.
Each service can contain between 0 and 5 nurses and can include between 0

30

« Style name: PVIS »

« Architectural style »

« Gards »

1. Event Serwice — size <= 3 and Event Service — size > 0

2. Ewent Serwice.nurse —* size <= 5 and Event Service.patient —* size
<= 15

Patient.ewvent service — size =
Murse.event service — size = 1
Murse.patient — size <= 3
Patient.nurse —* size = 1
Event Serwvice.patient — not Empty() implies Ewent Serwice.nurse -
not Empty ()

1

=1 T s

Fig. 1. Static Aspect of the PMS system

and 15 patients. A nurse cannot control more than 3 patients. To describe the
connection between the patient and the nurse (constraint (5) and (6)) we extend
UML2.0 with the stereotype <control>> which represents just a semantic con-
nection between two components. The figure 2 describes a possible configuration
of PMS system.

X:Even

SEIViCE
[]

wt F

wuF
& Control »

Fig. 2. One possible configuration of the PMS system

3.2 Dynamic aspect

The four fundamental reconfiguration operations, provided to describe the ar-
chitecture evolution, are creation and removal (which can be also viewed as

31

activating and deactivating) of components and creation and removal of connec-
tions [1]. To describe these operations, we have defined a new notation described
by the figure 3. This notation is based on graph transformation with the use of
UML2.0 notation and the associated OCL language. This notation expresses the
dynamic aspect through four sections:

— Reconfiguration Operation: In this part, we describe the name of the opera-
tion to execute.

— Require & delete: This part describes the system part removed during the

reconfiguration operation.

Insert: This part describes the fragment that is created and embedded into

the system during the reconfiguration operation.

Require € preserve: This part describes the system part that is identified

but not changed during the reconfiguration operation.

— Gards: This part describes the architectural constraints the system must
respect throughout its evolution. These constraints are expressed according
the OCL language.

In the parts: “Require & delete”, “Insert” and “Require & preserve”, the
specification of components and connectors which constitute the system is de-
scribed by UML2.0 notation.

We return to our example and we present the specification of some rules
allowing evolving our PMS system while taking into account the constraints of
style architecture and the architectural properties.

Insertion of an Event_Service This rule allows to insert a component in-
stance of type Event_Service. To apply this rule, we should check that the system
does not already contain three Event Services according to the constraint OCL
Self—+size<3. The representation of this rule is depicted in figure 3.

? Insert Event Service(x)

« require & delete » « require & preserve »

i Gards »
Context Ewvent Serwvice::Insert EI(x) :Boolean
pre Self — size « 3

Fig. 3. The insertion rule of an Event_Service

The application of this rule to the architecture instance presented by figure
2 with x’ :Event _Service as parameter generates the graph depicted in figure
4.

32

4 x:EventEl

SEIVICE
[]

«C;ntmlm
()

x’:EventE
) ' See [N

Fig. 4. Graph obtained following the application of Insert Event_Service to the graph
of figure 2

Insertion of a nurse This rule allows to insert and to connect a Nurse to
an Event Service. To apply this rule, we should check that the Event Service
does not contain already five nurses in according to the constraint (2). The
representation of this rule is depicted in figure 5.

’% Insert_CIN(y)

« require & delete » « require & preserve »

x.EvcntE
W Gards »

service
Context Event Serwvice::Connect CH(y] :Boolean
pre Self.nurse —* size < 5

Fig. 5. The insertion rule of a nurse

The application of the rule Insert_CN to the architecture instance presented
by figure 4 with y’ :Nurse as parameter generates the graph of figure 6.

Insertion of a patient This rule allows to insert and to connect a component
instance of type Patient to an Event Service. To apply this role, we should check
two conditions. First, it would be necessary that there is at least one nurse
belonging to this service which may be charged with this new patient and the
number of patients in load is lower than three. Second, we should check that this
service does not already contain fifteen patients. The representation of this rule
is depicted in figure 7.

33

XZE‘JEHE

SErVICE
[]

¥ Ewent E

- []
Service

Fig. 6. Graph obtained following the application of Insert_CN to the graph of figure 4

% Insert PB(z)

o require & delete » i require & preserve » i insert »

wEvent |

Service

W Gards »
Context Event Serwvice::Connect PE(z) :Boolean

pre Self.nurse —» size > 0 and Jelf.nurse.patient — Size < 3
and Self.patient —» %Fize « 15

Fig. 7. The insertion rule of a patient

34

Transfer of a nurse A nurse can leave her service towards another (without
being removed from the system) only if she is not responsible for any patient
and the new service contains less than five nurses. The representation of this
rule is depicted in figure 8.

