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Preface

This volume contains papers presented at the German Conference on Bioinformatics, GCB
2006, held in Tübingen, September 19–22, 2006. This annual international conference
provides a forum for the presentation of research results in Bioinformatics and Computa-
tional Biology. It is run on behalf of the Fachgruppe “Informatik in den Biowissenschaften
(BIOINF)” of the German Society of Computer Science (GI), the AG “Computereinsatz
in den Biowissenschaften” of the German Society of Chemical Technique and Biotech-
nology (DECHEMA), and the Studiengruppe “Bioinformatik” of the German Society for
Biological Chemistry and Molecular Biology (GBM).

The conference opened on September 19th, 2006, with the following four tutorials: “In-
troduction to Phylogenetic Networks” given by Daniel Huson, “Kernel Methods for Pre-
dictive Sequence Analysis” given by Gunnar Rätsch and Cheng Soon Ong, “Mining the
Biomedical Literature: State of the Art, Challenges and Evaluation Issues” given by Hagit
Shatkay, and “Non-coding RNA - No Longer the Dark Matter in a Cellular Universe”,
given by Yu Wang.

Six leading scientists were invited to give keynote lectures. Gene Myers (HHMI, Janelia
Farms) spoke on “Imaging-Based Systems Biology” and Detlef Weigel (MPI, Tübingen)
on “Genome-wide Analysis of Sequence Variation in Arabidopsis”. A thematic focus was
placed on Protein-Protein Interactions and this was reflected by the topics of the other
invited speakers: David Jones (University College, London) spoke on “Docking protein
domains using a contact map representation”, Cedric Notredame (CNRS IGS, Marseille)
spoke on “Combining Sequence Information with T-Coffee”, Rob Russell (EMBL, Heidel-
berg) spoke on “Pushing Details into Interaction Networks”, and Mukund Thattai (NCBS,
Bangalore) spoke on “Encoding evolvability: The hierarchical language of polyketide syn-
thase protein interactions”.

The technical program additionally contained seven short papers and 12 long papers,
which were refereed and selected from 62 submissions by the program committee. Ad-
ditionally, over 100 poster abstracts were accepted for presentation at the poster sessions.
This volume contains all long papers and abstracts of the invited lectures. The poster ab-
stracts appear in a special abstract book together with the short papers. The conference
was concluded with a special session on “Bioinformatics in Germany – State of the Art”,
in which the five DFG-funded Bioinformatics Centers at Bielefeld, Leipzig, Munich, Saar-
brücken and Tübingen reported on their work.

Thanks to the members of the program committee and their colleagues who gave their time
to referee the submissions, and to all that helped locally to organize the meeting. We are
also grateful to all presenters and participants, whose contributions and interactions made
GCB 2006 a success.

Tübingen, August 2006

Daniel Huson
Oliver Kohlbacher (Local Chair, Program Co-Chair)
Andrei Lupas (Program Co-Chair)
Kay Nieselt
Andreas Zell

vii
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Clemens Gröpl Andreas Hildebrandt Andreas Keller Jan Kosinski
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Shape Distributions and Protein Similarity∗

Stefan Canzar 1 and Jan Remy 2

1 Université Henri Poincaré
LORIA, B.P. 239

54506 Vandœuvre-lès-Nancy, France
canzar@loria.fr

2 Institut für Theoretische Informatik
ETH Zürich

CH-8092 Zürich
jremy@inf.ethz.ch

Abstract: In this paper we describe a similarity model that provides the objective
basis for clustering proteins of similar structure. More specifically, we consider the
following variant of the protein-protein similarity problem: We want to find proteins
in a large database D that are very similar to a given query protein in terms of geomet-
ric shape. We give experimental evidence, that the shape similarity model of Osada,
Funkhouser, Chazelle and Dobkin [OFCD02] can be transferred to the context of pro-
tein structure comparison. This model is very simple and leads to algorithms that have
attractive space requirements and running times. For example, it took 0.39 seconds to
retrieve the eight members of the seryl family out of 26, 600 domains. Furthermore,
a very high agreement with one of the most popular classification schemes proved
the significance of our simplified representation of complex proteins structure by a
distribution of Cα-Cα distances.

1 Introduction

Understanding the rapidly increasing number of protein three-dimensional structure data
deposited in the Brookhaven Protein Data Bank (PDB) [BWF+00] poses a major challenge
in the post-genome-sequence era. One reliable method to assign function to gene products
that have no experimentally inferable molecular (biophysical or biochemical) function is
on the basis of sequence similarity to proteins of known function. Since structure is evolu-
tionary better conserved than sequence, the structural similarity to one or more proteins of
known structures infers an even more powerful clue to the structure-function relationship.
Clearly, the classifi cation of recurrent protein folds constitutes a major step towards the
understanding of protein structure.

∗This paper includes work done while the authors were at Technische Universit ät M ünchen, Institut f ür In-
formatik. Research was partially supported by the DFG project KN 309/1-1 “Information Mining”.
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The placement in categories must be done according to a similarity criterion or distance
(metric) that reflects the degree of shape affi nity for pairs of proteins. The most popular
classifi cation systems either use a totally automated approach (FSSP) [HS97], classify
manually (SCOP) [MBHC95] or are based on a combination of both (CATH) [OMJ+97].
The three-dimensional structures are usually compared by structural alignment algorithms
such as CE [SB98], DALI [HS93], and VAST [MGB95], which is, mainly because of its
intrinsic complexity, a time-consuming task.

Problem Statement. We consider a special variant of the molecular similarity problem.
Let D be a database containing a collection of proteins. We want to fi nd the proteins in
D that are similar to a given query protein Q. There is no common defi nition of what
“similarity of proteins” exactly means. As motivated above, we restrict ourselves to the
similarity of three-dimensional structure. This kind of similarity is very “human oriented”,
since two objects - or in our case proteins - are usually said to be similar if a human ob-
server thinks that they are. Thus, we have two criteria for performance: i) if Q ∈ D

then Q should be recognized as the most similar and ii) molecules rated as very similar
to Q should be also recognized by a human as being very similar. Note that the second
criterion does not include the fi rst. If the shape of Q is not very characteristic, it could be
diffi cult for a human to recognize an identical structure. Since the database D contains
usually thousands of proteins (the PDB contains currently 32, 823 structures) it is impor-
tant that the comparison of a single pair of proteins is very fast. This usually requires
some preprocessing of the database. It is desirable that the data structures produced during
preprocessing have modest space consumptions.

Related Work. Geometric approaches to measure the similarity of proteins were exten-
sively studied in various aspects. In order to give a representative selection, we like to
mention geometric hashing [Wol90, NW91, FNW92, FNNW93, NLWN95], footprinting
[BS97, BS99] and correlation techniques [KKSE+92, GJS97]. None of these algorithms
has a running time that allows fast queries to a large database. Methods that do not depend
on a structural alignment are based on graph theory [HPM+02], local feature profi les of
Cα distance matrices [CKK04], Cα-Cα distances [CP02] or secondary structure matching
[KH04]. Special algorithms for similarity search in protein database were considered by
Kriegl and Seidl [KS98] and Ankerst, Kastenmüller, Kriegl and Seidl [AKKS99]. The fi rst
approach is based on parametric approximation of surface segments. In the second paper,
proteins are described by density histograms that are robust under rotation.

Our Results. The concept of shape distributions was introduced by Osada, Funkhouser,
Chazelle and Dobkin[OFCD02]. They evaluated their approach by comparing simple ob-
jects like cars, humans, phones or mugs. We have successfully transferred their similarity
model to the protein similarity context. The main purpose of our work is to evaluate
whether shape distributions are suitable means to compare the tree-dimensional structure
of proteins or molecules. Our experiments give evidence that the performance criteria
mentioned above are satisfi ed: The protein in the database with the most similar shape
distribution was always the query protein itself. Furthermore, top ranked proteins could
be observed to be structural similar to the query protein. The ability to distinguish CATH
homologous superfamilies with a success rate of 98% confi rmed this subjective evaluation.
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We claim that this algorithm has some advantages compared to previous methods. First,
the comparison step is fast enough for database search, since we are able to make around
100, 000 comparisons per second. Second, the algorithm is much more simple than most
of the other approaches. Third, the space requirement of the data structure we generate
in a preprocessing step is only linear in the number of proteins contained in the database.
And fourth, our approach does not depend on any knowledge-based decisions, like the
assignment of secondary-structure elements.

The remainder of the paper is organized as follows. In section 2 we review the concept of
shape distributions. In section 3 we introduce the algorithm for similarity search. Finally,
section 4 presents experimental results.

2 Shape Distributions

Osada, Funkhouser, Chazelle and Dobkin [OFCD02] introduced a simple model for shape
similarity of objects. Let S be a set of points on the surface of an object. A shape function
ξ(S) measures a geometric property that depends on S. A typical example for a shape
function is the Euclidean distance d(a, b) for S = {a, b}. Other types of shape functions
include angles, areas or volumes.

If S is chosen at random from all points on the surface of the object, then ξ(S) is a random
variable having some distribution F (ξ(S)). Osada et. al. claim that this distribution,
the shape distribution, is very characteristic for the shape of the object. Thus the shape
matching problem can be reduced to the comparison of two probability distributions. The
algorithmic side of shape distributions is very simple. For the sake of exposition, we
assume that our shape function is the Euclidean distance of two points. As mentioned
above, the distance of two random (surface) points is a random variable. The distribution
of distances is reconstructed by choosing N pairs of surface points at random. Of course,
for technical reasons, the distribution must be discretized into, say B many intervals. In
essence, by counting the number of distances that fall into each interval, we obtain a
histogram that consists of B bins that expresses the “probability” for a distance being
within some interval. The similarity (or dissimilarity) of two objects can be computed
by comparing their shape distribution, i.e., the histograms under an arbitrary metric. The
most natural example is the Minkowski norm LN .

3 The Algorithm

In this section we give an overview of the algorithm. The input is a set D of 3D protein
structures. The atomic coordinates are taken from the Brookhaven Protein Data Bank
(PDB) [BWF+00]. In our experiments we varied the defi nition of the point set S (cf.
Section 2) to contain either all atoms, exclusively atoms located on the molecular surface
or all Cα atoms. We have chosen the Euclidean distance as a shape function ξ(S), since it
seems to provide the best results.

Preprocessing The preprocessing is identical for each protein in D and only depends on
the defi nition of S. First we extract the coordinates of points in S, which is a trivial step

3



in the case of S being equal to the set of all Cα atoms. To derive the shape distribution
from the surface of the protein we determine the atoms that can be touched by a solvent
molecule of fi xed size (e.g. 1.4Å). This can be done with an algorithm of Sanner, Olsen
and Spehner [SOS96] in O (n log n) time. Simply speaking, this algorithm computes the
surface atoms as an intermediate result. Second we calculate the distances of each pair of
atoms in S. This yields a histogram with B bins each counting the number of occurrences
of certain distances. By a normalization of the resulting shape distribution one could sim-
ply add an invariance under scaling, e.g. consider the shape of proteins independent of
their size. Second we store the (not normalized) histogram as a sequence of B integers.
The preprocessing of a protein with n atoms requires optionally time O (n log n) for the
computation of the surface plus time O

�
n2

�
for the approximation of the shape distribu-

tion. The overall complexity can be reduced to O (n log n) if we consider only O (n logn)
random pairs in S for the computation of the shape distribution.

Similarity Query Let Q denote the query protein. We compute the similarity measure
between Q and each structure in D by comparing their shape distributions. We experi-
mented with similarity measures based on the Minkowski LN norms for N = 1, 2, 10.

It remains to discuss the complexity of the similarity query. The distance of two distribu-
tions f and g in the Minkowski norm is given by

D(f, g) =

�
B�

i=1

|fi − gi|
N

�1/N

(1)

In fact, this value is the distance of two points, f and g in the R
B under the LN met-

ric. Furthermore, the histograms of the proteins in D may be modeled as a set of points
in a high dimensional space with coordinates determined by the approximations of the
shape distributions. Also, the shape distribution of the query protein defi nes a point in the
R

B . Hence the similarity problem for proteins can be transformed into proximity problem
among a set of points. This transformation is very helpful, as there are algorithms for
proximity problems that have desirable asymptotics.

We want to query the database for the most similar proteins, i.e., proteins with scores that
are lesser than a given threshold. So we have to solve a proximity problem which is known
as range searching. There are data structures that provide fast queries for orthogonal
search regions in spaces, provided the dimension is small. In our case, the search region
is circular and d = B is usually very large. Unfortunately there are no fast data structures
for circular queries in high dimensional spaces. However, Arya and Mount [AMN+94]
proposed a data structure that allows queries with circular ranges if one is willing to accept
some approximation. More precisely their data structure ensure that the following is true
for all ε > 0. Let t denote the given threshold, i.e., diameter of the query range. Then
points lying within distance ε · t around the boundary of the query range either may or
may not be included in the output of the query. The running time of such a query is
O

�
(1/ε)d + log m

�
and it is also good in practice as Arya and Mount claim in their paper.
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4 Experimental Results

We have implemented the algorithm described in section 3 in C++. The experiments were
done on a system with a 1, 60 GHz Pentium M-Processor. The three-dimensional coordi-
nate data was taken from the Brookhaven Protein Data Bank (PDB) [BWF+00] and was
dissected into domains according to CATH version v2.0. The resulting collection D of
protein structures (about 26, 600 CATH domains) was preprocessed into shape distribu-
tions and fi nally stored on disk.

In contrast to [OFCD02], both the restriction to atoms on the molecular surface and the
random sampling of S means a loss in characteristics of shape distribution for the complex
structure of proteins. In contrast, the difference in classifi cation accuracy depending on
whether S contained all atoms or only the subset of Cα atoms was marginal. To shorten
computation time we thus focused on the latter case which we will discuss now.

It turned out during the experiments, that using B = 60 bins for the representation of the
shape distribution and the Minkowski L2-norm for measuring the dissimilarity between
pairs of distributions is a good choice.
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Figure 1: a) The superposed shape distributions of the eight seryl family members. b) With re-
spect to query protein 1SERB domain 1CEVC ranked on position 125. Their distributions can be
distinguished visually.

4.1 Basic Similarity Search

In order to demonstrate the general applicability of shape distributions to the characteristic
representation of the three-dimensional structure of proteins, we report on experiments on
a group of molecules that are known to be related. We tried to retrieve the eight members
of the seryl-tRNA synthetase family (1SERA, 1SERB, 1SESA, 1SESB, 1SRYA, 1SRYB,
1SETA, 1SETB) out of roughly 26, 600 domains contained in our database.

If the query molecule is 1SERB we obtained a ranking as depicted in Figure 2. The eight
members of the seryl family rank on the top eight positions, followed by roughly 26, 600
molecules. This ranking is conform with the shape of the molecules. Furthermore, the
shape distributions of the seryl family members are clearly distinguishable from those de-
rived from higher ranked domains (Fig. 1). This kind of query could be the fi rst step
when searching for structural homologs of a given protein Q. Screening the whole PDB
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by using shape distributions could result in a small number of structural homologs of Q
(for example by range searching, as mentioned in section 3), which are further analyzed
by rigid-body superposition (e.g. May and Johnson [MJ95]) to fi nd the best possible align-
ment.

Figure 2: Similarity scores of the most similar molecules to 1SERB. The eight members of the seryl-
tRNA-synthetase family rank on the top eight positions among 26, 600 domains. The first non-seryl
protein 1DPGA is classified by CATH to fall into the same class.

4.2 Classification by Structural Similarity

The placement of protein structures in categories heavily depends on the nature of the
underlying similarity model. In order to investigate whether the transformation of protein
structures into points in B-dimensional Euclidean space R

B has a negative impact on the
accuracy of classifi cation, we performed an all-against-all comparison according to our
distance measures on one of the most popular classifi cation schemes, the CATH database
[OMJ+97] (353, 766, 700 structural comparisons). CATH, as a hierarchical classifi cation
scheme, clusters protein structures in the PDB at four major levels, Class (C), Architecture
(A), Topology (T) and Homologous superfamily (H). Based on our symmetric distance
matrix (metric property of our distance measure) we determined the nearest neighbor N
for every molecule in the database D , ignoring the query structure Q itself, for which
d(Q, Q) = 0 holds for all Q ∈ D . When asking whether N and Q fall into the same
CATH category on level l, l = 1, 2, . . . , 7, we considered all those domains, that were
labeled identically by CATH on levels 1, . . . , l − 1.

From domains sharing the fi rst six CATH labels, C, A, T, H, S, and N, 71% have been
assigned the correct label on level seven (I) (cf. Table 1). Ascending the hierarchy, this
value increases up to 98% at H-level, where the last three labels were allowed to vary.
We attach great importance to the high categorization accuracy particularly at this level,
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T=150
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Figure 3: Cluster-analysis dendogram of randomly selected CATH domains. The shape distributions
of the protein domain structures have been clustered by an agglomerative hierarchical algorithm
using the single linkage similarity criterion.

as homologous superfamilies cluster proteins with highly similar structures and functions.
Furthermore, we think that distinguishing different architectures with a success rate of
97% is a remarkable result, as label assignment at A-level is based on the human eye.

These features of our similarity measure are further illustrated by the cluster-analysis den-
dogram shown in Figure 3. We randomly selected 36 domains from three different nodes
on the T-level of the CATH hierarchy (12 domains from each node), where the fi rst node
can be described by labels C=2, A=30 and T=30, the second node by C=3, A=10 and T=20
and the third node by C=1, A=10 and T=150. Not only that there was a clear discrimination
between these three groups, but one can also associate lower CATH levels with subclusters
in the clustering tree. For example, removing the longest edge from the minimum span-
ning tree of a graph, whose vertices correspond to protein domain structures from the third
group (C=2, A=30, T=150) and whose edges are weighted with the distances based on our
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NEAREST NEIGHBOR

CATH LABEL CATH LEVEL AGREEMENT (%)

C Class 97.1
A Architecture 97.2
T Topology 96.0
H Homologous superfamily 98.0
S Sequence families 96.8
N Nearly-identical representatives 91.9
I Identical representatives 71.5

Table 1: Nearest neighbor classification for CATH categories based on our similarity score. An
agreement of x% on level l describes, that x% of domains sharing the first l − 1 CATH labels have
been assigned the correct label on level l.

similarity measure, results in two clusters, one containing the domains labeled H=20 and
one with domains labeled H=100. Similarly this holds for domains sharing labels C=1,
A=10, T=150, H=20, and S=1 and differing in N=1 or N=3.

