
Towards Self-Learning and Fully Transparent
UCE Prevention

Wilfried N. Gansterer and Michael Ilger

wilfried.gansterer@univie.ac.at, michael.ilger@winf1.at

Abstract: A self-learning system for preventing unsolicited commercial or bulk e-mail
(UCE or UBE) is presented. It acts at the source of each e-mail message and controls
the traffic going out of a network, thus avoiding common drawbacks of standard spam
filtering techniques.

The system is based on a token bucket mechanism proposed earlier. In this paper,
it is shown how to develop this approach into a fully transparent and effective UCE
prevention system by introducing adaptivity and learning capabilities. The first central
component introduced in this paper is a framework for quantitatively analyzing the
business model underlying UCE, allowing for insights into the effectiveness of filtering
in the given situation. The second one is a strategy allowing the system to adaptively
and intelligently (re-)configure itself in order to achieve almost arbitrarily high levels
of transparency, i. e., to harm the business model underlying UCE without affecting
regular e-mail users. Finally, a third component introduces adaptability for ensuring
that only spam is blocked and that no regular mail traffic is affected.

1 Introduction

Numerous strategies for addressing the problem of unsolicited commercial or bulk e-mail
(UCE or UBE, commonly denoted as “spam”), have been proposed. Many of them lack
a lasting effect, because it is usually easy to circumvent them. Moreover, most of the
approaches act after an e-mail is received, when most of the damage has happened.

The idea of filtering spam out of incoming e-mail traffic is relatively easy to implement
and has also brought some success. It has a number of disadvantages, though: It generates
relatively high costs and tends to achieve only limited improvements if it is based only on
a certain number of static filtering rules.

Longer lasting, effective and comprehensive solutions for the spam problem need to focus
on two aspects: (i) Detection and prevention of spam in an early stage, ideally already
in outgoing e-mail traffic on the mail servers, and (ii) intelligence in the sense of being
dynamic and capable of adapting to changes in the environment as well as to variations
in the content and structure of UCE messages. Only if these two aspects are taken into
account, the spam problem can be fought at its source. Many existing methods primarily
“treat symptoms” after most of the damage caused by UCE has already been done (such
as unexpected overload in bandwidth and storage capacity, network overhead as well as
loss of end-user productivity).

1.1 Related Work

Methods for detecting and preventing spam can be categorized into three basic classes
according to their point of action in the mail transfer process. Pre-send methods act be-
fore the message is transported over the network, whereas post-send methods act after the
message has been transferred to the receiver. A third class comprises approaches based on
modifying the transfer process itself.

Several suggestions for new protocols extending or replacing SMTP have been made in
order to overcome its deficiencies in the context of the spam problem. The main problem
with this approach is that a worldwide agreement on a drastic change in the protocol un-
derlying e-mail transfer and a coordinated transition are very unrealistic in the foreseeable
future.

Most of the research in the area of anti-spam methods has traditionally focused on post-
send methods, more specifically, on filtering at the receiver side. Important examples
are black- and whitelisting, Bayes filters [AKCS00], or rule sets (for example, SpamAs-
sassin (http://spamassassin.apache.org). Some post-send methods are able
to achieve reasonably satisfactory results provided they are properly trained, tuned, and
maintained. This effort required for maintaining satisfactory performance of post-send ap-
proaches is one of their disadvantages. An even more substantial drawback is the fact that
a big part of the damage caused by UCE is already done before post-send methods can
become active. Thus, they are not able to reduce the overhead, the waste of bandwidth,
processing power, memory and time caused by UCE. Moreover, privacy issues may arise
with filtering methods since most of them have to access the message content. Other post-
send approaches, such as greylisting [Har03], take effect a little earlier and currently yield
very high true positive rates, but have the disadvantage of potentially introducing undesir-
able delays in mail delivery. Approaches for overcoming the drawbacks of conventional
greylisting have been proposed in [GJL07, JGK08].