% Transfer CN(y)

o require & delete » o Tequire & preserve » « insert »

wEventE] x" Event E
Service Service
i Gards »
Context Event Service::Transfer CN(y,z) :Boolean
pre v.patient - sSige = 0 and z.nurse < &

Fig. 8. The transfer rule of a Nurse

Transfer of a patient A patient can leave a service towards another (without
being removed from the system) only if it is not treated with a nurse of the old
service y:Nurse and if there is at least one nurse belonging to a new service
y’ :Nurse which may be charged with this new patient z.patient—size<3.
The representation of this rule is depicted in figure 9.

‘% Transfer_PB (yz)

o require & delete » « require & preserve » o insert »

s

y MNurse

« Gards »
Context Event Zervice::Transfer Patient (y,z):Boolean
pre zZ.patient —= =ize < 3

Fig. 9. The transfer rule of a Patient

35

3.3 Behavior Aspect

The behavioral aspect allows describing the sequence and the organization of the
reconfiguration operations. It describes the execution time order. To describe the
behavioral aspect, we use the activity diagrams.

According to the PMS specification depicted in figure 10, the first operation
to execute is the insertion of the Event Service “Insert Fvent Service”. A nurse
cannot be inserted “Insert Nurse” unless there is already an Event Service. A
patient cannot be inserted “Insert Patient” in an Event Service unless there is
already a Nurse connected to the service. The insertion of an Event Service,
Nurse and Patient can be executed one or more time. The transfer of a patient
“Transfer Patient” requires that this one be inserted and requires the existence
of a nurse inserted to the Event Service in question.

4 Conclusion

We presented in this paper a unified approach based on graphic representation for
describing the dynamic component-based architectures. This approach allowed,
using the UML2.0 notation, describing the static aspect in accordance with an
architectural style. It helps to specify the dynamic aspect of software architecture
by integrating UML2.0 and OCL language. It allows also to describe the behavior
and the relations between the configuration operations.

Our approach profits of the advantages of graph transformation and UML
notations. The combination that we proposed covers their limits. This integration
offers to the architects an intuitive specification technique, which can be easy
to apprehend trough presenting a high expressive power. Our approach allows
describing the dynamic of architectures via graph rewriting rules. The rules take
into account the properties which specify the constraints that condition applying
reconfiguration operations. This ensures the consistency of the system during its
evolution.

We have planned, in prospect, to model the metamodel of the three aspects
which we proposed and to implement the so-defined profile on the one hand and
to establish the link between our work and that of [23] on the other hand. For
this reason, we develop a translator from our visual specification notation into
the Z formal notation.

36

PMS Behavior

Fig. 10. The behavior of configuration operations

37

References

10.

11.

12.

13.

14.

15.

16.

17.

. Wermelinger, M.: Specification of software architecture reconfiguration. Phd thesis,

Université Nova de Lisbon (1999)

. Baresi, L., Heckel, R., Thone, S., Varro, D.: Style-based refinement of dynamic soft-

ware architectures. In: WICSA04: The 4th Working International IEEE/IFIP Con-
ference on Software Architecture, Oslo, Norway, IEEE Computer Society (2004)
155-164

Rasche, A., Polze, A.: Configuration and dynamic reconfiguration of component-
based applications with microsoft .NET. In: ISORC’03: The 6th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, Wash-
ington, DC, USA, IEEE Computer Society (2003) 164

Oriol, M., Serugendo, G.D.M.: Disconnected service architecture for unanticipated
run-time evolution of code. IEE Proceedings - Software 151 (2004) 95-108
Chaudet, C., Greenwood, R.M., Oquendo, F., Warboys, B.: Architecture-driven
software engineering: Specifying, generating, and evolving component- based soft-
ware systems. IEE Proceedings - Software 147 (2000) 203-214

Roh, S., Kim, K., Jeon, T.: Architecture modeling language based on UML2.0. In:
APSEC, The 11th Asia-Pacific Software Engineering Conference, IEEE Computer
Society (2004) 663-669

OMG: UML 2.0 superstructure specification, final adopted specification. Omg
document (2003)