4.3 Running Time

Since the shape distributions can be computed in a preprocessing step, we can perform the
queries to the database very fast. In section 3 we have mentioned that the query time is
roughly O (log m) if we assume that ε and B are constant. In practice the constants are
too large – at least for “small” databases. Nevertheless, the query time is still attractive.
In our implementation, which was not optimized for speed, a query to a database of size
m ≈ 26, 600 took only 0.39 seconds, ignoring the time spent on input/output operations.
The computation of an all-against-all distance matrix (353, 766, 700 comparisons) was
fi nished after less than an hour.

5 Concluding Remarks

We have given experimental evidence that the distribution of distances between Cα atoms
provides a signifi cant signature for the three-dimensional structure of proteins. By trans-
ferring the similarity model of Osada, Funkhouser, Chazelle and Dobkin [OFCD02] to the
context of protein fold comparison, we were able to retrieve the eight members of the seryl
family among 26, 600 domains in 0.39 seconds of CPU time. But despite the simplifi ed
representation of protein structure, our approach exhibits a classifi cation accuracy of 98%
for CATH homologous superfamilies.

Several alternative methods based on a simplifi ed representation of protein structure have
been proposed recently. The one of Carugo and Pongor [CP02] considers Cα-Cα distances
between residues separated by a variable number of amino acid residues and is thus con-
ceptually related to our approach. Nevertheless, they represent each molecule by a set of
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28 histograms that have to be compared by a contingency table analysis. As a consequence,
the comparison of a pair of proteins is more expensive both in terms of computation time
and space consumption. The similarity score of Choi, Kwon and Kim [CKK04] is based
on profi les of representative local features (LFF) of Cα distance matrices. Compared to
shape distributions, LFF profi les necessitate an considerable preprocessing step and yield
an agreement with CATH categories that ranges from 53.3% on Homology level to 70%
on Class level.

In short, no other approach combines comparable high classifi cation accuracy with approx-
imate effi ciency both in terms of time and space, while at the same time being independent
of any sequence information or human input. These features allow for a quick catego-
rization of recently determined structures by scanning large databases like the PDB and
thus help to keep our ordering of the protein fold space always up to date, as opposed to
knowledge-based schemes like SCOP and CATH.
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Abstract: The production of commercial DNA microarrays is based on a light-di-
rected chemical synthesis driven by a set of masks or micromirror arrays. Because of
the natural properties of light and the ever shrinking feature sizes, the arrangement of
the probes on the chip and the order in which their nucleotides are synthesized play
an important role on the quality of the final product. We propose a new model called
conflict index for evaluating microarray layouts, and we show that the probe placement
problem is an instance of the quadratic assignment problem (QAP), which opens up
the way for using QAP heuristics. We use an existing heuristic called GRASP to
design the layout of small artificial chips with promising results. We compare this
approach with the best known algorithm and describe how it can be combined with
other existing algorithms to design the latest million-probe microarrays.

1 Introduction

An oligonucleotide microarray is a piece of glass or plastic on which single-stranded
fragments of DNA, called probes, are affixed or synthesized. The chips produced by
Affymetrix, for instance, can contain more than one million spots (or features) as small
as 11 μm, with each spot accommodating several million copies of a probe. Probes are
typically 25 nucleotides long and are synthesized in parallel, on the chip, in a series of
repetitive steps. Each step appends the same nucleotide to probes of selected regions of
the chip. Selection occurs by exposure to light with the help of a photolithographic mask
that allows or obstructs the passage of light accordingly [3].

Formally, we have a set of probes P = {p1, p2, ...pn} that are produced by a series of
masks M = (m1, m2, ...mT ), where each mask mt induces the addition of a particular
nucleotide St ∈ {A, C, G, T} to a subset of P . The nucleotide deposition sequence S =
S1S2 . . .ST corresponding to the sequence of nucleotides added at each masking step is
therefore a supersequence of all p ∈ P [10].

In general, a probe can be embedded within S in several ways. An embedding of pk is
a T -tuple εk = (ek,1, ek,2, ...ek,T ) in which ek,t = 1 if probe pk receives nucleotide
St (at step t), or 0 otherwise (Figure 1). The deposition sequence is often taken as a
repeated permutation of the alphabet, mainly because of its regular structure and because
such sequences maximize the number of distinct subsequences.
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Figure 1: Synthesis of a hypothetical 3×3 chip. Top left: chip layout and the 3 nt probe sequences.
Top right: deposition sequence and probe embeddings. Bottom: first four resulting masks.

We distinguish between synchronous and asynchronous embeddings. In the first case, each
probe has exactly one nucleotide synthesized in every cycle of the deposition sequence;
hence, 25 cycles or 100 steps are needed to synthesize probes of length 25. In the case of
asynchronous embeddings, probes can have any number of nucleotides synthesized in any
given cycle, allowing shorter deposition sequences. All Affymetrix chips that we know
of can be asynchronously synthesized in 74 steps (18.5 cycles), which is probably due to
careful probe selection.

Because of diffraction of light or internal reflection, untargeted spots can be accidentally
activated in a certain masking step, producing unpredicted probes that can compromise the
results of an experiment. This problem is more likely to occur near the borders between
masked and unmasked spots [3]; this observation has given rise to the term border conflict.

We are interested in finding an arrangement of the probes on the chip together with em-
beddings in such a way that the chances of unintended illumination during mask exposure
steps are minimized. The problem appears to be hard because of the exponential number
of possible arrangements, although we are not aware of an NP-hardness proof (and our
QAP formulation has several special properties). Optimal solutions are thus unlikely to be
found even for small chips and even if we assume that all probes have a single predefined
embedding.

If we consider all possible embeddings (up to several million for a typical Affymetrix
probe), the problem is even harder. For this reason, the problem has been traditionally
tackled in two phases. First, an initial embedding of the probes is fixed and an arrangement
of these embeddings on the chip with minimum border conflicts is sought. This is usually
referred to as the placement. Second, a post-placement optimization phase re-embeds the
probes considering their location on the chip, in such a way that the conflicts with the
neighboring spots are further reduced.
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In the next section, we review the Border Length Minimization Problem [4], and define an
extended model for evaluating microarray layouts. In Section 3, we briefly review existing
placement strategies. In Section 4, we present a new formulation of the microarray place-
ment problem based on the quadratic assignment problem (QAP). The results of using a
QAP heuristic algorithm, called GRASP, to design small artificial chips are presented in
Section 5, where we compare its performance with the best known placement algorithm
and discuss how this approach can be used to design and improve larger microarrays.

2 Modeling

Border length. Hannenhalli and co-workers [4] were the first to give a formal definition
of the problem of unintended illumination in the production of microarrays. They for-
mulated the Border Length Minimization Problem, which aims at finding an arrangement
of the probes together with their embeddings in such a way that the number of border
conflicts during mask exposure steps is minimal.

The border length Bt of mask mt is defined as the number of borders shared by masked
and unmasked spots at masking step t. The total border length of a given arrangement is
the sum of border lengths over all masks. For example, the initial four masks shown in
Figure 1 have B1 = 4, B2 = 6, B3 = 6 and B4 = 4. The total border length of that
arrangement is 50 (masks 5 to 12 not shown).

Conflict Index. The border length of an individual mask measures the quality of that
mask. We are more interested in estimating the risk of synthesizing a faulty probe at a
given spot, that is, we need a per-probe measure instead of a per-mask measure. Addi-
tionally, the definition of border length does not take into account two important practical
considerations [6]: a) stray light might activate not only adjacent neighbors but also probes
that lie as far as three cells away from the targeted spot; b) imperfections produced in the
middle of a probe are more harmful than in its extremities.

This motivates the following definition of the conflict index C(p) of a probe p of length ,p

that is synthesized in T masking steps. First we define a distance-dependent weighting
function, δ(p, p�, t), that accounts for observation a) above:

δ(p, p�, t) :=
�

(d(p, p�))−2 if p� is unmasked at step t,
0 otherwise, (1)

where d(p, p�) is the Euclidean distance between the spots of p and p�. This form of
weighting function is the same as suggested in [6]. Note that δ is a “closeness” measure
between p and p� only if p� is not masked (and thus creates the potential of illumination at
p). To limit the number of neighbors that need to be considered, we restrict the support of
δ(p, p�, ·) to those p� �= p that are in a 7× 7 grid centered around p (see Figure 2 left).

We also define position-dependent weights to account for observation b):

ω(p, t) :=
�

c · exp (θ · λ(p, t)) if p is masked at step t,
0 otherwise, (2)
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Figure 2: Ranges of values for both δ and ω on a typical Affymetrix chip where probes of length 25
are synthesized in 74 masking steps. Left: approximate values of the distance-dependent weighting
function δ(p, p�, t) for a spot containing probe p (shown in the center) and close neighbors p�, as-
suming that p� is unmasked. Right: position-dependent weights ω(p, t) on the y-axis for each value
of bp,t on the x-axis, assuming that p is masked at step t.

where c > 0 and θ > 0 are constants, and

λ(p, t) := 1 + min(bp,t, ,p − bp,t) (3)

is the distance, from the start or end of the final probe sequence, of the last base synthesized
before step t, i.e., bp,t denotes the number of nucleotides synthesized within p up to and
including step t, and ,p is the probe length (see Figure 2 right).

The motivation behind an exponentially increasing weighting function is that the proba-
bility of a successful stable hybridization of a probe with its target should increase expo-
nentially with the absolute value of its Gibbs free energy, which increases linearly with the
length of the longest perfect match between probe and target. The parameter θ controls
how steeply the exponential weighting function rises towards the middle of the probe. In
our experiments, we set θ := 5/,p and c := 1/ exp(θ).

We now define the conflict index of a probe p as

C(p) :=
T�

t=1

�
ω(p, t)

�
p�

δ(p, p�, t)


, (4)

where p� ranges over all probes that are at most three cells away from p. C(p) can be
interpreted as the fraction of faulty p-probes.

Note the following relation between conflict index and border length. Define δ(p, p�, t) :=
1 if p� is a direct neighbor of p and is unmasked at step t, and := 0 otherwise. Define
ω(p, t) := 1 if p is masked at step t, and := 0 otherwise. Then

�
p C(p) = 2

�T
t=1 Bt, as

each border conflict is counted twice, once for p� and once for p. Therefore, border length
and total conflict are equivalent for this particular choice of δ and ω. For our choice (1)
and (2), they are not equivalent but still correlated: a good layout has both low border
lengths and low conflict indices.
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3 Review of Placement and Partitioning Algorithms

Placement Algorithms. All methods mentioned here assume fixed (synchronous, left-
most, or otherwise pre-computed) embeddings. Post-placement optimizations such as the
Chessboard [5] exist but separate the embedding problem from the placement problem.

The Border Length problem was first formally addressed in [4]. The article reports that the
first Affymetrix chips were designed using a heuristic for the traveling salesman problem
(TSP). The idea consists of building a weighted graph with nodes representing probes,
and edges containing the Hamming distance between the probe sequences. A TSP tour is
approximated, resulting in consecutive probes in the tour being likely similar. The TSP
tour is then threaded on the array in a row-by-row fashion. A different threading of the TSP
tour, called 1-threading, is suggested to achieve up to 20% reduction in border length [4].

A different strategy called Epitaxial placement [5] places a random probe in the center of
the array and continues to insert probes in spots adjacent to already filled spots. Priority
is given to spots with the largest numbers of filled neighbors. At each iteraction, it exam-
ines all non-filled spots and finds a non-assigned probe with minimum sum of Hamming
distances to the neighboring probes, employing a greedy heuristic to select the next spot
to be filled. A further 10% reduction in border conflict over TSP + 1-threading is claimed.

Both the Epitaxial algorithm and the TSP approach do not scale well to large chips. For
this reason, [6] proposes a simpler variant of the Epitaxial algorithm, called Row-epitaxial,
with two main differences: spots are filled in a pre-defined order, namely from top to
bottom, left to right, and only probes of a limited list of candidates are considered when
filling each spot. Experiments show that Row-epitaxial is the best large-scale placement
algorithm, achieving up to 9% reduction in border length over the TSP + 1-threading.

Partitioning Algorithms. The placement problem can be partitioned by dividing the set
of probes into smaller sub-sets, and assigning these sub-sets to sub-regions of the chip.
Each sub-region can then be treated as an independent chip or recursively partitioned. In
this way, algorithms with non-linear time or space complexities can be used to compute
the layout of larger chips that otherwise would not be feasible.

The first known partitioning algorithm is called Centroid-based Quadrisection [7]. It starts
by randomly selecting a probe c1 ∈ P . Then, it selects another probe c2 maximizing
h(c1, c2), the Hamming distance between their embeddings. Similarly, it selects c3 and
c4 maximizing the sum of Hamming distance between these four probes, which are called
centroids. All other probes p ∈ P are then compared to the centroids and assigned to
the sub-set Pk associated with ck that has minimum h(p, ck). The chip is divided into
four quadrants, each being assigned to a sub-set Pk. The procedure is repeated recursively
on each quadrant until a given recursion depth is reached. In the end, the Row-epitaxial
algorithm is used to produce the placement of the probes in each final sub-region.

We recently developed an approach that, for the first time, combines the partitioning of
the chip with the embedding of the probes [1]. Our algorithm, called Pivot Partitioning,
achieves up to 6% reduction in conflicts when compared to the best known algorithms.
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4 Quadratic Assignment Problem

We now explore a different approach to the design of microarrays based on the quadratic
assignment problem (QAP), a classical combinatorial optimization that can be stated as
follows. Given n × n real-valued matrices F = (fij) ≥ 0 and D = (dkl) ≥ 0, find a
permutation π of {1, 2, . . . n} such that

n�
i=1

n�
j=1

fij · dπ(i)π(j) → min . (5)

The attribute quadratic stems from the fact that the target function can be written with n2

binary indicator variables xik ∈ {0, 1}, where xik := 1 if and only if k = π(i). The
objective (5) then becomes

�n
i=1

�n
j=1 fij ·

�n
k=1

�n
l=1 dkl ·xik ·xjl → min, such that�

k xik = 1 for all i,
�

i xik = 1 for all k and xik ∈ {0, 1} for all (i, k). The objective
function is a quadratic form in x.

The QAP has been used to model a variety of real-life problems. One of its major appli-
cations is to model the facility location problem where n facilities must be assigned to n
locations. In this scenario, F is called the flow matrix as fij represents the flow of mate-
rials from facility i to facility j. One unit of flow is assumed to have an associated cost
proportional to the distance between the facilities. Matrix D is called the distance matrix,
as dkl gives the distance between locations k and l. The optimal permutation π defines a
one-to-one assignment of facilities to locations with minimum cost.

QAP Formulation of Probe Placement. The probe placement problem can be seen as
an instance of the QAP, where we want to find a one-to-one correspondence between spots
and probes. In a realistic setting, we may have more spots available than probes to place.
Below we show that this does not cause problems as we can add enough “empty” probes
and define their weight functions appropriately.

Perhaps more severely, we assume that all probes have a single pre-defined embedding
in order to force a one-to-one relationship. A more elaborate formulation would consider
all possible embeddings of a probe, but then it becomes necessary to ensure that only
one embedding of a probe is assigned to a spot. This still leads to a quadratic integer
programming problem, albeit with slightly different side conditions.

Our goal is to design a microarray minimizing the sum of conflict indices over all probes k,
i.e.,

�
k C(k) → min.

The “flow” fij between spots i and j depends on their Euclidean distance d(i, j) on the
array; in accordance with the conflict index model, we set

fij :=
�

(d(i, j))−2 if spot j is “near” spot i,
0 otherwise. (6)

where “near” means that spot j is at most three cells away from i. Note that most of the
flow values on large arrays are zero. For Border Length Minimization, the case is even
simpler: We set fij := 1 if spots i and j are direct neighbors, and fij := 0 otherwise.
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The “distance” dkl between probes k and l depends on the (weighted) Hamming distance
of their embeddings. To account for possible “empty” probes to fill up surplus spots, we
set dkl := 0 if k or l or both refer to an empty probe (i.e., empty probes never contribute
to the target function, we do not mind if nucleotides are erroneously synthesized on spots
assigned to empty probes). For real probes, we set

dkl :=
T�

t=1

dklt,

where dklt is the potential contribution of probe l’s embedding to the failure risk of probe
pk in the t-th synthesis step. According to the conflict index model,

dklt =
�

c · exp(θ · λ(pk, t)) if pk is masked and pl unmasked in step t,
0 otherwise.

In the special case of the Border Length Minimization Problem, where θ = 0 and c = 1/2,
we obtain that dkl +dlk = Hkl = Hlk, where Hkl denotes the Hamming distance between
the embeddings of probes pk and pl.

It now follows that for a given assignment π, we have, in the notation of Section 2,
fijdπ(i)π(j) =

�T
t=1 δ(pπ(i), pπ(j), t) · ω(pπ(i), t). The objective function (5) then be-

comes

�
i

�
j

fij · dπ(i)π(j) =
�

i

�
j

� T�
t=1

δ(pπ(i), pπ(j), t) · ω(pπ(i), t)



=
�

i

T�
t=1

�
ω(pπ(i), t) ·

�
j

δ(pπ(i), pπ(j), t)



=
�

i

C(π(i)) =
�

k

C(k),

and indeed equals the total conflict index with our definitions of F = (fij) and D = (dkl).
Note that it is technically possible to switch the definitions of F and D, i.e., to assign
probes to spots instead of spots to probes as we do now, without modifying the mathemat-
ical problem formulation. However, this would lead to high distance value for neighboring
spots and many zero distance values for independent spots, a somewhat counterintuitive
model. Also, QAP heuristics tend to find pairs of objects with large flow values and place
them close to each other, initially. Therefore, the way of modeling F and D may be
significant.