As mentioned above, it is essential to develop strategies which fight the spam problem at
the source in order to avoid the overhead and waste of resources caused by spam. In this
aspect, pre-send methods have an inherent advantage. Existing research in this area can be
grouped into two categories: (i) Strategies for identifying sources of spam and, based on
the results, for blocking those sources; and (ii) strategies for harming the business model
of spammers by increasing the cost associated with sending out (spam) e-mail.

The first category comprises not only simple methods such as shutting down spam sources
based on user complaints, but also more sophisticated ones. For example, one could try
to detect abnormal sending behavior or spam sources by examining log data produced by
outgoing and incoming mail transfer agents (MTAs). Heuristics for the latter have been
described, for example, in [Cla01] and [Cla05]. Besides log data, network traffic on the
TCP layer can be used to gather information about spamming machines. A link analysis
technique described in [DS04] identifies nodes with anomalous behavior. The underlying
assumption is that e-mail servers form a community with strong internal interaction and
that nodes which are not part of the community (for example, spam sources) differ in their
behavior. However, some of these approaches assume a lot of detailed information about

W. N. Gansterer und M. Ilger278

the network structure. Another major disadvantage is that they are mostly reactive (a host
is identified as spam source only after spam was sent out).

It seems more promising to investigate approaches which prevent spam messages from be-
ing sent out in the first place. Important ideas in this direction are based on economic anal-
yses how to compromise the business model underlying UCE, for example, in [DHD+06].
Conceptually, such techniques can be divided into two groups: (i) Approaches which al-
low unlimited sending of e-mail, but increase the costs for the sender; and (ii) methods
which (in some way) limit the number of messages a user is allowed to send out. A cost
increase can, for example, be achieved by micro-payment models [Tur03] or by imposing
computational costs for sending out e-mail messages. Representatives of the latter ap-
proach are CPU bound [DHD+06, Bac02] and memory bound [ABMW03, DN93] tech-
niques. A combination of three possible techniques is proposed in [GR04], comprising
HIP (Human Interaction Proof) challenges, computational challenges and paid subscrip-
tion. In [GHI+05] an approach has been presented for dynamically limiting the number of
outgoing messages which is based on the adaptation of a token bucket mechanism. This
approach avoids several of the drawbacks of the other cost-based approaches. Neverthe-
less, several important questions with respect to fine tuning and deployment in practical
situations have not been addressed adequately so far.

1.2 Focus of this Paper

In this paper, we address these questions related to the approach presented in [GHI+05]
in order to make progress towards the goal of self-learning and fully transparent UCE
prevention. The remainder of this paper is organized as follows. In Section 2 the basic
structure of the token bucket-based approach introduced in [GHI+05] is reviewed, and
in Section 2.5 the open questions related to this approach are summarized. In Section 3
solutions to these questions are presented and the concept for an intelligent system for
UCE prevention is developed. Section 6 concludes our paper.

2 Token Buckets for UCE Prevention

As summarized above, existing approaches for preventing UCE have various drawbacks.
The most effective ones impose restrictions which tend to also affect regular e-mail users.
Ideally, a pre-send method (i) limits the sending of e-mails in such a way that the business
model of spammers is harmed while (ii) its effects are unnoticed by regular e-mail users.
Investigations of the business models underlying spamming indicate that this goal can be
reached [ISGP06]. The concept outlined in [GHI+05] was developed accordingly. In the
following, this concept is reviewed briefly.

If individual S intends to send UCE to a number of recipients, S needs to be connected to
the Internet through some ISP X . Nevertheless, S does not necessarily have to send e-mail
through the outgoing mail server of X . Theoretically, S could connect to an open proxy,

Self-Learning and Fully Transparent UCE Prevention 279

to an open relay or to a third party e-mail provider inside X’s network and use that to send
out e-mail. S could also run his own e-mail server (or a spamming tool) locally. In their
Terms of Use, ISPs often explicitly prohibit the installation of an open proxy, open relay
or of a private e-mail server inside their network. Consequently, the latter two situations
involve questions concerning the enforcement of the internal structure and regulations of
the ISP, which are beyond the scope of this paper.