Akehurst, D., Patrascoiu, O.: OCL 2.0 - implementing the standard for multiple
metamodels. Uml 2003 preliminary version, technical report, Computing Labora-
tory, University of Kent, Canterbury, UK (2003)

OMG: The unified modelling language 2.0 - object constraint language 2.0 pro-
posal. OMG document, url: http://www.omg.org (2003)

Métayer, D.L.: Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering 24 (1998) 521-533

Hadj Kacem, M., Jmaiel, M., Hadj Kacem, A., Drira, K.: Evaluation and compar-
ison of ADL based approaches for the description of dynamic of software architec-
tures. In: ICEIS’05: The 7th International Conference on Enterprise Information
Systems, Miami, USA, INSTICC Press (2005)

Medvidovic, N.; Taylor, R.: A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering 26
(2000) 70-93

Ermel, C., Bardohl, R., Padberg, J.: Visual design of software architecture and evo-
lution based on graph transformation. Electronic Notes in Theoretical Computer
Science 44 (2001)

Magee, J., Dulay, N., Kramer, J.: Structuring parallel and distributed programs.
IEEE Software Engineering Journal 8 (1993) 73-82

Bellissard, L., Atallah, S.B., Kerbrat, A., Riveill, M.: Component-based program-
ming and application management with Olan. In: OBPDC’95: Object-Based Par-
allel and Distributed Computation. (1995) 290-309

Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. (In: Proceedings of the 1998 Conference on Fundamental Approaches
to Software Engineering (FASE’98)) 21-37

Heckel, R., Cherchago, A., Lohmann, M.: A formal approach to service specification
and matching based on graph transformation. Electronic Notes in Theoretical
Computer Science 105 (2004) 37-49

38

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Ziemann, P., Holscher, K., Gogolla, M.: From UML models to graph transformation
systems. Electronic Notes in Theoretical Computer Science 127 (2005) 17-33
Hilderink, G.H.: Graphical modelling language for specifying concurrency based
on CSP. IEE Proceedings - Software 150 (2003) 108-120

Salaiin, G., Allemand, M., Attioghé;, C.: A method to combine any process algebra
with an algebraic specification language: the p-calculus example. In: COMPSAC
'02: Proceedings of the 26th International Computer Software and Applications
Conference on Prolonging Software Life: Development and Redevelopment, Wash-
ington, DC, USA, IEEE Computer Society (2002) 385-392

de Paula, V.C.C., Ribeiro-Justo, G.R., Cunha, P.R.F.: Specifying and verifying
reconfigurable software architectures. In: PDSE. (2000) 21-31

Aguirre, N., Maibaum, T.: Formal design and development of a corba-based appli-
cation for cooperative HTML group editing support. Hierarchical Temporal Spec-
ifications of Dynamically Reconfigurable Component Based Systems 108 (2004)
69-81

Loulou, I., Hadj Kacem, A., Jmaiel, M., Drira, K.: Towards a unified graph-
based framework for dynamic component-based architectures description in Z. In:
ICPS’04: The IEEE/ACS International Conference on Pervasive Services, IEEE
Computer Society (2004) 227-234

Kandé, M.M., Strohmeier, A.: Towards a UML profile for software architecture
descriptions. In: UML 2000 - The Unified Modeling Language. Advancing the Stan-
dard. 3th International Conference, York, UK. Volume 1939 of LNCS., Springer
(2000) 513-527

Pérez-Martinez, J.E.: Heavyweight extensions to the uml metamodel to describe
the ¢3 architectural style. SIGSOFT Software Engineering Notes 28 (2003) 5-5
Selonen, P.; Xu, J.: Validating UML models against architectural profiles. SIG-
SOFT Software Engineering Notes 28 (2003) 58-67

Medvidovic, N., Rosenblum, D.S.; Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the unified modeling language. ACM Transactions on Soft-
ware Engineering and Methodology 11 (2002) 2-57

Bordbar, B., Giacomini, L., Holding, D.: Uml and petri nets for design and analysis
of distibuted systems. In: The 2000 IEEE International Conference on Control
Applications, Alaska, USA (2000) 610-615

Hadj Kacem, M., Jmaiel, M., Hadj Kacem, A., Drira, K.: Using UML2.0 and GG
for describing the dynamic of software architectures. In: ICITA’05, The 3th Inter-
national Conference on Information Technology for Application, Sydney, Australia,
IEEE Computer Society (2005)

39