QAP Heuristics. We have shown how the microarray placement problem can be mod-
eled as a quadratic assignment problem. The QAP is known to be NP-hard and particularly
hard to solve in practice. Instances of size larger than n = 20 are generally considered
to be impossible to solve to optimality. Nevertheless, our formulation is of interest be-
cause we can now use existing QAP heuristics (see [2] for a survey) to design the layout
of microarrays minimizing either the sum of border lengths or conflict indices.
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Table 1: Border length of random chips compared with the layouts produced by Row-epitaxial and
GRASP with path-relinking. Reductions in border length are reported in percentages compared to
the random layout.

Random Row-epitaxial GRASP with path-relinking
Chip Number of Border Border Reduction Time Border Reduction Time

dimension probes length length (%) (sec.) length (%) (sec.)
6 × 6 36 1 989.20 1 714.60 13.80 0.01 1 672.20 15.94 2.73
7 × 7 49 2 783.20 2 354.60 15.40 0.02 2 332.60 16.19 6.43
8 × 8 64 3 721.20 3 123.80 16.05 0.03 3 099.13 16.72 12.49
9 × 9 81 4 762.00 3 974.80 16.53 0.05 3 967.20 16.69 25.96

10 × 10 100 5 985.20 4 895.60 18.20 0.06 4 911.40 17.94 47.57
11 × 11 121 7 288.40 5 954.40 18.30 0.10 5 990.73 17.80 87.48
12 × 12 144 8 714.00 7 086.20 18.68 0.11 7 159.80 17.84 152.42

As an example, we used a general QAP heuristic known as GRASP [8] (Greedy Ran-
domized Adaptive Search Procedure), and an improved version called GRASP with path-
relinking [9]. GRASP is comprised of two phases: a construction phase where a random
feasible solution is built, and a local search phase where a local optimum in the neighbor-
hood of that solution is sought.

Initially, the elements of the distance and flow matrices are sorted in increasing and de-
creasing order, respectively. The first β elements of each are kept (where 0 < β < 1) and
their products are computed. A simultaneous assignment of a pair of facilities to a pair of
locations is selected at random among those with the α smallest costs, where 0 < α < 1.
A feasible solution is then built by making a series of greedy assignments.

The construction and local search phases are repeated for a given number of times. Each it-
eration is independent in the sense that a new solution is always built from scratch. GRASP
with path-relinking is an extension of the basic algorithm that uses an “elite set” to store
the best solutions found. It incorporates a third phase that chooses, at random, one elite
solution that is used to improve the solution produced at the end of the local search phase.

5 Results and Discussion

We present experimental results of using GRASP with path-relinking (GRASP-PR) for
designing the layout of small artificial chips, and compare them with the layouts produced
by Row-epitaxial. We used a C implementation of GRASP-PR provided by [9] with de-
fault parameters (32 iterations, α = 0.1, β = 0.5, and elite set of size 10) and our own
implementation of Row-epitaxial. The chips have 25-nt probes uniformly generated and
asynchronously embedded in a deposition sequence of length 74. The running times and
the border lengths of the resulting layouts are shown in Table 1 (all results are averages
over a set of ten chips).

Our results show that GRASP-PR produces layouts with lower border lengths than Row-
epitaxial on the smaller chips. On 6 x 6 chips, GRASP-PR outperforms Row-epitaxial
by 2.14 percentage points on average, when compared to the initial random layout. On
9 x 9 chips, however, this difference drops to 0.16 percentage point, while Row-epitaxial
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Table 2: Average conflict indices of random chips compared with the layouts produced by Row-
epitaxial and GRASP with path-relinking.

Random Row-epitaxial GRASP with path-relinking
Chip Number of Avg. C. Avg. C. Reduction Time Avg. C. Reduction Time

dimension probes Index Index (%) (sec.) Index (%) (sec.)
6 × 6 36 524.28 495.15 5.56 0.05 467.08 10.91 3.68
7 × 7 49 558.25 521.90 6.51 0.07 489.32 12.35 8.84
8 × 8 64 590.51 551.84 6.55 0.09 515.69 12.67 19.48
9 × 9 81 613.25 568.62 7.28 0.11 533.79 12.96 38.83

10 × 10 100 628.50 576.49 8.28 0.11 539.69 14.13 73.09
11 × 11 121 642.72 588.91 8.37 0.12 551.41 14.21 145.67
12 × 12 144 656.86 598.21 8.93 0.12 561.21 14.56 249.19

generates better layouts on 11 x 11 or larger chips. In terms of running time, Row-epitaxial
is faster and shows little variation as the number of probes grows. In contrast, the time
required to compute a layout with GRASP-PR increases at a fast rate.

Table 2 shows improved results in terms of conflict indices. For these experiments, we
used the same implementation of GRASP-PR and a version of Row-epitaxial implemented
for conflict index minimization, which fills every spot with a probe minimizing the result-
ing conflict index on that spot. GRASP-PR consistently produces better layouts on all chip
dimensions, achieving up to 6.38% less conflicts on 10 x 10 chips, for example, when com-
pared to Row-epitaxial. In terms of running times, however, GRASP-PR is even slower
for the case of conflict index minimization. Reasons are two-fold. First, the definitions
of matrices F and D are more elaborate in the conflict index model. Second, the distance
matrix contains less zero entries, which seems to increase the running time of GRASP.

The gains in terms of conflict index of both approaches are clearly less than the gains in
terms of border length. This may be because the embeddings are fixed and the reduction of
conflicts is restricted to the relocation of the probes, which only accounts for one part of the
conflict index model. The fact that the distance matrix contains less zero entries, however,
might explain why GRASP-PR performs better in terms of conflict index minimization
when compared to Row-epitaxial.

Because of the large number of probes on industrial microarrays, it is not feasible to use
GRASP-PR (or any other QAP method) to design an entire microarray chip. However, we
showed that it is certainly possible to use it on small sub-regions of a chip, which opens up
the way for two interesting alternatives. First, our QAP approach could be used combined
with a partitioning strategy such as the Centroid-based Quadrisection or our new Pivot
Partitioning, to the design the smaller regions that result from the partitioning.

Second, an existing layout could be improved, iteratively, by relocating probes inside a de-
fined region of the chip, in a sliding-window fashion. Each iteration produces an instance
of a QAP whose size equals the size of the window. The QAP heuristics can be used to
check whether a different arrangement of the probes inside the window can reduce the
conflicts. For this approach to work, we also need to take into account the conflicts due to
the spots around the window. Otherwise, a new layout with less internal conflicts could be
achieved at the expense of an increase of conflicts on the borders of the window.

A simple way of preventing this problem is to solve a larger QAP instance consisting of the
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spots inside the window as well as those around it. The spots outside the window obviously
must remain unchanged, and that can be done by fixing the corresponding elements of the
permutation π. Note that there is no need to compute fij if spots i and j are both outside
the window, nor dkl if probes k and l are assigned to spots outside the window.

Summary. We have identified the probe placement or microarray layout problem with
general distance-dependent and position-dependent weights as a (specially structured)
quadratic assignment problem. QAPs are notoriously hard to solve, and currently known
exact methods start to take prohibitively long already for slightly more than 20 objects,
i.e., we could barely solve the problem for 5 × 5 arrays. However, the literature on QAP
heuristics is rich, as many problems in operations research can be modeled as QAPs. Here
we used one such heuristic to identify the potential of the probe-placement-QAP-relation.
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Abstract: Large-scale mappings of protein-protein interactions have started to
give us new views of the complex molecular mechanisms inside a cell. After initial
projects to systematically map protein interactions in model organisms such as
yeast, worm and fly, researchers have begun to focus on the mapping of the human
interactome. To tackle this enormous challenge, different approaches have been
proposed and pursued. While several large-scale human protein interaction maps
have recently been published, their quality remains to be critically assessed. We
present here a first comparative analysis of eight currently available large-scale
maps with a total of over 10000 unique proteins and 57000 interactions included.
They are based either on literature search, orthology or by yeast-two-hybrid assays.
Comparison reveals only a small, but statistically significant overlap. More
importantly, our analysis gives clear indications that all interaction maps suffer
under selection and detection biases. These results have to be taken into account
for future assembly of the human interactome.

1 Introduction

Interactions between proteins underlie the vast majority of cellular processes. They are
essential for a wide range of tasks and form a network of astonishing complexity. Until
recently, our knowledge of this complex network was rather limited. The emergence of
large scale protein-protein interaction maps has given us new possibilities to
systematically survey and study the underlying biological system. The first attempts to
collect protein-protein interactions on large scale were initiated for model organisms
such as S. cerevisiae, D. melanogaster and C. elegans [Gavin et al. '02,Giot et al. '03,Ito
et al. '01,Li et al. '04,Uetz et al. '00]. Evidently, the generated interaction maps offered a
rich resource for systematic studies.

After these initial efforts, the focus has moved towards deciphering the human
interactome. Recently, the first large-scale human protein interaction network has been
constructed following alternative mapping strategies. Most currently available human
interaction maps can be divided into three classes: i) maps obtained from literature
search [Bader et al. '01,Peri et al. '03,Ramani et al. '05], ii) maps derived from
interactions between orthologous proteins in other organisms [Brown and Jurisica '05,
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Lehner and Fraser '04, Persico et al. '05] and iii) maps based from large scans using
yeast-two-hybrid (Y2H) assays [Rual et al. '05, Stelzl et al. '05]. All of these different
mapping strategies have their obvious advantages as well as disadvantages. For example,
Y2H-based mapping approaches offer rapid screens between thousands of proteins, but
might produce a high false positive rate. The extent, however, how much the resulting
interaction maps are influenced by the choice of mapping strategy, is less clear. Thus, it
is important to critically assess the quality and reliability of produced maps.

For yeast interaction maps, several of such critical comparisons have been performed
[Bader and Hogue '02, von Mering et al. '02]. They revealed a surprising divergence
between different interaction maps. They also indicated that functional coherency of
maps is severely influenced by the choice of mapping scheme. Such comparison is still
lacking for human protein interaction maps despite their expected importance for
biomedical research [Goehler et al. '04]. Therefore, we compared several currently
available large-scale interactions maps regarding their concurrence and divergence. We
assess especially potential selection and detection biases as they might interfere with
future applications of these maps.

2 Materials and Methods

2.1 Assembly of Protein-Protein Interaction Maps

To evaluate the different mapping approaches listed above, we selected eight publicly
available large-scale interaction maps: three literature-based, three orthology-based and
two Y2H-based maps. We restricted further our analysis to binary interactions in order to
compare Y2H-based maps directly with the remaining interaction maps.

Two literature-based interaction maps were derived from the Human Protein Reference
Database (HPRD) and Biomolecular Interaction Network Database (BIND) [Bader et al.
'01, Peri et al. '03]. These manually curated databases are mainly based on literature
reviews performed by human experts. At the time of analysis, interactions included in
these databases were predominantly from small scale experiments. As third literature-
based interaction map, we used the set of interactions found by Ramani and co-workers
using a text-mining approach [Ramani et al. '05]. As HPRD and BIND, it is based on
literature, but computationally generated. In our study, we will refer to it as the COCIT
map.

The first orthology-based protein interaction map was proposed by Lehner and Fraser
[Lehner et al. '04]. Interactions included were predicted based on interactions observed
between orthologous proteins in yeast, worm and fly. We used only interactions that
were assigned to core map by Lehner and Fraser, as these were identified with high
confidence. Besides this map (here referred to as the ORTHO map), we included two
alterative orthology-based large-scale maps from in the Online Predicted Human
Interaction Database (OPHID) and HOMOMINT database [Brown et al. '05, Persico et
al. '05]. Both mappings were derived following the approach by Lehner and Fraser with
some deviations. We extracted from the two databases only the interactions that were
based on orthology assignment to ensure conformity of the resulting maps.
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The Y2H-based interaction maps included in our comparison were generated in the
recent large-scale scans by Stelzl et al. and Rual et al. [Rual et al. '05, Stelzl et al. '05]
We will refer to these maps as MDC-Y2H and CCSB-H1 in our study. Although both
scans are based on Y2H-assay, it should be noted that considerable differences exist in
regard to experimental procedures.

To enable comparison, all proteins were mapped to their corresponding EntrezGene ID.
For efficient computational analysis, we converted all interaction maps into graphs using
the Bioconductor graph package [Balasubramanian et al. '04, Carey et al. '05,
Gentleman et al. '04].

2.2 Overlap of Interaction Maps

Protein interaction maps are formed by both their proteins and interactions included.
Thus, any comparison of maps should assess the concurrence of proteins as well as of
interactions in different maps.

Comparison of the proteins in different maps is based on following procedure: Given
the sets of proteins (PA, PB ) in map A and B, their intersection is PAB = PA PB. To
facilitate assessment, the intersection was normalized in regard to the total number of
proteins in A or B (PAAB = PAB /PA ; PBAB = PAB /PB). Thus, the normalized intersection is
simply the percentage of proteins that can be found in the other map. In our study, we
will refer to the average of PAAB and PBAB as the (relative) protein overlap between A and
B.

For the comparison of interactions, we could proceed similarly by counting common
interactions in two maps. However, it is important to note that network structure is not
only determined by existing interactions, but also by missing interactions. As we want to
assess the concurrence of maps for both observed as well as missing interactions, we
used a log-likelihood ratio (LLR) score [Lee et al. '04]. The LLR provides a similarity
measure for two sets of interactions (I1,I2). It is defined as
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where P(I1|I2) is the probability of observing an interaction in I1 conditioned on
observing the same interaction in I2. Respectively, P(I1|~I2) is the probability of
observing an interaction in I1 conditioned on not observing the same interaction in I2. For
highly similar interaction networks, LLR produces large scores. For absence of
similarity, the LLR score is zero. The latter is the case if random interactions networks
are compared.
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Additionally to the LLR score, we used two permutation tests to stringently assess the
statistical significance of observed concurrence of interactions [Balasubramanian et al.
'04]. For both tests, a large set of random networks are generated based on the original
networks, either by re-labelling of nodes (node label permutation) or by randomly
permuting the edges (edge permutation). In contrast to node label permutation, the
implemented scheme for edge permutation does not conserve the degree distribution i.e.
the number of interactions of proteins. Subsequently, the number of common
interactions between the original networks is compared to the corresponding number for
randomized networks. The probability of observing at least the same number of common
interactions for random networks determines the significance. Although their
permutation schemes are different, the two tests usually produce similar results.

2.3 Gene Ontology Analyses

Protein interaction maps can be compromised by several types of biases. For example,
selection bias arises if certain protein categories are over- or underrepresented in a
chosen map. To assess stringently the significance of such potential biases, we utilized
Fisher’s exact test. It is based on the hypergeometric distribution and delivers the
probability P to observe k or more proteins of chosen category in case of random
drawings:
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where M is the total number of proteins attributed to the category, N is the total number
of proteins annotated and l is the number of proteins in the corresponding map. The
significance of under-represented GO categories in maps can be calculated accordingly.
Since we tested simultaneously for multiple GO categories, the p-values were converted
to false discovery rates applying the Benjamini-Hochberg procedure [Benjamini and
Hochberg '95]. As reference, the set of all proteins tested for interactions could be used.
However, such sets are explicitly known only for Y2H-based maps comprising the
proteins in a matrix screen. For literature- and orthology-based maps, these sets are not
available. Hence, we used the set of all genes annotated in GO as reference to facilitate
direct comparison.

We also assessed whether interactions between protein classes were overrepresented. We
determined the number of interactions kmn between proteins of GO category m and
proteins of GO category n. Log2-odds were calculated to assess deviation of the observed
number of interactions kmn with the number k

0
mn of interactions expected for randomized
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Table 1: List of human protein-protein interactions maps compared in this study. The
number of proteins P and interactions I result after mappings of proteins to their
corresponding Entrez ID. Dav denotes the average number of interactions per protein.

The randomized networks had the same number of proteins and interactions as the
corresponding maps. The proteins’ connectivity (number of interactions per protein) was
also conserved.

Alternatively, we can evaluate the tendency that proteins of similar function interact.
Although difficult to define rigorously, similarity of function may be approximated by
following procedure [Jansen et al. '03]: After mapping proteins to their GO terms
(categories), their functional similarity is determined by the positions of corresponding
GO terms within the GO graph. Similar GO terms are expected to be located in
proximity to each other. Measuring the shared paths to the GO terms (from the root
term), we would expect that similar GO terms have larger shared paths than unrelated
GO terms. Thus, if proteins of similar function tend to interact in a network, the average
shared paths lengths will be larger than random networks. To test the significance, we
compared therefore the distribution of shared path lengths to those measured for
randomized networks. Note that we counted the largest shared path length in case of
multiple GO assignments for proteins.

3. Results

In total, we were able to map 57095 interactions between 10769 proteins uniquely
identified by the corresponding Entrez IDs (table 1). The size of the interactions maps
varied between 2754 (CCSB-H1) and 15658 (HPRD) interactions. Proteins had an
average number of 1.8 to 3.8 interactions. Considering previous estimates of an average
of 3-10 interactions per proteins, the result indicates that interactions maps are currently
still highly unsaturated [Bork et al. '04].

3.1 Common Proteins and Interactions

We examined first how many proteins and interactions were common to the different

MAP REFERENCE P I DAV METHOD

MDC-Y2H Stelzl et al. 2005 Cell 1703 3186 1.9 Y2H-ASSAY

CCSB-H1 Rual et al. 2005 Nature 1549 2754 1.8 Y2H-ASSAY

HPRD Peri et al. 2003
Genome Res

5908 15658 2.7 LITERATURE

BIND Bader et al. 2001 NAR 2677 4233 1.7 LITERATURE

COCIT Ramani et al. 2004
Genome Biology

3737 6580 1.8 LITERATURE

OPHID Brown and Jurisica 2005
Bioinformatics

2284 8962 3.9 ORTHOLOGY

ORTHO Lehner and Fraser 2003
Genome Biology

3503 9641 2.8 ORTHOLOGY

HOMOMIN
T

Persico et al. 2005
BMC Bioinformatics

2556 5582 2.3 ORTHOLOGY
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Figure 1: Number of proteins (A) and interactions (B) common to multiple maps. The x-axis
shows the number of maps in which proteins or interactions are included.

maps in our comparison (figure 1). We found that a large part (60%) of all proteins can
be found in at least two maps. The number of proteins included in all eight maps,
however, is diminishingly small: Only 10 proteins (i.e. 0.001% of all proteins) fulfill this
criterion. Even more striking were the small numbers of common interactions. The vast
majority of interactions (85%) are cataloged in only a single map. No interaction can be
found in six or more maps; and just 8 interactions are common to five maps.