The strategy originally proposed in [GHI+05] comprises two core components in order to
handle both of the relevant scenarios.

• A token bucket component limits the flow of e-mail through the outgoing mail server
of X . If parameterized properly (see Sections 2.5 and 3), this happens unnoticed by
a regular e-mail user.

• A component consisting of whitelists restricts or inhibits the outflow of e-mail
through channels other than the outgoing mail server of X (open proxies, open
relays or third party e-mail providers).

Another scenario which has become extremely important in recent years is that spam is
sent out via bot nets. In fact, nowadays this is most likely the case for the biggest por-
tion of spam. In this scenario, computers of regular users are hacked, “infested” with
programs and abused for sending out UCE. Also for this scenario the strategy discussed
here provides important improvements, since a well designed token bucket system helps
to detect whether e-mail traffic originating from certain computers starts deviating from
its “normal” behavior, which may be an indication of this kind of abuse.

2.1 Token Bucket Fundamentals

A token bucket is a way for implementing a shaping algorithm for generic network traffic
with inherent bit rate saving capabilities (see Fig. 1).

In Fig. 1, two “buckets” are present, one for storing incoming traffic in a queue with
a capacity of K bits, another one for storing a maximum of β so called tokens. Each
incoming bit needs to remove a token from the token bucket to be forwarded, and the token
bucket is filled with a rate of ρ tokens per time unit [Sta02]. If a sender does not send data
for some time, the token bucket will fill up. If the token bucket is full, no more tokens can
be added to the bucket. If the traffic queue is full, incoming packets are dropped. If the
token bucket contains 0 ≤ n ≤ β tokens, then up to n incoming bits may be forwarded in
a single burst (maximum burst size). However, in the long run, the committed sustainable
bit rate is limited by ρ.

The token bucket concept has been adapted to e-mail traffic (which can be considered a
special form of network traffic) in [GHI+05].

W. N. Gansterer und M. Ilger280

Figure 1: A token bucket.

2.2 Implementation

Our token bucket approach for spam prevention was implemented as a policy delegation
server for the open source mail server Postfix (http://www.postfix.org). For each
user, a triplet consisting of (i) the mailbox name, (ii) the time t0 of the last successful
submission of the “RCPT TO:” command (SMTP status code “250”), and (iii) the number
T of tokens currently available in his bucket is stored. Every time a client transfers a
message to the outgoing mail server, a plug-in is triggered after the execution of the “RCPT
TO:” command within the SMTP dialogue. If the e-mail has r recipients, this plug-in is
executed r times.

Each execution of the plug-in computes the number of available tokens based on the fol-
lowing parameters: capacity β (= maximum number of tokens available per user), token
consumption Tc per recipient, and token growth ρ per time unit.

Based on the current system time t (when the sending takes place) and on t0 when the
previous sending happened, the new amount T of tokens currently available in the bucket
can be computed using the following equation:

T (t) = min (T (t0) + (t − t0) · ρ, β)

This number is the basis for the decision whether the e-mail can be sent to a certain recip-
ient or not. If T (t) − Tc ≥ 0, the recipient is accepted, the number of available tokens is
updated in the user’s triplet as T := T (t) − Tc, and the plug-in returns status code “250
OK” to the mail server. If T (t)−Tc < 0, the e-mail cannot be sent, the recipient is refused,
and the plug-in returns “554 Not enough tokens available” back to Postfix. Alternatively,
it is possible to delay sending of this e-mail until enough tokens are available.

Self-Learning and Fully Transparent UCE Prevention 281

2.3 Parametrization

The central question is how to choose the parameters β and ρ. A simple and straightfor-
ward solution is to put a static limit on the number of e-mails which can be sent out per
time unit (for example, allowing each user to send out at most 100 e-mail messages per
day), or on the number of recipients for a single e-mail (cf., for example, the terms of
service of Yahoo). Obviously, such rigid limits easily cause notable restrictions for regular
e-mail users, because the e-mail to be sent out is usually not distributed uniformly over
a day. Generally speaking, for the success and widespread acceptance of any measure
against spam it is crucial to design it as transparent and imperceptible as possible for a
regular e-mail user.