3.2 Protein Overlap

To investigate whether some maps tend to share more proteins than others, we calculated
the relative protein overlap for each pair of maps. We detected considerable variation of
protein overlap ranging from 16% to 58%. Comparison of overlaps gave us first
indications that maps could be ordered into distinct groups. To examine this possibility,
a clustering approach was applied. First, we converted protein overlaps Oij (between
maps i and j) into distances ij defined as ij = 1-Oij. Thus, maps having large protein
overlap are assigned a small distance between each other. After conversion, the
interaction maps were hierarchically clustered. The resulting cluster structure showed a
surprisingly clear pattern: All maps are grouped in accordance to the mapping approach
used for their generation. We obtained two clusters that either included only literature-
based or orthology-based maps. The Y2H-based maps formed own clusters. The CCSB-
H1 has the most distinguished set of proteins, whereas MDC-Y2H is placed closer to the
remaining maps. These observations indicate that all mapping approaches show their
own characteristic preference for proteins included or, in others words, a prominent
selection bias.

We verified this conjecture by testing systematically for over- and under-representation
of protein categories in interaction maps. The categories used were based on Gene
Ontology (GO) that currently represents the most comprehensive system of annotation
for the human genome [Ashburner et al. '00]. Gene Ontology assigns defined categories
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Figure 2: Hierarchical clustering of maps based on protein overlap (A) and log likelihood
ratio LLR (B) as defined inMaterials and Methods. The matrices display the (relative) protein
overlap, respectively the LLR between all possible pairs of maps. Their numerical values are
represented according to color-bars at the bottom. On top and right side of each matrices,
dendrograms resulted from the clustering are shown. Clustering of protein overlap was
based on the distance between map i and j defined as ij = 1-Oijwhere Oij is protein overlap
between maps i and j. For clustering of LLR, the distance was defined as ij =1/LLR(Ii, Ij)
where Ii, j are the sets of interactions included in map i or j. For both cluster analysis, average
linkage was used

to genes according to their molecular function (MF), biological process (BP) or cellular
component (CC). First, we tested whether proteins of MF categories are overrepresented
in maps using Fisher’s test (FDR = 0.01). As reference, the set of all annotated human
genes in GO was used. Most maps showed significant enrichment for proteins involved
in nucleotide binding (all maps except CCSB-H1) and protein binding (all except
ORTHO). Likewise, all maps were found to be enriched by proteins related to
metabolism and cell cycle (BP categories) or located in the nucleus (CC category).
Interestingly, signal transducers are significantly underrepresented in Y2H- and
orthology-based maps, whereas they are significantly overrepresented in literature-based
maps. Whereas the reasons for the observed underrepresention are less clear, a possible
explanation for the overrepresentation in literature-based maps is the existence of an
inspection bias towards ‘popular’ signaling proteins in the literature. Surprisingly, we
detected a highly significant depletion of membrane proteins in all maps including
pharmaceutically important classes as the G-protein coupled receptors.
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3.3 Concurrence of Interactions

After the comparison of maps based on proteins included, we focused on the
concurrence of interactions. To assess the similarity between maps, the LLR was
calculated for each pair. It ranged from 1.5 (MDC-Y2H- OPHID) to 7.1 (BIND-HPRD)
having an average value of 4.6. For all comparisons, it was notably larger than zero,
which is the expected value for comparison of random maps. This signifies that the
observed concurrence of interaction maps did not occur merely by chance despite of
being rather small. To confirm this finding, we applied two permutation tests (described
the Materials and Methods) for pair-wise comparison of graphs. These results showed
that the observed overlap of interactions is highly significant for all comparisons (p <
0.01).

Inspection of the LLRs also suggested that the interaction maps can be divided into
distinct groups. Similarly as before, we subsequently clustered interaction maps to detect
common tendencies. The distance was defined as the reciprocal LLR. Similar maps score
a large LLR resulting in a small distance. Hierarchical clustering resulted again in the
formation of distinct cluster. However, the detected clusters were differently composed
compared to the clusters based on protein overlap. This time, COCIT was found in the
group of orthology-based clusters, whereas CCSB-H1 was assigned to the cluster of
literature–based HPRD and BIND. MDC-Y2H formed its own separate cluster
displaying the weakest similarity to remaining maps. Interestingly, the two large clusters
follow exactly the division into computationally generated maps (COCIT, ORTHO,
OPHID, HOMOMINT) and maps based on experiments (HPRD, BIND, CCSB-H1). An
explanation for this observation is still lacking.

3.4 Coherency of Interaction Maps

Next, we examine the functional coherency of maps. The observation that interacting
proteins tend to have common functions has previously been utilized for assessing the
quality of interaction maps as well as for de novo prediction [Schwikowski et al. '00,von
Mering et al. '02]. To test whether current human interactions maps also display such
functional coherency, we employed the gene annotations available in GO. We followed
two alternative approaches: First, we assessed the similarity of GO annotations of
interacting proteins. In case that interacting proteins have similar functions, their MF
annotations should be more similar than expected for random pairs of proteins. This can
be measured by the shared path length of GO categories for interacting proteins (see
Materials and Methods): Assuming a strong correlation between function and interaction
(i.e. large functional coherency), we would observe that short shared path length are less
likely and long shared path length are more likely than expected. The results of this
analysis are shown in figure 3. Indeed, all maps follow this pattern. However,
considerable differences can be observed. COCIT showed the largest functional
coherency of all maps whereas MDC-Y2H and OPHID showed only modest coherency.
A similar analysis was performed for maps with regard to shared process (BP) and
location (CC) of interacting proteins. Here, all maps displayed large coherency with only
minor differences between maps (figure 3).
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Figure 3: Assessment of coherency based on GO annotations for molecular function (MF),
biological process (BP) and cellular component (CC). For interacting proteins, the shared
path lengths of GO categories were calculated as described in Materials and Methods. The
figures show the log2 odds for the observed path lengths with respect to path lengths derived
for random networks. Log2 odds are plotted as function of shared path lengths.

An alternative approach to study the coherency of interaction maps is the examination
whether interacting proteins share a common location. It is based on inspection of the
interaction matrix as described in Materials and Methods. A similar strategy was
introduced by von Mering and co-workers counting the interactions within and between
functional categories for yeast interaction maps [von Mering et al. '02]. If only
interactions of proteins of the same category occur, a diagonal pattern emerges in the
corresponding interactions matrices. However, this assumes that proteins are assigned to
a single category and not to multiple categories as it is frequently the case for GO
annotations. Thus, we modified the approach and compared the observed interaction
matrices to matrices of the corresponding randomized networks. Figure 4 displays the
log odds for interactions between CC categories of the third level. Interestingly, some
compartments (e.g. cytoskeleton) are enriched by internal interactions independently of
the map chosen. Generally, however, literature-based networks displayed most
prominently enrichment of interactions within proteins of the same component. Less
clear patterns for enrichment were found for MC-Y2H and OPHID. This result seems to
contradict the previous observation that the coherency for location is similar in all
interaction maps (figure 3). However, it is important to note that the interaction matrix
approach only assesses the coherency at one particular level of the GO hierarchy. This is
contrasted by the previous approach that integrates over all levels. Moreover,
overrepresentation of interactions between different categories might not always derive
from poor quality of interaction maps, but may point to true biological coupling of
cellular compartments. For example, the repeatedly observed enrichment in protein
interactions between endomembrane and plasma membrane most likely reflects the close
biological connection of both membrane systems.

4. Discussion and Conclusions

Large-scale maps of protein-protein interactions promise to have a considerable impact
on the revelation of molecular networks. Similar to fully sequenced genomes serving
nowadays the base for genomics, large-scale maps of the interactome might become the
foundation for any systematic approach to model cellular networks. Thus, they are likely
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Figure 4: Cellular components of interacting proteins. Pairs of interacting proteins were
mapped to the pairs of cellular components to which the proteins are assigned in Gene
Ontology. The plots display the log2 odds ratios of the observed distribution compared to
distribution obtained for randomized networks with conserved degree distribution.
Categories of the third level of GO were chosen. The following abbreviations were used: Nu
– Nucleus, RC – Ribonucleoprotein complex, Ck – Cytoskeleton, Cp – Cytoplasm, IM –
Intrinsic to membrane, EM – Endomembrane system, OM – Organelle membrane and PM –
Plasma membrane. For simplicity, only GO categories are shown including more than 2%
percent of total number of proteins.

to be of substantial benefit for biomedical researchers. However, a requisite for future
application of large-scale human interaction maps is a critical assessment of their quality
and reliability. Therefore, we presented here a first comparison of eight currently
available large-scale interaction maps. Our comparison is distinguished from previous
studies, as it includes all three main approaches currently used for assembly of the
human interactome.

A general analysis showed a distinct picture for the concurrence of proteins and
interactions in different maps. While a large part of proteins are shared between maps,
the interactions included are largely complementary. Only a small percentage of all
interactions can be found in multiple maps. This finding has two direct consequences for
the integration of maps: The previously proposed approach of assigning higher
confidence to interactions found in multiple maps is strongly restricted by the low
number of shared interactions [von Mering et al. '02]. At the same time, however, the
complementary of interactions based on a large overlapping set of proteins indicates that
unifying interaction maps will be highly beneficial.

We detected strong sampling and detection biases linked to the approaches used for the
generation of the maps. This is reflected by the appearance of distinct groups when
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cluster analysis was applied to interaction maps. Such biases have to be observed when
interaction maps are utilized. Nonetheless, our analysis showed that most interaction
maps display a high internal coherency regarding function, process and location of
proteins. This result gives justification for future de novo annotation of proteins based on
interaction maps. We like to note that the use of GO for assessment might lead to
overestimation of the coherency of literature-based maps, as GO annotations are
frequently also based on literature reviews and, thus, do not represent a truly
independent benchmark set. In this case, the apparent lack of coherency in other maps
could be interpreted that these maps may provide more novel information about the
observed interactions.

Although the overlap of protein interactions is statistically significant, it remains small
even for maps derived by similar approach. Only 12% - 36% of interactions are shared
between orthology-based maps. Possible causes are the use of different data sets and
methods for prediction of interactions. Likewise, literature-based maps have only 10% -
28% of their interactions in common. This might result from inspection bias, such as the
focus of HPRD towards disease-related genes. Notably, two earlier studies reported
contradicting findings for the overlaps between HPRD and BIND. Whereas our study
agrees well with results by Ramani and co-workers detecting an overlap of 25%, we
cannot confirm the results by Gandhi and colleagues claiming that 85% of interactions in
BIND were included in HPRD [Gandhi et al. '06, Ramani et al. '05]. Finally, a more
worrying finding is the minute overlap of mere 1% between interactions in Y2H-based
maps underlining the importance of stringent validation of high-throughput data.

In conclusion, this study is aimed to provide a first groundwork for future integration of
large-scale human interaction maps [Chaurasia et al.]. As we saw, the combination of
different maps can be expected to offer great assets. Nevertheless, researchers should be
aware of the shortcomings of the underlying mapping approaches.
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Charité-Universitätsmedizin Berlin

Arnimallee 22
{thomas.hamborg,juergen.kleffe}@charite.de

Abstract: ClustDB is a tool for the identification of perfect matches in large sets of
sequences. It is faster and can handle at least 8 times more data than VMATCH, the
most memory efficient exact program currently available. Still ClustDB needs about
four hours to compare all Human ESTs. We therefore present a distributed and parallel
implementation of ClustDB to reduce the execution time. It uses a message-passing li-
brary called MPI and runs on distributed workstation clusters with significant runtime
savings. MPI-ClustDB is written in ANSI C and freely available on request from the
authors.

1 Introduction

Since many bioinformatics problems deal with the analysis of large amounts of data, par-
allel computing has proven to be an important tool to ensure computation capability and
computation in reasonable time. In addition to traditional massively parallel computers,
distributed workstation clusters play an increasing role in scientific computing. But so far,
there had been little success in using distributed computing for large scale sequence match-
ing. MUMMER [Ku04] and VMATCH [AKO04] are the most sophisticated programs
implementing suffix tree and suffix array algorithms for simultaneous sequence matching.
But due to their high memory usage these algorithms are not able to deal with datasets as
large as necessary. Moreover both algorithms are not parallelizable for distributed mem-
ory architectures. Futamura et al. [FAK98] suggested an algorithm for parallel sorting of
suffixes which performs a bucket sort of suffixes followed by parallel sorting of buckets.
Still the algorithm requires large RAM by storing all sequences and suffix positions si-
multaneously. Another drawback is that the sorting of buckets cannot be performed using
optimal algorithms. Hence, depending on the data, the method does not always improve
overall computing time. Two other attempts of using massively parallel computation are
the approaches by Iliopoulos et al. [IK02] and Kalyanaraman et al. [Ka03] which use far
more memory than is available for practical input sizes. The latter publication estimates
the demand of 512 parallel processors each with 512 MB RAM in order to compare five
million human ESTs. In contrast ClustDB [KMW06] uses a new sorting algorithm named
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partitioned suffix array method. It permits working with at least 8 times more data than
VMATCH and MUMMER and offers several ways of efficient parallel computing. We
therefore developed the program MPI-ClustDB that significantly reduces time consump-
tion for a group of loosely coupled computers. This parallel approach allows to compare
about six million human ESTs using only 7 personal computers each equipped with a 2.6
GHz Intel Pentium 4 CPU and 2 GB RAM. MPI-ClustDB is designed as a data-parallel
approach where in certain parts of the program one has to cope with a variable number of
identical tasks and each process executes more or less the same set of commands on its
data (task). MPI, the de facto standard for distributed memory systems, is used for inter-
process communication. It supports dynamic assignment of tasks to processes and has the
advantage of running on several platforms without code alteration.

2 Algorithm

MPI-ClustDB is designed in a Master/Slave-manner where one process coordinates the
scheduling and allocates tasks to a number of slave processes. It is assumed that all pro-
cesses have access to the entire data. Therefore the master converts the input data into a
fast accessable and space saving format called DNA Stat database and distributes such-
like data across the slaves. The aim is the identification of all matching substrings of a
certain minimal length in a large set of sequences which are derived by performing two
computational steps called Start Word Sort and Substring Detection. We describe these
steps together with the associated parallelization strategies in section 2.1 and 2.2. Subse-
quently the results are converted into a user-friedly output format. The parallelization of
the conversion is described in section 2.3.

2.1 Start Word Sort

Let L be the number of nucleotides of the concatenated sequence formed from all con-
sidered sequences separated by a dot character. Conventional suffix array methods store
and sort a vector of pointers of length L into the concatenated sequence. These pointers
are called suffix positions and require at least four times more memory than needed to
store the sequence. We therefore cut the vector of suffix positions into N pieces of length
L/N which are processed one by one. A word length W between 3 and 10 is fixed and
the pointers in each subvector are sorted in lexicographic order of the first W characters
the suffixes begin with (Fig.1 - Step 1). Then each of the N sorted subvectors splits into
blocks of suffix positions which start with the same word and are equally colored in Fig.
1. The parameter N is determined by the RAM size as each subvector has to fit into RAM
for efficient sorting. In the parallel approach we choose N at least as large as the number
of slave processes. The master process sends the appropriate sequence regions (two num-
bers) to the slaves and receives the sorted suffix positions. Each slave processor works in
linear time O(L/N) and requires L/3 + 4(L/N + Z) bytes of RAM in order to store the
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Figure 1: partitioned suffix array algorithm

complete sequence in compressed form (1 byte for 3 nucleotides), L/N suffix positions
and Z = 4W different word counts. Let p be the number of available processors, then the
total runtime for this step is roughly O(L/p).

2.2 Substring Detection

In step 2 all blocks of suffix positions starting with the same word are collected from the
N subvectors formed in step 1 and merged into Z new vectors displayed horizontally in
Fig. 1 - Step 2. Z is the number of different words of length W . Each of these vectors is
individually scanned for repeats of length M . Details about the calculations are given in
[KMW06]. In case of parallel computing the master sends the Z vectors to the slaves and
the slaves calculate the positions of multiple substrings which form clusters. Contrary to
parallelization in step 1, dynamic allocation of tasks is indispensable here. Some words
occur more frequently than others and hence the Z vectors differ greatly in length. But
even if two start words occur with equal frequencies, the clusters originating from them
will usually differ in size and so will the corresponding times of computation.
This step is performed in O(M ∗ L/(p ∗W )) time requiring L/3 + 8 ∗ F bytes of RAM
for each slave process where F is the maximum frequency of all considered start words.
Assuming we have L bytes of RAM, we can use approximately 2 ∗ L/3 bytes for a table
of size 8∗F that is necessary for the iterated suffix sort algorithm described in [KMW06],
i.e. F can be as large as L/12. About every twelfth of all overlapping start words must
be the same in order to cause failure of the algorithm with L bytes of RAM. In general F
rapidly decreases by increasing word length.
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2.3 Output Conversion

Subsequent to the partitioned suffix array algorithm each set of multiple substrings is rep-
resented by a cluster number and a set of global sequence positions in the concatenated
sequence. These positions have to be turned into sequence numbers according to the suc-
cession in the input file and local sequence positions in the respective sequences. This
task is carried out by means of a binary search algorithm. We use a scheduling strategy
called fixed-size chunking [Ha97] here. A fixed amount of positions from substring cluster
elements is sent to a slave, the sequence numbers and local positions are calculated and
sent back to the master. The computation time for this part is O(L ∗ logS/p) where S
denotes the number of sequences. Each processor requires 4 ∗S bytes of RAM in order to
store the start positions of all individual sequences.

3 Implementation

MPI-ClustDB processes DNA-sequence data in the established formats Genbank, EMBL
and FASTA or in DNA Stat database format. The latter is an inhouse binary format that
allows for fast direct access of individual sequences and playes a keyrole in fast data com-
munication. It significantly reduces runtime especially if MPI-ClustDB repeatedly runs on
the same data. Results of the substring calculation are presented in a tabular form with the
three columns cluster number, sequence number and match position. It is possible to ob-
tain the results in text file and/or DNA Stat database format. Summary results are written
to a seperate log file and several options of the program are described in [KMW06].
In order to execute MPI-ClustDB, an implementation of the Message Passing Interface
communication protocol has to be installed. A large number of implementations is freely
available. We have choosen the widely spread MPICH2 implementation that can be ob-
tained from http://www-unix.mcs.anl.gov/mpi/mpich2/. As we make use of standard MPI
commands only, it should be possible to link against any other MPI library, too. However,
it is important to use buffered and blocking MPI send/receive functions in order to avoid
deadlocks.

4 Results

We investigate the speedup of MPI-ClustDB compared to the serial ClustDB implemen-
tation for a 100 MBit/s and 1000 MBit/s ethernet network connection. If T0 denotes the
runtime of the serial solution and Tp denotes the runtime of the parallel solution with p
processes, speedup is defined as Sp = T0/Tp. All computations were performed on a test
cluster consisting of seven standard personal computers. Each of them has a 2.6 GHz Intel
Pentium 4 CPU and 2 GB of RAM running the operating system Mandriva Linux 2006.
We report application to the set of all 6,054,053 human ESTs stored in Genbank of date
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100 MBit/s 1000 MBit/s
# slaves complete runtime speedup complete runtime speedup
0 (serial) 13360 sec 1 13360 1

2 7738 sec 1.73 6352 2.10
3 6264 sec 2.13 5011 2.57
4 5263 sec 2.54 4215 3.17
5 4785 sec 2.79 3741 3.57
6 4392 sec 3.04 3410 3.92

Table 1: Runtime and speedup for MPI-ClustDB results of detecting all common substrings of length
M = 50 in all human ESTs considering two network velocities.

2005-04-06. The task is the identification of all common substrings of length 50 in the
test set. The serial ClustDB programm needs a total of 3 hours and 42 minutes to solve
the problem of detecting all 7,059,622 substring clusters of match length 50 for all hu-
man ESTs. Table 1 shows how the runtime of MPI-ClustDB alters for employing different
numbers of CPUs. The complete runtime decreases for any addition of a CPU in the clus-
ter leading to an overall runtime of 1 hours and 15 minutes for 7 personal computers and
a 100 MBit/s network. Using the gigabit connection the runtime decreases to 56 min-
utes. Thus we are approximately four times faster with MPI-ClustDB than with the serial
ClustDB software. Figure 2 analyses the reasons of the performance gains. The bisecting
line presents the optimal speedup. Ideally parallel computing using p processors should
be p times faster than the serial program. The left plot displays the achieved speedup for a
100 MBit/s network. Employing only one slave increases time of computation. But for at
least two slaves we see a sound speedup for the parallelization of the Substring Detection
step (square symbol). The other two parallel steps Start Word Sort (diamond) and Output
Conversion (triangle) do not scale well. This results from an excessive amount of overhead
that is due to communication among the processes. The amount of data that has to be dis-
tributed in these parts is comparatively large and the period for sending the data to another
process is out of scale compared to the calculations performed on the data. The right plot
in Fig. 2 shows the results for a 1000 MBit/s network connection. A significant speedup
for each step is achieved resulting in a greater overall speedup. Compared to the slower
network, the speedup for step 1 increases best while the speedup for step 2, that already
scaled well for 100 Mbit/s, improves just slightly. The reason is that the time consumption
for step 2 is mainly due to computation and not communication.
To account for diverse network velocities, our program optionally utilizes parallel com-
puting for Substring Detection only (overall speedup 1) or with all three parts being par-
allelized (overall speedup 2). The two resulting speedups are displayed in Fig. 2. For the
slower network connection overall speedup 1 is superior to overall speedup 2. Although
step 1 and 3 scale poorly for the slower network, overall speedup 1 is just slightly better.
This results from the fact that the Substring Detection step takes about 83% of the overall
CPU time. By contrast omitting the parallelization of part 1 and 3 leads to a notedly larger
runtime for the 1000 MBit/s ethernet.
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Figure 2: Speedup, as a function of the number of processors, for a 100 (left) and a 1000 (right)
MBit/s network connection. The task is detecting all common substrings of length M = 50 in
all human ESTs. Speedup 1 displays results for only Substring Detection being parallelized and
speedup 2 displays results with parallel computation of all three algorithmic steps.

5 Discussion and Summary

Nowadays Bioinformatics in general and sequence comparison in particular is faced with
very large datasets. ClustDB, our tool for finding common substrings in DNA-sequences,
is able to work on a greater amount of data than the competing programs. Additionally we
achieved to significantly reduce the runtime via our parallel implementation MPI-ClustDB
using a relatively inexpensive PC cluster. We parallelized the three most time consuming
parts of the programm, but for a 100 MBit/s network connection only one part shows
a speedup and is therefore used in it‘s parallel implementation. Increasing the network
speed to 1000 MBit/s yields significant speedups for all parallelized parts and cleary an
ascending overall speedup.
The parallel computation of each of the three parts is a problem of allocating independant
tasks to processors. The goal is to execute the tasks as quickly as possible. In the Output
Conversion step the fixed size chunking strategie is used that is theoretically preferable
compared to the others. But due to sundry constraints fixed size chunking is not applicable
in steps one and two. For example in the first parallel part N could be enlarged to reduce
processor idle time. But that would lead to a larger number of files to be read from in the
next step and overall runtime was observed to increase. Nevertheless more sophisticated
scheduling strategies may be possible and will be analysed in further developements.
We will investigate and optimize the scaleability of MPI-ClustDB next by running it with
a greater number of processors. Furthermore we will try to parallelize additional parts of
ClustDB. First aims are the calculation of sequence clusters (a subset of sequences having
no substring of length M in common with any sequence outside the subset) derived from
the substring clusters and extending pairs of matching substrings with errors. Based on

38



MPI-ClustDB a parallel solution for 64 bit shared memory systems is intended afterwards.
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Abstract: Mass spectrometry is one of the key enabling measurement technologies for
systems biology, due to its ability to quantify molecules in small concentrations. Tan-
dem mass spectrometers tackle the main shortcoming of mass spectrometry, the fact
that molecules with an equal mass-to-charge ratio are not separated. In tandem mass
spectrometer molecules can be fragmented and the intensities of these fragments mea-
sured as well. However, this creates a need for methods for identifying the generated
fragments.

In this paper, we introduce a novel combinatorial approach for predicting the struc-
ture of molecular fragments that first enumerates all possible fragment candidates and
then ranks them according the cost of cleaving a fragment from a molecule. Unlike
many existing methods, our method does not rely on hand-coded fragmentation rule
databases. Our method is able to predict the correct fragmentation of small-to-medium
sized molecules with high accuracy.

1 Introduction

One of the enabling measurement technologies for the new era of systems biology is
mass spectrometry (MS). Mass spectrometer measures the abundances of molecules with
different masses in the sample with very high precision [MZSL98]. Mass spectrome-
try has an integral role in many biological analysis tasks, such as in protein identifica-
tion [GV00, HZM00, Swe03]. In the study of metabolism mass spectrometry can be used
to identify intracellular small molecules by comparing the intensity spectrum of unknown
metabolite to a spectra residing in reference library [Fie02, MZSL98, SS94]

More information about an unknown metabolite can be obtained by applying tandem mass
spectrometer (also known as MS/MS) techniques where metabolite molecules are collided
with e.g. neutral gas to fragment the molecules and also the abundances of fragments
are measured [dH96]. For example, the product ion spectrum produced by tandem MS
can be used to improve the accuracy of library-based identification of unknown metabo-
lites [Fie02, JS04] and to deduce structural information about them [KPH+03, SP99,
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vRLDZ+04]. In addition, the elemental composition of a metabolite can be accurately
inferred from product ion spectrum [ZGC+05].

Tandem MS has also great potential in the area of 13C metabolic flux analysis [RMR+06,
SCNV97, WMPdG01] where the velocities of metabolic reactions are estimated from the
isotopomer distributions1 of the metabolites. The isotopomer distribution of a metabolite
can be accurately derived from tandem MS data [CN99, RRKK05]. Before the isotopomer
distribution of a metabolite can be computed, the exact structures of molecular fragments
produced by tandem MS have to be identified. The identification of fragments produced
by tandem MS is also a problem of interest in e.g. structural elucidation [Swe03].

The manual identification of molecular fragments is a very time-consuming process even
for an expert [McL80]. In this article we propose a novel method for the identification
of molecular fragments produced by tandem MS from a known parent molecule. In the
existing commercial tools Mass Frontier [Hig05] and MS Fragmenter [ACD05, Wil02]
fragment identification is based on the fragmentation rules stored into a database. How-
ever, small changes in the structure of a molecule can result in significant differences in
the fragmentation process [McL80]. Rule based systems will err if the fragmentation of a
new molecule does not follow the rules found by studying other kinds of molecules. De-
duction of fragmentation rules for each molecule and for each different MS technique is
also a laborious task.

Our approach for tandem MS fragment identification is not based on a prior knowledge
about common fragmentation rules but on the utilization of the combinatorial structure of
the problem. Shortly, we first generate candidate fragments whose masses correspond to
the observed peaks in a product ion spectrum and rank the candidate fragments according
to the cost of cleaving a fragment from a molecule. Our experiments indicate that when
molecules are reasonably small and the masses of molecular fragments can be measured
with accuracy characteristic to modern high resolution MS devices, tandem MS fragments
can be identified with good precision without a priori knowledge about common fragmen-
tation mechanisms.

2 Fragment identification problem

Molecules can be modeled as undirected, connected, weighted and labeled graphs with the
vertices being the atoms of the molecules and edges the bonds:

Definition 2.1 (Molecule). A molecule M is an undirected, connected, weighted and la-
beled graph �V, E, tV , tE , wV , wE�, where V is the set of vertices corresponding to the
atoms and E is the set of undirected edges corresponding to the bonds between the atoms.
The function tV : V → A assigns each atom a type (e.g., carbon, hydrogen, etc.) and
tE : E → B assigns each bond a type (e.g., single, double, triple, aromatic, etc.). Vertices
have atomic weights wV : V → R+ and edges have values wE : E → R+ assigning each

1By different isotopomers of a metabolite we mean molecules having specific combination of 12C and 13C
atoms in different positions of the carbon chain of the metabolite. Isotopomer distribution of the metabolite then
gives the relative concentrations of different isotopomers.
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edge the strength of the corresponding bond.

The mass of the molecule is the sum of the weights of its atoms, i.e.,

w(M) =
�
v∈V

wV (v). (1)

We define a fragment F of M as a connected subgraph of M .2

The output of tandem MS is a spectrum where the locations of peaks correspond to ob-
served weights W ⊂ R+ of molecular and fragment ions.3 On a high level, the fragment
identification problem of a molecule M can be formulated as follows:

Problem 2.2. Given a molecule M and a set W ⊂ R+ of observed weights of fragments
of the molecule, find fragments F1, . . . , F|W | of M that most likely correspond to the
weights in W .

Formally, a molecule M induces a fragmentation graph GM containing all fragments of
M (see Figure 1 for an example):

Definition 2.3 (Fragmentation graph). A fragmentation graph GM for a molecule M is a
directed acyclic graph �F ,≺, c� where

• F is the set of nodes corresponding to the fragments of the molecule M , i.e., the
subsets of edges in M . That is, F is the collection of sets E� ⊆ E such that E�

forms a connected component in the molecule M ;

• ≺ is the set of directed edges from each fragment F ∈ F to its subfragments F � ∈
F . Hence, ≺ is binary relation over F such that F ≺ F � ⇐⇒ F � ⊂ F for all
F, F � ∈ F ;

• c :≺→ R+ associates a cost to each edge in the graph giving the cost of producing
the fragment F � from the fragment F for each �F, F �� ∈≺ (i.e., for each F � ⊂ F ⊆
E where F and F � form connected components).

We use several heuristic cost functions for producing the fragment F � from the fragment
F . All functions are based on the assumption that, during the fragmentation process, weak
bonds between the atoms of a molecule are more likely to be cleaved than the stronger
ones. We approximate the strength of a bond with the standard covalent bond energy.

The simplest cost function for producing F � from F is the sum of energies of all cleaved
bonds:

c(F, F �) =
�

CF,F �

wE(e) (2)

2Although not all fragments produced by tandem MS are necessary connected subgraphs, the assumption
holds quite often. See Section 5 for further discussion.

3More precisely, MS separates molecular and fragment ions according to their mass-to-charge (m/z) ratio.
However, when analyzing small molecules like metabolites, ions almost always get a single charge. In the
following we assume that ions have a single charge.
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where CF,F � consists of the bonds that must be cleaved to cut F � from F , i.e., CF,F � =�
e ∈ F :

��e ∩�
e�∈F � e�

�� = 1
�

.

The total cost of a fragmentation graph GM is the sum of the costs of its edges:

c(GM ) =
�

F≺F �
c(F, F �). (3)

With the notion of the fragmentation graph, the task of finding the best fragmentation for
a molecule M and the weight set W can be formulated as follows:

Problem 2.4 (Fragment identification). Given a molecule M and a set W ⊂ R+ of
weights, find a connected subgraph G∗

M of the fragmentation graph GM such that G∗
M

contains at least one fragment for each weight in W and the total cost c(G∗
M ) is mini-

mized.

The actual form of the problem relies strongly on the cost function for the fragmentation
graphs. We discuss different ways of defining the cost functions and fragmentation models
in more detail in Section 3.

3 Models for the fragmentation process

The fragmentation of a molecule in tandem MS is a complex, stochastic and multistep
process where ions are decomposed to smaller fragments. In general there exists many
competing fragmentation pathways which a single molecule can take. The likelihood of
the competing fragmentation pathways depends on many factors, including the amount of
internal energy an ion obtains during the fragmentation, the stability of a product ion, steric
requirements of fragmentation pathways and charge or radical sites of parent ion [McL80].
The accurate modeling of all these factors is very tedious [RHO00, SHS01] and is not done
in practice when fragments are identified in every day laboratory work.

Next we give two alternative models for fragmentation and define the cost c(G�
M ) for a

connected subgraph G�
M ⊆ GM of molecule M according to these models.

3.1 Single step fragmentation

Our primary model for fragmentation is based on the consensus that in tandem MS usually
weak bonds are cleaved [MFH+99] and that with low collision energies fragments are
usually cleaved directly from the parent molecule [dH96]. Thus we can best explain the
detected fragment peaks by fragments that can be cleaved from a parent molecule using
the smallest amount of energy possible. With the notion of fragmentation graph, single
step fragmentation model leads to a star-shaped graph, where each fragment originates
directly from the original molecular ion in a single reaction. (See Figure 1.)

Unfortunately, even finding one weight-w minimum cost fragment F of a molecule M
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Figure 1: Example of fragmentation graphs of Alanine using single step (left) and multistep fragmen-
tation model (right). Both graphs have four fragment nodes. Fragmentation is indicated by arrows
with accompanying weights corresponding to the fragmentation graph edge weights, i.e. sum of
cleaved bonds energies. For example, on the left the alanine is fragmented into CH3N (bottom ar-
row), by two cleavages: the COOH-group with C-C cleavage and the CH3-group with C-C cleavage.
Both have energetic value of 348 kJ/mol thus making the total cost of producing CH3N 696 kJ/mol.
Dashed arrows indicate cleaved bonds.

for certain weight w ∈ R+ is NP-hard. We show that by a polynomial-time computable
reduction from the 3-satisfiability problem that is known to be NP-complete [GJ79]:

Problem 3.1 (3-satisfiability). Given a set U = {x1, . . . , xn} of boolean variables xi and
a collection C = {c1, . . . , cm} of clauses ci, |ci| = 3, over U , decide whether of not there
is a a satisfying truth value assignment for C.

Theorem 3.2. Given the molecule M , a weight w ∈ R+ and a cost c, it is NP-complete to
decide whether or not there is a fragment F of M of the weight w with the cost c(M, F )
being at most c, where the cost is defined by Equation 2.

Proof. The problem is clearly in NP, since any subgraph of M is at most as large as M
itself and the weight (as defined by Equation 2) of any fragment F of M can be computed
in time linear in F .

We reduce the instances �U, C� of 3-satisfiability to the instances �M, w, c� of finding a
fragment of M of weight w and cost at most c.

The set V consists of vertices ci,1, ci,2, and ci,3 for each clause ci ∈ C, and dummy
vertices d1, . . . , dδ . (δ is a constant that shall be determined later.) The vertex ci,k corre-
sponds to setting the truth value of the boolean variable of the kth literal of the clause ci

in such a way that the literal is satisfied.

The weights of the atoms in the molecule are determined as follows. Let p1, . . . , pn+1

be distinct primes. wV (ci,k) = log pi for each ci,k ∈ V , wV (dj) = log pn+1 for each
j = 1, . . . , n, and w =

�n
i=1 wV (ci,1). Hence, any fragment consisting one vertex for

each clause ci.

Now we need to define the set E of edges and their weights appropriately. There is an
edge {ci,k, cj,l} in E if and only if kth literal in the clause ci is not the negation of the lth
literal of the clause cj . Let δ be maximum degree of a vertex in the subgraph induced by
the vertices vi,k. Each vertex ci,k is connected to so many dummy vertices that the degree
of ci,k is δ. The weights of the edges are all one.
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The clauses in C are satisfiable if and only if there is a fragment F of weight w with cost
c(M, F ) = n(δ − n + 1). To see that, notice that fragment F is a clique if and only if the
vertices in F determine a (partial) satisfying truth value assignment for C.