In summary, the objective has to be the following: Limit the number of e-mail messages
sent out in order to compromise the spammers’ business model without negatively affect-
ing a regular e-mail user (ideally, a regular e-mail user should not notice anything). A token
bucket mechanism is a suitable strategy for achieving this goal, because it provides a very
flexible way of limiting the number of e-mail messages which can be sent out. It can also
accommodate for traffic bursts, and, if parametrized and adjusted properly, can achieve the
objectives formulated above. In the next sections, we will discuss proper parametrization
and adjustment of a token bucket mechanism for controlling outgoing e-mail traffic.

2.4 Non-Standard Channels for Sending out E-Mail

Obviously, the token bucket component described here can only control the e-mail traffic
passing through the ISP’s outgoing e-mail server. As mentioned before, a spammer has
various options for circumventing this mechanism and for sending out spam through other
channels. Thus, we extend our concept by another component which allows one to control
these “loopholes”.

A first idea is based on a “filter-in” approach. This means, that the ISP allows outgoing
connections only to certain registered IP addresses on a “whitelist” (for each customer
individually). While this approach has some initial overhead in terms of implementation
and user interaction, it offers completeness, because certain inspections of outgoing con-
nections can be integrated into the registration process. In practice, the ISP has to check
connection attempts going out of its network for IP addresses on the whitelist and decide
accordingly whether to allow the connection or not.

A possible alternative is a “filter-out” approach which requires an efficient procedure for
maintaining a reliable, up-to-date and comprehensive list of open proxies and open relays.
Although several such lists are publicly available (for example, [rea]), it is virtually im-
possible to have a complete list of all currently open proxies and open relays which could
potentially be used for spamming. In order to complement and extend publicly available
lists, a feedback mechanism from a spam filter for incoming e-mail traffic could be used
to identify those hosts in a completely automated fashion which does not require user
interaction.

W. N. Gansterer und M. Ilger282

Between those two alternatives, the “filter-in” approach is more appealing in terms of
performance. Each user’s whitelist can be established as part of the registration procedure.
During this registration process as well as in regular intervals afterwards the ISP can check
whether these whitelisted IP addresses continue to be “trusted” hosts.

The most comprehensive, but technically most involved alternative would be to monitor
the entire TCP stream directly and to integrate it into a token bucket mechanism. When-
ever the observation of the TCP stream reveals that token bucket limits are approached or
reached, the respective connection is slowed down or terminated.

2.5 Open Questions

As discussed in [GHI+05], the token bucket concept has several properties which are at-
tractive in the context of spam defense: It is very simple, both to implement and to handle,
and due to its simplicity it is very efficient and does not cause any severe performance
overhead. One of its main attractions is the fact that a flexible and adaptive limitation of
the outflow of e-mail messages becomes possible. Limiting this outflow has the advantage
of removing one source for spam, and is in some sense also a “protection” for an ISP for
not getting blacklisted.

The main challenge discussed in this paper is how to fine-tune a token bucket system for
spam prevention so that the spammers’ business model is harmed while the regular e-mail
user is virtually not affected at all (see Section 3).

How Many Tokens per Message ? When applying a token bucket strategy to spam pre-
vention, the system can either use one token per message or it can determine the number
of tokens needed based on the size of the e-mail (which corresponds to using one token
per fixed amount of data to be sent). In this paper we focus on the former variant since the
essential information to be transferred in spam tends to be relatively compact, containing
only a short text, a URL, or sometimes small images, and thus the size of spam messages
tends not to vary a lot. In order to address this and related questions, we first discuss the
economic background of the spam phenomenon.

3 Economic Background

The commercial success of spamming is related directly to the number of spam messages
sent out per time unit. This is explained by the underlying business model: Spammers try
to send out big numbers (millions) of small-sized messages. Although the relative response
rates tend to be rather low – between 0.00001 % and 0.35 % (see [ISGP06] and references
therein), this is sufficient in terms of absolute numbers as long as the number of messages
sent out is large enough (assuming a fixed income associated with each response). Due to
this dependency on high sending rates, a limitation of the number of outgoing messages is
an effective measure. As motivated before, the concept we use to impose such a limit is

Self-Learning and Fully Transparent UCE Prevention 283

Figure 2: Token bucket envelope spearating the region of regular e-mail traffic from the region of
profitable spamming.

a token bucket. In order to address the central question in Section 4 – how to choose the
parameters so that the impact on regular users is negligible – we first need to take a closer
look at some statistical data.

In case studies based on data from real cases available in the literature [ISGP06], one can
see that a single spammer can create large daily revenues (basically only limited by the
bandwidth of the internet connection) if the number of messages sent out is not restricted.
A limit of a few hundred messages per day is normally sufficient to reduce the spammer’s
potential revenue below the marginal return. Roughly speaking, a spammer’s operation
does not start being profitable before he sends out at least in the order of several thousand
messages per day [GIL+05, ISGP06].

3.1 Business Model of Spammers

The profit generated by spamming increases with the number of e-mail messages sent out.
In other words, if one wants to render spamming unprofitable, outgoing e-mail traffic has
to be shaped in a certain way such that profitable regions are not reached (see Fig. 2).
In Sections 4 and 5, we describe how to design a token bucket shaper for outgoing e-
mail traffic such that regular e-mail users are within the envelope, whereas (profitable)
spamming is outside the envelope.

First, we need to take a closer look at the costs a spammer is facing when sending out a
certain amount of messages and trying to create revenue. We will also try to relate this to
the costs for a regular user when sending out e-mail in order to find economical barriers
which impede spammers while being unnoticed by a regular user. With the knowledge
gained here it is possible to create new tools for outgoing spam prevention which can help
internet service providers (ISPs) reducing the load on their servers as well as securing their
reputation by preventing their customers from spamming.

W. N. Gansterer und M. Ilger284

Cost and Revenue Factors for Spammers. Before different cost and profit models can
be analyzed, the most important cost and revenue factors must be identified. The cost
factors for a spammer can be classified in four categories—hardware cost H , software
cost S, labour cost L and operating cost O. Some cost, such as hardware cost, is easy to
evaluate, but others can only be estimated (software installation duration, time to compose
a spam e-mail). So we define a simple cost model as

total cost c = H + S + L + O.

Assuming that a single spammer uses his own home computer, hardware cost H comprises
cost of a computer C, a monitor M and peripheral devices P :

H = C + M + P.

Software cost can be divided into basic software requirements, such as an operating sys-
tem OS, and special software for spamming activities, such as remailers R, mail address
harvesters MAH or web hosting WH:

S = OS + R + MAH + WH.

Operating cost are a sum of internet service cost I , electricity cost E for running the
system, address collection cost A (e-mail addresses can be bought or self-collected) and
open proxy cost OP:

O = I + E + A + OP.

Labor cost can be divided into cost for installation IN, maintenance MT, mail production
MP and customer acquisition AC:

L = IN + MT + MP + AC.

All these cost factors must be calculated for a certain period of time (for example, per
day). This daily cost must afterwards be divided by the number of messages which can be
sent out in this period of time to get the per message cost. If the cost calculated here is
higher than the revenue, then the attempt of destroying a spammers’ business model can
be considered successful.

While the cost factors can be estimated for these more “classical” forms of spamming
businesses, it is much more difficult to estimate cost factors for spamming operations
which are based on bot-nets. Revenue factors are also very hard to estimate, because
spamming business usually operate secretly. There are two main payment schemes - a
brokerage system, where a marketer gets a fee per sold item and a pay-per-mail campaign
system (for example, an e-mail campaign to one million customers costs a certain amount
of money). As it is not possible to get reliable data about the former we analyze the mail
campaign system here. As discussed in [GIL+05], reasonable estimates for the average
revenue per message are around 0.004 Euro.