Fortunately, in practice all fragments of the molecule M can be often generated and com-
puting the cost c(M, F ) for a given F is easy. Thus, by generating all fragments (with
weights in W ) we can solve the problem. This observation leads to a conceptually sim-
ple algorithm where for each observed weight w ∈ W a fragment F of weight w that
minimizes c(M, F ) is found. The algorithm has three steps for each weight wi ∈ W :

1. Find a set Fi of all connected subgraphs of M that have a weight wi.

2. For each fragment F ∈ Fi, compute a cost c(M, F ) of cleaving F from M .

3. For each Fi, return Fi ∈ Fi with the smallest cost among the fragments in Fi.

We find setsFi of all fragments of weight wi by enumerating all fragments, that is, all con-
nected subgraphs induced by M with a depth-first traversal algorithm briefly mentioned
in [BV97] and elaborated in [RR00]. The algorithm can easily be modified to give ki least
expensive fragments for each observed weight or all fragments with minimum cost wi.

In our experiments, the cost c(M, F ) was based on five key figures derived from the bonds
of M that have to be cleaved to form F from M , that is, bonds that connects elements in
F to elements in M \F . The key figures are: (1) the number of cleaved bonds, (2) the sum
of strengths of cleaved bonds, (3) the strength of strongest cleaved bond, (4) the average
strength of cleaved bonds and (5) the difference of strength between strongest intact bond
versus the weakest cleaved bond in our candidate fragment. We defined c(M, F ) to be an
average rank of F according to these key figures among the fragments of same weight.

3.2 Multistep fragmentation

As an alternative to single step fragmentation model, we experimented with a model where
we assume that many fragmentation pathways consist of two or more consecutive reac-
tions. Consecutive fragmentation reactions are thought to be common when higher colli-
sion energies are applied [dH96]. In this multistep fragmentation model we also assume
that in intermediate reaction steps of a fragmentation pathway usually not all molecular
fragments are further cleaved but some proportion of them is observed as a peak in tandem
MS spectrum. These assumptions allow us to construct a model where pathways of con-
secutive reaction steps that (1) explain observed fragment peaks by intermediates of the
pathway and (2) that cleave only weak bonds, are favored. This approach can be thought to
mimic the decision process an expert goes through while identifying fragments manually:
a proposed fragmentation pathway is more likely correct if peaks matching to intermediate
steps of the pathway are present in the spectrum [SHS01].

Multistep fragmentation process can be computationally modeled by allowing fragmenta-
tion graphs where fragments are cleaved from other fragments and defining the cost of a
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fragmentation subgraph G�
M = �F �,≺�, c� to be the sum of the costs of edges in G�

M , i.e.,

c(G�
M ) =

�
e∈≺�

c(e). (4)

We use the sum of all cleaved bonds energies (see Equation 2) as the cost of an edge.

In the multistep fragmentation model the cost of fragment F depends on the other frag-
ments in the fragmentation subgraph while in the single step fragmentation model, where
fragments are always cleaved directly from the parent molecule, the cost of F depended
only of its own structure. Thus instead of ranking the fragment of observed weight by com-
paring it to the other fragments of equal weight, we search for the optimal fragmentation
subgraph G∗

M that minimizes the cost given in Equation 4.

Proposition 3.1. The minimum cost connected subgraph G∗
M of the fragmentation graph

GM of a molecule M is a tree with at most |W | leaves, where the cost of G∗
M is defined

by Equation 4.

Proof. Let G∗
M be the minimum cost connected subgraph of GM . To see that G∗

M is
necessarily tree, assume that G∗

M is not a tree.

If G∗
M is not a tree, then there must be a cycle C in G∗

M . However, then also the graph
G∗

M \ {e} , e ∈ C, is connected. As the costs of the edges in G∗
M are strictly positive, the

cost of G∗
M \ {e} strictly smaller than the cost of G∗

M . Thus, if G∗
M is not a tree, then it is

not the minimum cost connected subgraph of GM .

The number of leaves can be at most W , since each leaf corresponds to some weight in
W .

An optimal fragmentation subgraph G∗
M can be found from the fragmentation graph GM

with mixed integer linear programming (MILP) by formulating the problem as a mixed in-
teger linear program. (There exist well-developed techniques for solving MILP reasonably
fast in practice [Mar01].)

The MILP formulation of the problem is as follows. We partition the fragments whose
weight correspond to observed weights into sets L1, . . . , L|W | according to their weights.
We denote by L a collection of sets Lk. Let fi be a binary variable indicating whether a
fragment Fi ∈ Lk is chosen to be a fragment corresponding an observed weight wk. We
set fM = 1 for the whole molecule. Let binary variable pi,j indicate whether an edge
from Fi to Fj in GM is chosen to G∗

M and ci,j ∈ R the cost of Fi ≺ Fj . The function to
be minimized corresponds to the total cost of edges of GM that are selected to G∗

M (see
Equation 4).
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We then obtain the following integer linear program:

min
�

Fi≺Fj

ci,jpi,j

s.t.
�

fi∈Lk

fi = 1 ∀Lk ∈ L

fj −
�

Fi≺Fj

pi,j = 0 ∀Fj ∈ F

pi,j − fi ≤ 0 ∀Fi ≺ Fj ∈ GM

The first constraint of the above program states that exactly one fragment from each ob-
served weight needs to be selected. The second constraint states that for each selected
fragment Fj exactly one parent fragment Fi, from which Fj is cleaved, have to be se-
lected. The third constraint states that if Fi ≺ Fj is selected to G∗

M , also Fj have to be in
G∗

M . The solution to the above program is a minimal cost set G∗
M of pathways which form

a connected tree in the fragmentation graph and cover each weight class of fragments with
exactly one fragment. Note that either all fi’s or pi,j’s can be relaxed to be real-valued (in
the interval [0, 1]) in order to speed up the optimization. We relax pi,j as the number of
pi,j’s is quadratic to the number of fi’s in the worst case.

In practice the mixed integer linear programs tend to be very large. A major optimization
for the model is to notice the specialty of hydrogen atoms in the fragments. As hydrogens
connect to at most one other element, their removal from the model do not split a molecule
or fragment to two fragments. Thus hydrogens do not need to be included when all frag-
ments are enumerated. By using hydrogen-suppressed fragments, the amount of fragments
drops drastically.

To cover the loss of hydrogen specificity in fragments, we add variables and constraints to
integer linear program requiring that the correct number of hydrogens is cleaved from each
selected fragment and that the cleaved hydrogen of parent fragment in G∗

M stays cleaved
in its daughter fragments. Also, the objective function is modified such that the costs of
hydrogen cleavages are correctly accounted for.

Let hn,j be a binary variable indicating whether a hydrogen n directly connected to frag-
ment Fj is cleaved. Let H be the set of all hydrogens in M and |Hi| the (precomputed)
number of hydrogens connected to Fi that should be cleaved in order to obtain Fi.

We add to MILP a constraint to ensure that the correct amount of hydrogens will be chosen
for the fragment: �

n∈H
hn,i − |Hi| fi = 0 ∀Fi ∈ F .

We also add a constraint ensuring that a hydrogen cleaved in Fi is cleaved in all Fj’s that
have selected to be its children in the solution:

pi,j + hn,i − hn,j ≤ 1 ∀Fi ≺ Fj , ∀n ∈ H.
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Finally, the cost of the solution is modified to take the costs of cleaved hydrogens into
account:

min
�

Fi≺Fj

ci,jpi,j +
�
h∈H

�
Fi≺Fj

ch(hn,j − hn,i).

Again, the variables pi,j can be relaxed to be in [0, 1].

4 Experiments

We tested our method of identifying tandem MS fragments with 20 amino acids and 7
sugar phosphates. Molecular masses ranged from 75 Da to 340 Da, 160 Da being the
average. In particular, the most massive molecule Fructose-1,6-bisphosphate had 34 atoms
and 34 bonds. Out of the 27 molecules, 8 were cyclic. The number of connected subgraphs
of the molecules varied from hundreds to millions, depending on the cyclicity and size of
the molecules. The run times of the above algorithms for candidate fragment enumeration
and ranking varied accordingly from seconds to days.

Compounds were fragmented with the collision-induced dissociation (CID) method by us-
ing a Micromass Quattro II triple quadrupole MS equipped with an electrospray ionization
interface. The spectra of compound were measured in a positive ionization mode. The col-
lision gas for CID fragmentation was argon and collision energies varied between 10− 50
eV. The number of peaks in the product ion spectra of the molecules varied from one to 15,
average being 7.1 peaks/molecule. Domain experts first manually identified the fragmen-
tation pathways for each of the 27 molecules and the weights of the manually identified
fragments were calculated with high precision for comparison of the effect of measure-
ment accuracy to fragment identification. We then predicted the fragments with both of
our models and compared the results against the manually identified fragments. A pre-
dicted fragment was deemed correct if its chemical formula and carbon backbone matched
the manually identified one as this level of accuracy is sufficient for applications such as
13C metabolic flux analysis. We used the off-the-shelf MILP solver lp solve [BEN05]
to solve the MILPs introduced in Section 3.2.

Our methods for identifying fragments agreed well with the domain experts when atom
weights of peaks were assumed to be measurable at 0.01 Da (mass) accuracy. This is a
realistic assumption in the current high resolution mass spectrometers and in our dataset.
In high accuracy there were 6.5 fragments for each peak in fragment spectra, on average
(σ = 9.8). If the fragments corresponding to observed peaks were selected randomly
from the sets of fragments with the lowest cost suggested by the single step fragmentation
method (Section 3.1), the fragmentations of the metabolites would be 88.7% correct, on
average. If the best fragment among the fragments with the lowest cost was selected for
each peak, metabolites would get 90.8% of correct fragments, on the average. On average,
there were 1.4 fragments with the equal lowest cost per peak (σ = 0.9).

With the multistep fragmentation method (Section 3.2) fragmentation subgraphs with the
lowest cost consisted of 82.8% correct fragments, on the average. The fragmentation
subgraph in best agreement with manual identification among the subgraphs whose cost
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was among the top-3 costs consisted 93.8% of correct fragments, on average. (There were
17.0 subgraphs in top-3 cost classes.)

In comparison, randomly constructed fragmentation subgraph of fragments whose weight
match with observed peaks would have 36.8% (σ = 36.3) of correct fragments, on aver-
age.

If we assume that the mass spectrometer can separate compounds only at integer accu-
racy, the number of fragments with the same weight is considerably larger, namely 19.3
versus 6.5 fragments/peak on the average. This makes combinatorial identification of frag-
ments much harder. With integer accuracy and single step model the fragmentations of the
metabolites would be 66.4% correct on average, if the fragments corresponding peaks were
selected randomly from the sets of fragments with lowest cost. Again, there were for each
observed peak 1.4 fragments that had the lowest cost, on average. With multistep model
the fragmentation subgraphs with the lowest cost yield an average accuracy of 55.9% and
with the best subgraph among the subgraphs with top three lowest cost an average accu-
racy of 70.7%. (There were 25.7 subgraphs in the three lower cost classes on average.)
Randomly constructed fragmentation subgraph of fragments that have an observed weight,
has an average accuracy of 12.3% (σ = 9.9).

Figure 2 and Table 1 summarize the results of the experiments. Table 1 shows the predic-
tion accuracies of fragmentation subgraphs with the lowest costs. In Figure 2, prediction
accuracies of fragmentation subgraphs that had the cost among k lowest costs are shown.
For example, with high mass accuracy and the single step model and examining the best
fragmentation subgraphs with the cost in k = 3 lowest cost classes for each peak, 94.6%
of predicted fragments match the manually identified ones. The reported accuracies are
averages over 27 metabolites.

As a conclusion, most of the molecules can be resolved without difficulties and near 90%
prediction rates are achieved, when high resolution MS is available. With our dataset the
single step fragmentation model gives more accurate prediction than the multistep model.

Table 1: Single step and multistep model accuracies with integer and high mass (0.01 Da) accuracy.
The best, the worst and the average accuracies of the fragmentation subgraphs that had the lowest
cost according to single step or multistep models are shown. Reported accuracies are averages over
27 metabolites.

Scheme Best Average Worst σB σA σW

Single step, integer 68.2% 66.4% 64.5% 19.2% 21.2% 23.9%
Single step, high 90.8% 88.7% 86.3% 11.3% 12.0% 14.3%
Multistep, integer 62.0% 55.9% 51.1% 22.4% 23.5% 26.1%
Multistep, high 87.0% 82.8% 78.0% 20.4% 21.6% 24.8%
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Figure 2: Figures depict the accuracy of single step and multistep fragmentation models when frag-
mentation subgraphs whose cost was among k lowest costs (x-axis) were taken into account. On
top, fragment weights are assumed to be measurable with 0.01 Da accuracy, on bottom with inte-
ger accuracy. Single step count and multistep count below x-axes show the cumulative number of
fragments per peak (single step) and the cumulative number of fragmentation subgraphs (multistep)
with the cost among k lowest costs. The reported accuracies are averages over 27 metabolites. The
lines connecting the points are only to improve the readability of the figures.
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5 Discussion

The fragmentation of a molecule in mass spectrometer is a complex process which is not
fully understood. We have shown that a combinatorial approach gives good results when
the molecules analyzed are sufficiently small and the resolution of the mass spectrometer
is characteristic to modern mass spectrometers. The combinatorial method given above
automatically generates good hypotheses of the fragmentation patterns, thus aiding an
experimentalist to evaluate all relevant possibilities of the fragmentation. Furthermore,
our approach does not make assumptions on the MS technique used and is thus potentially
applicable to a wide variety of problems.

The number of connected subgraphs of a molecule graph easily explodes when the size
of the graph grows, even if hydrogen atoms are disregarded. Thus, the applicability of
the combinatorial method is limited to small or medium–sized molecules. The number of
connected subgraphs depends heavily on the cyclicity of the graph. As a rule of thumb,
the method requires that the size of the molecule does not exceed 50 atoms, excluding
hydrogens. Thus the method is suitable for many metabolites, but unsuitable for proteins.
Additionally, as a result of element rearrangements, that is, by formation of new bonds dur-
ing the fragmentation [MZSL98], not all fragments are necessarily connected subgraphs
of the parent molecule. Fortunately, the most common example of such bond formation
is hydrogen rearrangement. Again, hydrogen rearrangements can be handled as special
cases as hydrogen atoms can only be transferred from one position to another, not creating
cycles. For more complex rearrangements involving cyclizations, our software implemen-
tation of the above methods provides the user a tool to manually add bonds that are formed
during the fragmentation to the molecule. Comparing our method against the commercial
rule based systems proved problematic. To the authors knowledge, no public data on the
performance or accuracy of existing tools is available.

Taking advantage of fragment intensities provides an interesting direction for further de-
velopment of our combinatorial fragment identification method. In addition, we are in-
vestigating the possibility of combining the combinatorial approach with stochastic mod-
eling to improve the accuracy of identification. Also combining the local ranking heuris-
tics in a more advanced way than computing the average rankings is a promising direc-
tion [FISS03, FKM+04]. The software implementing the methods described in this paper
is available from the authors and from a web site http://www.cs.helsinki.fi/
group/sysfys/software/fragid/.
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Abstract: Currently much research is devoted to the characterization and classifica-
tion of transient and permanent protein-protein interactions. From the literature, we
take data sets consisting of 161 permanent (65 homodimers, 96 heterodimers) and 242
transient interactions. We collect over 300 interface attributes relating to size, physio-
chemical properties, interaction propensities, and secondary structure elements.

Our major discovery is a surprisingly simple relationship not yet reported in the
literature: interactions with the same molecular weight or very big interfaces are per-
manent and otherwise transient. We train a support vector machine and achieve the
following results: Molecular weight difference alone achieves 80% success rate. To-
gether with the size of the buried surface the success rate improves to 89%. Adding
water at the interface and the number of hydrophobic contacts we achieve a success
rate of 97%.

1 Introduction

Protein-protein interactions are fundamental to most cellular processes such as recogni-
tion of foreign molecules, host response to infection, transport machinery across various
biological membranes, packaging of chromatin, the network of sub-membrane filaments,
muscle contraction, signal transduction, and regulation of gene expression. Aberrant or
lack of certain protein-protein interactions leads to the neurological disorders such as
Alzheimer’s disease. The forces that are responsible for these interactions include elec-
trostatic forces, hydrogen bonds, van der Waals forces, and hydrophobic effects. The
understanding of these interactions will provide the clues to their biological function.
Several groups have been analyzing protein-protein interactions by categorizing them
as homo-complexes, homo-oligomers, hetero-complexes, hetero-oligomers, obligate and
non-obligate complexes, transient and permanent complexes, folding type and recognition
type complexes (10; 14; 17; 13; 5; 2; 3; 1; 4).

A fundamental distinction in the nature of protein-protein interfaces is the separation into
permanent and transient interfaces which are also called two-state and three-state com-
plexes, respectively (21). Folding and binding are inseparable for two-state complexes.
However, in case of three-state complexes, proteins fold independently and then bind. It is
widely believed that permanent interactions can occur in homomers and heteromers, and
transient interactions mostly in heteromers. However, Nooreen et al. and and Schreiber et
al. collected 13 experimentally validated homodimers with transient interactions (15; 20).

Several studies analyze protein-protein interactions using interface properties like size,
shape, residue and atomic contact propensities, hydrophobicity, hydrogen bonds, and sec-
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ondary structure (10; 17; 13; 15; 5; 2; 3). Not a single feature analyzed in these studies
differentiates permanent interactions from transient interactions or vice versa. As Nooreen
and Thornton point out (15), it is difficult to discriminate, especially the strong transient
from permanent interactions or the weak permanent from transient interactions. Mintseris
and Weng propose atomic contact vectors to tackle this difficult problem and achieve a
91% success rate (13). However, they use 171 features to classify 340 interactions.

In this paper, we derive a data set of transient and permanent interactions from literature
and initially capture over 300 attributes for the interfaces. We analyse the most predictive
attributes in detail and show that the four attributes of molecular weight difference of the
chains, size of the buried surface, number of water molecules at the interface, and number
of hydrophobic contacts achieve a classification success rate of 97% - to our knowledge
the best success rate reported. Moreover, the difference in molecular weight of the two
interacting chains is the single most predictive attribute, which achieves a success rate
of 80% on its own. This is particularly remarkable, as it can be derived from sequence
information only.