3.2 The SpamSim Tool

The different business models motivating the spam phenomenon have been summarized
in [ISGP06]. In order to design and to calibrate an anti-spam method which is capable of

Self-Learning and Fully Transparent UCE Prevention 285

Figure 3: Screenshot of SpamSim application.

interfering with these business models, we created a simulation tool. This tool allows us
to simulate the effect of various parameters on the profit achieved by spammers.

Our tool implements the most important cost and profit factors and models their dependen-
cies, however, for the “classical” forms of spamming businesses. We try to answer some
of the underlying questions concerning spam, like how many messages must be filtered
out, or how many messages a spammer has to send out to be profitable. By examining the
break-even point for spammers in terms of cost and profit, we can evaluate the effectivity
of anti-spam methods. The tool has been implemented as a Windows GUI application,
programmed in Visual C# operating on the Microsoft .NET framework.

Using this application it is easy to generate graphs representing the the cost and revenues
of spammers (as shown in the screenshot in Fig. 3). Using this tool, we have analyzed the
influence of a token bucket algorithm as outlined in [GHI+05] on the business model
underlying UCE. Further details and the investigation of other scenarios are provided
in [ISGP06].

Based various assumptions, including that a home PC and a leased line are used for sending
out UCE, that hardware, software, operating cost and working cost are monthly fixed costs
and that only open proxy costs are paid per e-mail sent and thus can be denoted as running
costs, one can estimate that a sending limit of roughly 8 400 messages per day will make
sending out UCE unprofitable.

4 Parametrization of Token Buckets

As summarized in Section 2, a token bucket is specified by two parameters: capacity β
and token rate ρ. For determining good choices for these two parameters, a rough estimate
of the number of outgoing e-mail messages from a regular user per day is needed.

W. N. Gansterer und M. Ilger286

Data from ISPs indicates that this number tends to be below 20 messages per day (aver-
aged over all customers, cf. [Cla05, SGIS07]). We determine global estimate on the basis
of (conservative) estimates for the total daily volume of e-mail messages, the total number
of internet users, and the overall percentage of spam. Radicati (www.radicati.com)
estimates that worldwide around 130 billion e-mail messages are sent out per day. Accord-
ing to www.internetworldstats.com, the number of internet users worldwide is
roughly 950 millions, and Postini (www.postini.com) estimates that more than 80 %
of e-mail messages are spam. Based on these numbers, we can estimate that around 26
billion non-spam (“ham”) messages are sent out worldwide per day. Consequently, on
average every internet user sends fewer than 30 ham messages per day.

Consequently, we (conservatively) estimate the average sending rate s̄ per user as s̄ ≈ 50
messages per day. Due to legitimate (ham) mass mailers, the sending rate of most private
users can be expected to be significantly lower. Therefore, with a choice of β = 2 · s̄ and
ρ = 2 · s̄/86 400 (per second), we can limit the outgoing traffic to at most 100 messages
per day, which is clearly below the volume needed for commercially successful spamming
according to the previous considerations. At the same time, the big majority of users would
hardly notice any restrictions, because they are allowed to send out single bursts of up to
twice their average message volume. Large mailing lists or newsletters which are sent out
infrequently are exceptions in this aspect, which have to be treated separately.

5 Self-Learning and Fully Transparent Outgoing UCE Prevention

In Section 4, we outlined an external static model for parameterizing the token bucket
mechanism first introduced in [GHI+05]. Such a static model which is based on the eco-
nomic aspects of the UCE phenomenon is very well suited for determining good initial
values for β and ρ. However, for a system which is used over a longer period of time,
intelligent adaptation to the potentially changing behavior of individual regular users is
needed. Thus, an adaptive control strategy for achieving this is described in this section.

The central idea is based on the Chebyshev inequality. If a random variable X has a finite
mean µ and finite variance σ2, this inequality states that for all k > 0,

P (|X − µ| ≥ kσ) ≤ 1
k2

. (1)

In the context discussed here, this can be applied as follows: Let the random variable X
denote the number of e-mail messages sent out by a certain user within a certain period of
time. Then Equ. (1) allows us to make statements about the probability that this number
of outgoing e-mails exceeds a certain distance from the mean number of e-mails sent out
so far. This distance is expressed in terms of multiples of the standard deviation of X .
In practice, the adaptation of the token bucket mechanism to the observed user behavior
proceeds as follows:

1. Choose a time interval t in seconds, which determines the granularity of the preven-
tion mechanism, and another one T > t which determines the time interval after

Self-Learning and Fully Transparent UCE Prevention 287

which the parameterization of the token bucket mechanism is updated. For exam-
ple, t = 60 implies that all parameters relate to a basic time unit of one minute, and
T = 300 implies that the system’s parameterization is adapted every five minutes.

2. Choose a level of transparency k > 1. The larger k is chosen, the less likely it
happens that a regular user wants to send out more e-mail messages than the limit
set by the token bucket mechanism and thus the less likely it becomes that a regular
user notices anything about this restriction mechanism.

3. Regularly update estimators µ̄ and σ̄ for the mean and the standard deviation of the
messages sent out per time interval t.

4. At the end of every update interval T , set the token rate ρ = µ̄ + kσ̄ to reflect
changes in the observed volume of outgoing e-mail messages.

Such mechanisms potentially prevent spam by regulating the number of outgoing mes-
sages. However, spammers may be forced into finding new ways for sending out their
messages. In particular, they may attempt to train the system if the configuration paramters
are learned at an individual basis. Therefore, the estimators µ̄ and σ̄ of individual users
should be regularly compared to the averages over all users at the level of the ISP.

6 Conclusion

We have presented a concept for dynamically limiting the number of outgoing e-mail mes-
sages, to be implemented at outgoing e-mail servers. It is based on the adaptation of a
token bucket mechanism which we introduced earlier. This concept provides a very flexi-
ble and adaptive way of limiting outgoing e-mail traffic. In contrast to static approaches,
traffic bursts can be taken into account. We have discussed how to parameterize and tune
our concept such that the imposed restrictions are virtually unnoticed by regular e-mail
users while the business model of spammers is compromised.

In contrast to existing approaches, our strategy does not affect all e-mail users, but selec-
tively targets spammers. We introduced the concept of applying the Chebyshev inequality
for adapting to dynamically changing requirements. Our combination of a token bucket
mechanism and the adaptation component makes it possible for an ISP to prevent the send-
ing of spam out of its network. If widely used by ISPs, this strategy has the potential of
significantly reducing the amount of spam on the Internet.

However, some open questions still remain. More efficient approaches for handling large
mailing lists or infrequently sent newsletters need to be developed. Moreover, the effect of
the concept presented here on the size and the dynamics of bot nets (fewer messages per
bot should lead to larger bot nets) has to be investigated.

Acknowledgments. We would like to thank Internet Privatstiftung Austria, mobilkom
austria, UPC Telekabel, and Internet Service Providers Austria for supporting this research
and the anonymous referees for their valuable comments on earlier versions of this paper.

W. N. Gansterer und M. Ilger288

References

[ABMW03] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-bound
functions. In In Proc. of the 10th Annual Network and Distributes Systems Security
Symposium, 2003.

[AKCS00] Ion Androutsopoulos, John Koutsias, Konstantinos Chandrinos, and Constantine D.
Spyropoulos. An experimental comparison of naive bayesian and keyword-based anti-
spam filtering with personal e-mail messages. In SIGIR ’00: Proceedings of the 23rd
annual international ACM SIGIR conference on research and development in informa-
tion retrieval, pages 160–167, 2000.

[Bac02] Adam Back. HashCash—A Denial of Service Counter-Measure, 2002. http://
www.hashcash.org/papers/hashcash.pdf.

[Cla01] R. Clayton. Stopping Spam by Extrusion Detection. SIGMOD Rec., 30(1):13–18,
2001.