2 Materials and Methods

We use five datasets introduced in (13; 20; 15; 1; 4). Even though all these datasets
are generated by applying stringent criteria, some of them are contradicting each other.
For example, the transferase 1d09 A:B is classified as permanent in (13) and transient
in (20) and the toxin 1bun A:B is classified as permanent in (4) and as transient in (20).
We carefully examine all the interactions with contradicting classification and label them
according to the literature. Overall, only 9 out of over 400 interactions are affected.

To obtain a non-redundant dataset, all the interacting chains’ sequences are clustered using
BLASTCLUST (ftp.ncbi.nih.gov/blast/). The interactions which have both
interacting chains with ≥25% sequence identity are clustered together and one interaction
from each cluster is selected. As a result, we have 161 permanent and 242 transient in-
teractions in our dataset. For these two classes, it is important to cover both homo- and
heterodimers. This is indeed the case for our dataset, as the breakdown below shows:

transient permanent sum
homo 13 65 81
hetero 229 96 322

sum 242 161 403

Feature Collection. We collect over 300 attributes about the interacting chains, residues,
interfaces, and secondary structure elements and categorize them into the following four
sets:

Size. Number of residues per chain, molecular weight and Accessible Surface Area (ASA)
of each interacting chain, molecular weight difference, interface area ΔASA, number of
residues at interface compared to individual chains, number of residues at interface com-
pared to total residues, contact surface area, contact volume, total number of residue con-
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tacts, number of residues at interface.

Physiochemical properties. Isoelectric Point of each interacting chain, hydrophobicity
of the interface, normalized hydrophobicity by the interface size, hydrogen bonds, salt
bridges, disulfide bonds and hydrogen bonds per 100 ASA in interface, water at inter-
face, interaction strength, number of aromatic, charged, polar, hydrophobic, hydrophilic,
hydro-neutral residues in interface, and the contacting residues pairs properties like aro-
matic aromatic etc.

Amino acid propensities. Counts of residues A,C, . . . , Y and contacts A-A, A-C, . . . , Y-Y
at interface.

Secondary structure elements. The absolute and normalized counts of interacting residues’
secondary structure elements (helix, strand, coil, and turn).

The above attributes range from very general attributes like the number of hydrophobic-
hydrophobic contacts to very special ones like the individual residue pair propensities
including all pairs of hydrophobic residues, which appears redundant. However, the ob-
jective behind collection of both specific and general attributes is that all of them may play
a role. If permanent interactions have large interfaces, there should be hydrophobic cores
and hence hydrophobic-hydrophobic contacts could be important. Residue propensities
vary strongly for different pairs and hence individual counts of residue-residue interac-
tions may also be important. In the end, all of these attributes are collected, so that the
algorithm can select the most predictive ones.

The molecular weight and the isoelectric points are calculated using the bioperl module
with the EMBOSS value set. Accessible surface areas and ΔASA are determined using
NACCESS (wolf.bms.umist.ac.uk/naccess/). The contact surface area and
volume are derived by computing convex hulls of interaction interfaces (7). A novel,
experimentally determined Stephen-White hydrophobicity scale (9) is used to calculate
hydrophobicity. It does not lead to different results compared to the Kyte–Doolittle scale
(12). The number of hydrophobic contacts is computed at residue level (F, A, I, M, L,
V, C are hydrophobic) and if a residue participates in several hydrophobic-hydrophobic
contacts, all of them are counted. While hydrophobic-hydrophobic contacts are a count,
hydrophobicity is the sum of all interface residues’ hydrophobicity according to (9).

Different types of bonds between two chains are determined using WHATIF (22). The
interaction strength is calculated based on the bonds formed between two chains. The
bond strength is measured by the amount of energy required to break the bond. Although
the strength of a bond depends on the environment, a covalent bond is nearly 90 times
stronger than a single hydrogen bond in water. Therefore, we consider disulfide bridges
with a strength of 90, salt bridges with 3 and hydrogen bonds with 1.

Water at the interface is the number of water molecules which are ≤ 5Å distance to both
interacting chains.

The absolute and normalized counts of all amino acids in the interface are considered along
with the contacting residue pairs. The two residues are said to be in contact if their atoms
are within or equal to 5 Å distance.

Using STRIDE (8), the secondary structure elements of the interacting residue pairs are
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determined. We consider both the absolute and the normalized counts.

Algorithms. We have 161 instances of permanent and 242 instances of transient inter-
actions each with a vector of over 300 attributes in the training set. To identify the most
relevant attributes for the classification task, we use relief estimation (11), which ranks the
most predictive features independent of any learning algorithm. For the classification of
permanent and transient interactions we use decision trees (C4.5) (18) to derive specific
rules and support vector machines (SVM) to carry out an overall classification. For the
SVM we use the LIBSVM library (6). We use a Radial Basis Function (RBF) kernel to
map data into a higher dimensional space. We perform a grid search on internal parameters
C and γ using cross validation and the value set with the best cross validation accuracy is
picked. To avoid the problem of overfitting we use stratified 10-fold cross validation for
both, the SVM and C4.5 algorithms.

Evaluation. In the results section we apply support vector machines to compute the overall
success rate for a set of attributes, as well as sensitivity and specificity of built model and
decision trees to derive intuitive classification rules. For these rules we report accuracy
and support. Accuracy assesses how good the rule’s classification is and support assesses
to how many examples in the data set the rule applies.

The success rate is defined as the number of correctly predicted interfaces divided by all
interactions: Success rate = Correct predictions / All interactions i.e. the success rate
assesses the overall percentage of correct predictions. The sensitivity = TP / TP+FN and
the specificity = TN / TN+FP .

To define the accuracy and support of a rule, let us denote the correct predictions of the
rule as TP (True Positives) and the incorrect predictions as FP (False Positives). Then, the
accuracy of a rule’s prediction is defined as the percentage of correctly predicted examples
for the rule: Accuracy = TP / TP+FP. The support indicates how general a rule is, i.e. to
how much of the data it applies to: Support = TP+FP / All interactions. Generally, we
wish to define rules with high accuracy and support.

3 Results

Molecular weight difference achieves 80% classification success rate. The ten most
highly predictive attributes (in descending order) are molecular weight difference, ΔASA,
hydrophobic-polar contacts, hydrophobic-hydrophobic contacts, water at interface, no.
alanine-lysine contacts, no. isoleucine-tyrosine contacts, no. helix-helix contacts, no. me-
thionine at interface, and no. leucine-serine contacts. The difference in molecular weights
is the most outstanding feature separating permanent from transient interactions - both for
homo- and heterodimers. Consider the scatterplot in Fig. 1a. Most permanent interactions
are located on or close to the diagonal, i.e. both chains are of (nearly) equal molecular
weight. This is not surprising for homodimers, but the majority (96 out of 161) of perma-
nent interactions in the data set are actually heterodimers. Using a support vector machine
(see materials and methods), the molecular weight difference alone can classify 80% of
interactions correctly with a sensitivity of 71% and specificity of 86%. A closer exami-
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Figure 1: a) Scatterplot for molecular weight difference of interacting chains. Permanent
interactions are close to the diagonal as they have similar weights. This is particularly
remarkable as 96 out of 161 permanent interactions are heterodimers. Transient interac-
tions mostly involve a lighter and a heavier chain. b) Scatterplot for molecular weight
difference of interacting chains against ΔASA. Permanent complexes loose more surface
accessible surface area upon complexation than the transient ones. Permanent interactions
with more than 5 kDa molecular weight difference have mostly large interface of greater
than 2000 Å2. c) Scatterplot for absolute counts of water at the interface plotted against
ΔASA. There is some correlation (0.486) between the two attributes. d) Scatterplot for
the number of hydrophobic contacts plotted against molecular weight difference. The plot
shows that permanent interfaces have more hydrophobic contacts and are therefore a useful
additional feature in the classification task.
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Figure 2: Decision tree with molecular weight difference and ΔASA. The boxes contain
the predicted class. The total number of interactions and the number of incorrectly classi-
fied examples are in brackets. The ovals are the decision points defined by the algorithm.
It identifies more or less than 7 Da molecular weight difference as main separating feature
for transient and permanent interactions. It also automatically separates very big interfaces
from other interfaces.

nation of the distribution also reveals that the interaction between chains with less than 7
Da weight difference are mostly permanent (88% accuracy and 30% support), while in-
teractions between chains with more than 10 kDa molecular weight difference are usually
transient (83% accuracy and 40% support).

The interesting aspect of these two rules is that they do not require any structural informa-
tion and as only 65 out of 161 permanent interactions are homodimers.

Molecular weight difference and buried surface achieve 89% classification success
rate.. As stated above, ΔASA is the second most predictive feature. The scatterplot in
Fig. 1b shows that permanent complexes loose more solvent accessible surface area than
transient complexes. In particular, nearly all permanent interactions with more than 5 kDa
molecular weight difference have interfaces bigger than 2000 Å2, while most transient
interactions have smaller interfaces.

To quantify this observation, we trained a support vector machine (see materials and meth-
ods) for molecular weight difference and ΔASA and achieved a classification success rate
of 89% (sensitivity 84% and specificity 93%). In order to capture intuitive rules for this
classification task, we also generated a decision tree (see materials and methods) shown
in Fig. 2. The decision tree procedure automatically derives cut-off values. For ΔASA,
it distinguishes very big (3455Å2) or not and for molecular weight differences small (≤ 7
Da) or not. Overall, the decision tree consists of three rules as shown in Fig. 3, which can
be summarized as follows: Interactions with very small molecular weight difference (≤ 7
Da) or very big interfaces (≥ 3455Å2ΔASA) are permanent, otherwise they are transient.
This single rule on its own achieves accuracy of 87% and a support of 100%.
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No Weight Difference ΔASA Class. Acc. Supp.

1 Very small ≤7 Da Does not matter Permanent 88 30
2 Not small >7 Da Very big > 3455Å2 Permanent 71 12
3 Not small >7 Da Not very big ≤ 3455Å2 Transient 91 58

Figure 3: Classification rules derived from a decision tree with their accuracy (Acc.) and
support (Supp.). Rule 1 and 3 have the biggest support, i.e. they capture a large portion of
the data set. Rule 1 states that if the molecular weight difference is very small the inter-
action is permanent. Rule 3 states that a difference in molecular weights and an interface,
which are not very big, imply a transient interaction.

Adding hydrophobic contacts and water achieves 97% classification success rate.. To
further improve the classification results we added two more features: water at the in-
terface, which is a feature for transient interfaces (16), and the number of hydrophobic
contacts, which is important for permanent interactions. As stated above, the number
of hydrophobic-polar contacts is the third most predictive feature. However, molecular
weight difference, ΔASA, water at the interface and hydrophobic-hydrophilic contacts
are performing slightly worse (96.03%) than hydrophobic-hydrophobic contacts (97.27%).
Both features achieve roughly similar results as they are highly correlated (0.8), but hydrophobic-
hydrophobic contacts are slightly less correlated to water at the interface (0.35) than
hydrophobic-hydrophilic contacts are (0.43). It is also established that large interfaces
have hydrophobic cores (see e.g. (10)), so that the better performance of hydrophobic-
hydrophobic contacts and its role in large interfaces led us to choose it over hydrophobic-
hydrophilic contacts. So, the attributes molecular weight difference, ΔASA, water at the
interface, and hydrophobic-hydrophobic contacts could classify 97% of interactions (sen-
sitivity 95% and specificity 99%) correctly.

Although the absolute number of water molecules at the interface correlates to some de-
gree (0.486) with the interface size ΔASA (see Fig. 1c), it improves the classification
success rate as shown below. As an additional feature relating to the role of water, we also
checked water mediated contacts. These are contacts between two residues from different
interacting chains, which are in contact through a single water molecule but not in direct
contact (> 5Å distance).

However, water-mediated contacts do not play a role in this classification task, which is
consistent with Rodier et al. (19), who found that water density at homodimeric interfaces
and protein-protein complexes is the same. Note, that the number of water molecules at
the interface and the number of water-mediated contacts are not highly correlated (only
0.424).

Besides water, we investigated hydrophobic contacts as it is widely believed that perma-
nent interfaces are more hydrophobic than transient ones. For the analyses of hydropho-
bicity we used the Stephen-White hydrophobicity scale (9). Fig. 1d shows that the feature
of hydrophobic contacts separates transient and permanent interfaces well.

As a final step, we trained a support vector machine (see materials and methods) with
the four attributes molecular weight difference, ΔASA, number of water molecules at the
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Molecular weight difference
transient permanent sum

homo 0/13 65/65 65/78
hetero 207/229 50/96 257/325
sum 207/242 115/161 322/403

Molecular weight difference, ΔASA
transient permanent sum

homo 8/13 58/65 66/78
hetero 217/229 77/96 257/325
sum 225/242 135/161 360/403

Weight diff., ΔASA, hydrophobic-hydrophobic contacts, water at interface
transient permanent sum

homo 11/13 61/65 72/78
hetero 229/229 91/96 320/325
sum 240/242 152/161 392/403

Figure 4: Breakdown of correctly classified protein-protein interactions for transient ho-
modimers, transient heterodimers, permanent homodimers, and permanent heterodimers.
The overall success rates achieved are consistent with all these subclasses. Molecular
weight difference alone classifies permanent homodimers and transient heterodimers very
well and permanent heterodimers reasonably well. Adding the other three attributes, suc-
cess rates for all these subclasses are in the 90s.

interface (within 5Å), and number of hydrophobic contacts. We achieve a classification
success rate of 97% for over 400 interactions in the data sets taken from (13; 20; 15; 1; 4).

Heterodimers vs. Homodimers and Transient vs. Permanent.. To test whether the
above results also hold for heterodimers only, we considered 96 transient and 96 perma-
nent heterodimer interactions. Thus, a random predictor achieves an expected success rate
of 50%. The four attributes considered above perform as follows: Molecular weight dif-
ference alone achieves 73%. Molecular weight difference and delta ASA achieve 84%.
Molecular weight difference, delta ASA, water at the interface and hydrophobic contacts
achieve 88%. These results are in line with the ones for hetero- and homodimers reported
above, in particular as homodimer interactions are not always permanent and as our dataset
contains 13 such transient homodimer interactions, which are difficult to classify.

Indeed, it is an interesting questions how the success rates for the classification of the
full 403 interactions break down between the classes of homo-transient, hetero-transient,
homo-permanent, and hetero-permanent. Figure 4 shows three tables with these success
rates for the three combinations of the four attributes. The first table shows that molecular
weight difference alone classifies permanent homodimers and transient heterodimers very
well and permanent heterodimers reasonably well. It does not handle the transient homod-
imers well. Adding ΔASA, the success rates for transient homodimers and permanent het-
erodimers greatly increase. Finally, the third table in Fig. 4 shows that the overall success
rate of 97% is consistently achieved in all subclasses of transient homodimers (85%), tran-
sient heterodimers (100%), permanent homodimers (94%), and permanent heterodimers
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(95%). Also, homo- and heterodimers achieve consistent success rates (92% and 99%,
respectively) and transient and permanent interactions, too (99% and 94%, respectively).

4 Conclusion

There is great interest in characterizing and classifying protein interactions as transient or
permanent (10; 14; 17; 13; 5; 2; 3; 1; 4). In particular, Mintseris and Weng achieve 91%
prediction success rate using their atomic contact model with 171 features to classify 340
interfaces (13).

In this paper, we have assembled a data set consisting of 161 permanent and 242 transient
interactions taken from the literature (13; 20; 15; 1; 4). For the interfaces we collected
over 300 attributes relating to the size, physiochemical properties, residue propensities,
and secondary structure elements.

Based on these data, we made a surprisingly simple discovery not yet reported in the
literature: The difference in molecular weight between the interacting chains is the single
most informative feature to distinguish transient from permanent interactions. Using this
feature, 80% of interactions can be correctly classified. This is particularly important,
as the molecular weight can be derived from sequence alone, so that no structural data
is needed. Together with attributes known to play a role such as the size of the solvent
accessible surface area lost upon complex formation, we can formulate the simple rule that
interactions with small molecular weight difference or very big interfaces are permanent
and otherwise they are transient. This simple rule achieves 87% success rate.

Finally, we added two more attributes known to be important, namely water at the interface
and number of hydrophobicity contacts. Overall, we achieve a classification success rate
of 97%, thus improving on other results previously published.

As next step, we wish to underpin our key insight that permanent interactions - like lasting
marriages - require equal partners by developing physical models of the protein masses
and moments, which can shed further light on this observation.
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would like to thank Wan Kyu Kim, Joan Teyra, Gihan Dawelbait and Christoph Winter for
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Abstract. Available information on molecular interactions between pro-
teins is currently incomplete with regard to detail and comprehensive-
ness. Although a number of repositories are already devoted to capture
interaction data, only a small subset of the currently known interac-
tions can be obtained that way. Besides further experiments, knowledge
on interactions can only be complemented by applying text extraction
methods to the literature. Currently, information to further character-
ize individual interactions can not be provided by interaction extraction
approaches and is virtually nonexistent in repositories.
We present an approach to not only confirm extracted interactions but
also to characterize interactions with regard to four attributes such as ac-
tivation vs. inhibition and protein-protein vs. protein-gene interactions.
Here, training corpora with positional annotation of interacting proteins
are required. As suitable corpora are rare, we propose an extensible cura-
tion protocol to conveniently characterize interactions by manual anno-
tation of sentences so that machine learning approaches can be applied
subsequently. We derived a training set by manually reading and an-
notating 269 sentences for 1090 candidate interactions; 439 of these are
valid interactions, predicted via support vector machines at a precision
of 83% and a recall of 87%. The prediction of interaction attributes from
individual sentences on average yielded a precision of about 85% and a
recall of 73%.