[Cla05] R. Clayton. Stopping Outgoing Spam by Examining Incoming Server Logs. In Second
Conferernce on Email and Anti-Spam (CEAS), 2005.

[DHD+06] Nathan Denny, Theodore El Hourani, Jaime Denny, Scott Bissmeyer, and David Irby.
SpamCooker: A Method for Deterring Unsolicited Electronic Communications. In
ITNG ’06: Proceedings of the Third International Conference on Information Tech-
nology: New Generations (ITNG’06), pages 590–591, Washington, DC, USA, 2006.
IEEE Computer Society.

[DN93] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. In In Lecture
Notes in Computer Science 740 (Proceedings of Crypto Â2), pages 137–147, 1993.

[DS04] P. Desikan and J. Srivastava. Analyzing Network Traffic to Detect E-Mail Spamming
Machines. In Workshop on Privacy and Security Aspects of Data Mining (in Conjunc-
tion with the 4th IEEE ICDM), 2004.

[GHI+05] W. N. Gansterer, Helmut Hlavacs, Michael Ilger, Peter Lechner, and Jürgen Strauß.
Token Buckets for Outgoing Spam Prevention. In M.H. Hamza, editor, Proceedings of
the IASTED International Conference on Communication, Network, and Information
Security (CNIS 2005). ACTA Press, November 2005.

[GIL+05] Wilfried Gansterer, Michael Ilger, Peter Lechner, Robert Neumayer, and Jürgen Strauß.
Phases 2 and 3 of Project ’Spamabwehr’: SMTP Based Concepts and Cost-Profit Mod-
els. Technical Report FA384018-2, Institute of Distributed and Multimedia Systems,
Faculty of Computer Science, University of Vienna, May 2005.

[GJL07] W. N. Gansterer, A. G. K. Janecek, and P. Lechner. A Reliable Component-Based Ar-
chitecture for E-Mail Filtering. In ARES ’07: Proceedings of the The Second Interna-
tional Conference on Availability, Reliability and Security, pages 43–52, Washington,
DC, USA, 2007. IEEE Computer Society.

[GR04] Joshua T. Goodman and Robert Rounthwaite. Stopping outgoing spam. In EC ’04:
Proceedings of the 5th ACM conference on Electronic commerce, pages 30–39, New
York, NY, USA, 2004. ACM.

[Har03] E. Harris. The Next Step in the Spam Control War: Greylisting. Techni-
cal report, PureMagic Software, 2003. http://projects.puremagic.com/
greylisting/whitepaper.html.

Self-Learning and Fully Transparent UCE Prevention 289

[ISGP06] Michael Ilger, Jürgen Strauß, Wilfried Gansterer, and Christian Proschinger. The Econ-
omy of Spam. Technical Report FA384018-6, Institute of Distributed and Multimedia
Systems, Faculty of Computer Science, University of Vienna, September 2006.

[JGK08] Andreas G. K. Janecek, Wilfried N. Gansterer, and K. Ashwin Kumar. Multi-Level
Reputation-Based Greylisting. In Proceedings of ARES 2008 – International Confer-
ence on Availability, Reliability and Security. IEEE Computer Society, 2008.

[rea] List of Real-Time Spam Black Lists (RBL). http://www.email-policy.com/
Spam-black-lists.htm.

[SGIS07] Gerald Stampfel, Wilfried N. Gansterer, Michael Ilger, and Konrad Stark. The EU
Data Retention Directive 2006/24/EC from a Technical Perspective. Technical Report
FA396005-1, Department of Distributed and Multimedia Systems, Faculty of Com-
puter Science, University of Vienna, October 2007.

[Sta02] W. Stallings. High-Speed Networks and Internets, 2nd ed. Prentice Hall, 2002.

[Tur03] D. Turner. The Lightweight Currency Protocol, Internet Draft. Technical report, Inter-
net Engineering Task Force, 2003. http://cis.poly.edu/∼ross/papers/
draft-turner-lcp-00.txt.

W. N. Gansterer und M. Ilger290