1 Introduction

The discovery or extension of molecular pathways and disease models requires
the detailed knowledge on molecular interactions and their properties. Databases
already capture many thousands of interactions between molecules [1,2,3], some-
times organized as pathways [3,4,5]. Most interactions were derived from large
scale experiments, lacking additional details, e.g. to distinguish activation from
inhibition. On the other hand, the bulk of the knowledge on interactions resides
in the literature and can be accessed systematically only by automated extraction
techniques. A number of such approaches have been published (a brief review
can be found in [6]) but they usually do not predict any additional details on
interactions. As common in the field, interactions are extracted from sentences
that in turn are derived from publication abstracts as provided by Medline. We
subdivide the extraction of interactions from sentences into the following steps
for which we provide novel solutions:
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1. We present a novel curation protocol (section 2.2) for a positional annota-
tion of the interacting proteins. Manual annotation and systematic curation
protocols are necessary as suitable training corpora are rare, e.g. as provided
by the LLL challenge [7] dataset on procaryotic gene interactions.

2. Following this protocol, 269 sentences including 1090 possible interactions
have been carefully read and annotated to derive a training data set (section
3.1). The large number of possible interactions is due to the fact that sen-
tences tend to be long and frequently contain more than two proteins, and
therefore

	
n
2

�
co-occurrences for n proteins, and it might be difficult to decide

which of the respective pairs of proteins actually interact and in which way.
3. To distinguish interactions from co-occurrences, we first identify the relevant

part of sentences via RelEx [6]. Subsequently, each co-occurrence is evaluated
in turn to predict interactions using support vector machines (Section 2.4).

4. Sentences frequently provide additional information to characterize individ-
ual interactions. Here we aimed to derive four attributes from the texts
(Table 1): (a) directed vs. nondirected, (b) activation vs. inhibition, (c) im-
mediate vs. long range and (d) protein-protein vs. protein-gene.

2 Methods

2.1 Preparation of data

In order to create a training set we compiled a list of PubMed abstracts likely
to contain protein interactions. To this end, some preprocessing and preselec-
tion is required. In the context of this paper we were interested in human pro-
tein interactions, so we first screened Medline abstracts for human proteins via
ProMiner [8]. The protocol to derive mappings between Medline abstracts and
human proteins has been described in detail in [9]. Then, so called interaction
paths have been derived via RelEx [6] based on dependency parse trees con-
tructed by the Stanford Lexicalized Parser [10]. RelEx extracts chains of depen-
dencies (paths) that connect two proteins to create candidate interactions (Figure
1). Thus, paths should contain the semantic dependencies and the corresponding
subset of words from the original sentence necessary and sufficient to describe
the relationship for each pair of protein entitites. This allows to subdivide the
extraction of interactions from texts into (a) extracting the corresponding path
and (b) to distinguish protein interactions from mere co-occurrences based on
features from the path. The second subproblem will be described below (sec-
tion 2.4). The following protocol has been applied to select sentences with an
increased probability to contain descriptions of interactions:

1. We screened molecular biology databases [1,2,3] for PubMed references.
2. Sentences are selected according to one of the following two criteria. Vari-

ant 1 selects sentences matching HPRD interactions denoted as (PubMedId,
protein 1, protein 2). Here, sentences from abstracts defined by PubMedId
were selected that include both proteins. As we encountered some difficulties
with this criterion (compare section 3.1) most sentences have been selected
by variant 2 that simply requires sentences to contain at least two proteins.
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3. Valid sentences were further required to contain at least one RelEx path
and an interaction keyword (such as ’activate’, ’formylation’ etc). For this
purpose we compiled a list of some 300 keywords, which we consider almost
exhaustive. We randomly selected 4500 Medline abstracts that satisfy the
above criteria as the source for an inital training data set.

4. From each of the selected abstracts only one sentence was selected at random.
This constraint intends to avoid bias from abstracts referring to a particular
interaction several times or containing many proteins.

Protein-1 A-2

located-4

nsubj

is-3

aux

in-5

and

with-9

and

activates-13

and

the-6 nucleus-7

dep

together-8

dep

Protein-10 B-11

dep

Protein-14 C-15

dobj

Protein A is located in the nucleus together with protein B and activates protein C.

Fig. 1. Dependency parse tree of an example sentence as contructed by the
Stanford Lexicalized Parser [10]. Arrows represent dependencies between terms.
Proteins (yellow boxes) and noun phrase chunks containing several words are
combined into larger nodes. The sentence contains one interaction keyword (ac-
tivates) and one corresponding dependency path extracted by RelEx [6] that is
marked in red. The path correctly maps activates to {A, C}, but not B.

2.2 Manual annotation

A simple textual annotation form is generated for each sentence selected in sec-
tion 2.1. Proteins have already been detected via ProMiner [8] during sentence
selection. Pairs of detected proteins yield candidate interactions that are man-
ually annotated by five different attributes (Table 1). We use five labels that
denote different levels of confidence to describe each attribute thereby providing
some flexibility for the annotation of difficult cases. Figure 2 shows the annota-
tion of a sample sentence. In addition to the five confidence labels the curator
can indicate additional hints .

In the following we will introduce the concept of hints that are used to safe-
guard the selection of meaningful training contexts. During the development of
our annotation protocol we had to ensure that results from curation are suitable
for a subsequent classification/prediction setting. We need to keep in mind that
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7838715.2.5 Chemical-1 sequencing-2 and mass-4 spectral-5 analysis-6 of

tryptic-8 peptides-9 derived-10 from the-12 purified-13 polypeptides-14

identifies-15 the-16 ARF6-17 complex-18 as a-20 heterodimer-21 of the-23

retinoid-24-X-25 receptor-26-alpha-27 (RXR-29-alpha-30)-31 and the-33

murine-34 peroxisome-35-proliferator-36-activated-37-receptor-38-gamma-39

(PPAR-41-gamma-42)-43.

27 39 interacting=5 18 21

27 39 directed =1

27 39 activating =3

27 39 immediate =5

27 39 expression =1

Fig. 2. Annotation of entry 7838715.2.5 (PubMedId, <1=title, 2=abstract>,
SentenceNo), an undirected, immediate protein-protein interaction. Two proteins
have been detected by ProMiner [8], thus a single annotation slot below the
sentence has been generated. Here, names ending at token positions 27 and 30
as well as 39 and 42, respectively, are consecutive synonyms referring to the same
entity and thus do not yield additional candidate interactions. Each interaction
slot is defined by the token positions of the two proteins as denoted by the first
two columns of integers. The third column specifies the attribute that is to be
labelled. The attribute value is manually entered into the fourth column, here
already filled in. Further columns are reserved for hints (token complex-18 or
token heterodimer-21 ), required to be present on paths for training classifiers.

potentially not all the words from a sentence might be avaliable to a classifier,
e.g. features might be generated from RelEx paths only. At the same time, we
had to ensure that the curation process is independent from feature genera-
tion/classification as the exact specifications of RelEx or other underlying tools
might be subject to change. Frequently, the decision if a particular label should
be attributed (e.g. expression) depends on the presence of an essential term (e.g.
gene) as in the sentence The gene coding for A is regulated by B. By denoting
the keyword gene as a hint for the decision protein-protein vs. protein-gene in-
teraction this sample would be valid only if the keyword gene is part of the
respective set of features, or path, as the assertion of the attribute expression
would not be possible based on the second part of the sentence (A is regulated by
B) alone. In the classification setting, instances are removed from the training
and classification pools if they lack features annotated as hints.

2.3 Generation of features

Features are generated for all sentences chosen by our selection protocol (section
2.1). Our approach is to define generic feature sources that are applied to each
candidate interaction (i.e. (PubMedId, position protein 1, position protein 2)).
Each feature source generates features that are added to a global feature list
for this candidate. This makes it possible to combine several feature sources
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with each other to define a feature space. Protein names are excluded to avoid
overfitting. Features are derived from words stemmed by the Porter [11] stemmer.

Bag-of-words (BOW) creates features from all words in a sentence.
Bag-of-words-path (BOW-path) only creates features for a subset of the words

in a sentence, i.e. for a path determined by RelEx. Given a sentence and a
pair of proteins (candidate interaction), a subset of paths from the set of
all paths for the given sentence are selected that contain the proteins. This
feature source also uses hints entered into the curation forms. If no hints are
given all applicable paths are selected. If hints are defined specifically for
an attribute only those paths are admitted that contain at least one of the
hints.

2.4 Classification procedure

Besides predicting protein interactions from co-occurrences we also predict the
type of interaction with respect to four attributes: (a) directed vs. nondirected,
(b) activating vs. inhibiting, (c) immediate vs. long range and (d) protein-protein
vs. protein-gene. Training and predictions for the latter 4 attributes are per-
formed even if a candidate interaction is annotated or predicted as invalid.

For learning, a reduced set of labels is constructed by combining 1+2 as well
as 4+5. The prediction of interactions is a two class problem and has been real-
ized by training a single SVM classifier. The other four attributes each constitute
three class problems, e.g. activating (1+2), vs. inhibiting (4+5) vs. not specified
(3). A three class problem can be reduced to a set of two class problems using the
one-versus-rest (OVR) strategy. Two binary SVM classifiers are constructed for
each class vs. the other classes, i.e. 1+2 vs. 3+4+5 and 4+5 vs. 1+2+3. No clas-
sifiers were constructed for not specified vs. rest, though, so that two classifiers
are required for each of the three class problems. Thus, a total of nine classifiers
are required for the five attributes. To combine the outputs of the two classifiers
for a specific attribute we use the following rule: not specified is predicted if a
new sample is located on the side of the negative training samples with regard
to the decision hyperplane for both classifiers. Otherwise, the class is selected
that corresponds to the maximum value of the SVM decision functions of the
two respective classifiers.

All training and classification using support vector machines has been per-
formed using svmlight [12]. We used the default parameters (linear kernels),
except that the cost-ratio for training errors on positive samples has been set to
the ratio of the corresponding class sizes, i.e. #negative examples / #positive
examples.

3 Results

3.1 Construction of a test set

In order to increase the probability that selected sentences indeed describe in-
teractions, we first used variant 1 of our sentence selection protocol (Section
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Attribute label 1 label 2 label 3 label 4 label 5

interacting no=661 0 0 37 yes=392

directed undirected=186 4 3 6 directed=240

activating inhibiting=36 0 280 10 activating=113

immediate indirect=101 13 33 64 direct=228

expression protein-protein=258 32 44 9 protein-gene=96

Table 1. Attribute labels and their distribution in the training data. Label 3
indicates that an attribute is not specified in the given sentence. Intermediate
labels 2 and 4 indicate that the annotation has been attributed with only mod-
erate confidence by the curator. The 661 samples labeled as not interacting are
assigned label 3 for the other attributes (not counted here).

2.2) to select 50 abstracts and one sentence from each abstract. Thereby, sen-
tences are selected that were likely sources for interactions derived by HPRD [3].
We manually labelled these sentences and analyzed the results with regard to
the five interaction attributes. This analysis showed that about 90% of the se-
lected sentences described interactions. Unfortunately, the analysis also showed
that the distribution of attribute labels was significantly imbalanced towards
protein-protein interactions based almost exclusively (>90%) on the keywords
binds, interacts and complex. Most sentences did not provide any information
on activation/inhibition, expression or directed interactions. This indicates that
the curation protocol employed by HPRD is selective with regard to immedi-
ate protein-protein interactions and we could not expect to derive a balanced
distribution of attribute labels this way.

Further curation thus focused on the second variant of our sentence selection
protocol. In total, 269 sentences have been annotated yielding attribute labels
for 1090 instances of candidate interactions. The overall distribution of labels is
shown in Table 1. The interacting and directed attributes were most straight-
forward to annotate. Only few instances were labelled with moderate confidence
(labels 2 and 4) whereas label 3 (not specified) was virtually absent. Table 1
also shows that certain attributes are less frequent in free text interactions es-
pecially striking for inhibition, but still noticeable in the case of long-range and
protein-gene interaction.

3.2 Evaluation of classifiers

Evaluation of performance for different classifiers was carried out on a set of
1090 annotated training instances defined by a sentence identifier and both in-
teraction partners. For training and prediction, both strong (labels 1 and 5) and
moderate (labels 2 and 4) confidence annotations were included. A stratified 10-
fold cross validation has been repeated 10 times (i.e. 10*10) for different random
splits. The performance estimates (Table 2 and Figure 3) show that attributes
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with a larger number of examples yield a better performance. On average, preci-
son is higher than recall, so predicted interactions and interaction attributes are
reliable while some annotations could not be recovered. We also compared the
performance with regard to the different options for feature generation (Table
3). The performance increased significantly when specific features were gener-
ated for dependency paths. Table 3 also compares the influence of hints on the
performance. Here, hints showed a significant increase in performance (+5.5%
in f-measure) only if features from the RelEx paths were included. The influence
of hints was hardly noticable if only the simple bag-of-words feature source has
been used.

Classifier Accuracy Precision Recall F-measure

interacting 94.1 82.7 87.2 84.9
not directed 97.6 90.7 81.8 86.0

directed 95.1 84.6 67.2 74.9
inhibiting 99.1 75.4 63.6 69.0
activating 97.7 85.1 q.0 73.0
long range 97.4 79.0 49.2 60.6
immediate 94.8 83.3 78.6 80.9

protein-protein 95.5 86.9 81.2 83.9
protein-gene 97.8 86.1 65.3 74.3

overall 96.9 85.4 73.3 78.9

Table 2. Cross-validation performance on a data set of 1090 candidate inter-
actions. Mean measures have been calculated via microaveraging. The overall -
performance was calculated as the mean of all classifiers except interacting.

Protocol Precision Recall F-measure

bag-of-words (BOW) 35.5 68.3 46.7
BOW + hints 36.1 69.0 47.4
BOW + path 78.2 82.3 79.4

BOW + path + hints 82.7 87.2 84.9

Table 3. The prediction performance of the classifier co-occurrence vs. interac-
tion has been compared with regard to different feature sources and the utiliza-
tion of hints.

In the following (see also Figure 4), a few examples will be mentioned where
classification has been mislead by lexical subtleties or incorrect parse trees. In the
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Fig. 3. Precision of attributes at 11 recall values. Performance estimates have
been combined for the four attributes that require 2 classifiers, i.e. except for
the simple attribute interaction.

sentence A induces methylation of B the word induce does not refer to induction
of a gene as it would be the case if the term methylation would have been absent.
This is different from the sentence A induces methylating B. As currently only
word stems are considered for features and frequent stop words (such as ’of’)
are discarded both sentences yield the same set of features. Another difficult
case is represented by A inhibits signalling downstream of B where a direct
relationship (in the causal sense) between A and B is not necessarily implied.
Some problems arise from incorrect dependency trees, e.g. in A activates B but
not C the negation refers to B according to the parser [10]. Future improvements
will also need to focus on multiple negations and to consider specific negations
such as A-null mice or A(-/-) mice.

4 Discussion

The construction of advanced causal network models requires specific annotation
(called attributes throughout this paper) on protein interactions such as activat-
ing vs. inhibiting or protein-protein vs. protein-gene. Such details on interactions
are not available from current databases or text extraction approaches in a sys-
tematic and comprehensive way. We propose to alleviate this problem with a two
step strategy for the extraction and characterization of molecular interactions
from free texts. Starting from sentences we narrow down to the context or path
comprising the actual assertions on a given candidate interaction. We presented
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SOCS-1, SOCS-2, SOCS-3, and CIS each strongly inhibited the GH receptor (GHR)-dependent
tyrosine phosphorylation of JAK2 seen at low levels of transfected JAK2; however, only SOCS-1
strongly inhibited the GHR-independent tyrosine phosphorylation of JAK2 seen at higher JAK2
levels.

Fig. 4. Dependency graph of a misclassified interaction. Here the interaction
between each of the SOCS and GHR-16 are incorrectly classified as inhibiting.
However, the text describes no direct inhibiting interaction between SOCS and
GHR, but SOCS inhibits the GHR dependent phosphorylation of JAK2-22.

two major contributions: (1) a systematic and convenient curation protocol for
the positional curation of candidate protein interactions including the manual
annotation of a training set and (2) a protocol for training and evaluation of clas-
sifiers for the accurate prediction of interactions and four interaction attributes
(Table 1).

Candidate interactions are annotated according to three levels of confidence:
not specified, moderate and high confidence (Table 1). The introduction of the
moderate confidence level helped to speed up the curation process as it was es-
pecially applicable to difficult examples. Without this level of confidence, several
examples would have been annotated as not specified, so it also helped to im-
prove recall during curation. We also introduced hints, i.e. labelling of special
words essential for capturing a particular meaning of a given interaction. Hints
are used to ensure that interaction paths can be excluded from classifier train-
ing if essential terms have been lost during preprocessing. We showed that the
annotation of hints did not introduce a significant bias into classification (Ta-
ble 3). As an additional advantage, hints capture information on why curators
made particular decisions. In our experience the proposed curation protocol was
simple to learn and use and categorized curator decisions appropriately.

We then constructed classifiers for the five attributes. These demonstrated
good cross validation performance for predicting interactions (as opposed to
mere co-occurrence of proteins) as well as other attributes. On average, preci-
sion was higher than recall, indicating that the manual annotation could not
always be recovered automatically from the given sentences. At the same time
we noticed that attribute performance was positively correlated with the abun-
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dance of available annotation. This indicates that an enlargement of our current
dataset, possibly selective with regard to the underpopulated attributes, will be
beneficial. Our method itself is generic, so that an extension to accommodate
additional attributes would be simple although additional manual annotation
would be required to provide the necessary training data.

References

1. G. D. Bader, D. Betel, and C. W. Hogue, “Bind: the biomolecular interaction
network database,” Nucleic Acids Res, vol. 31, no. 1, pp. 248–50, 2003.

2. I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg, “Dip,
the database of interacting proteins: a research tool for studying cellular networks
of protein interactions,” Nucleic Acids Res, vol. 30, no. 1, pp. 303–5, 2002.

3. S. Peri, J. D. Navarro, T. Z. Kristiansen, R. Amanchy, V. Surendranath,
B. Muthusamy, T. K. Gandhi, K. N. Chandrika, N. Deshpande, S. Suresh, B. P.
Rashmi, K. Shanker, N. Padma, V. Niranjan, H. C. Harsha, N. Tal reja, B. M.
Vrushabendra, M. A. Ramya, A. J. Yatish, M. Joy, H. N. Shivashankar, M. P.
Kavitha, D. R. Menezes, M. a nd Choudhury, N. Ghosh, R. Saravana, S. Chandran,
S. Mohan, C. K. Jonnalagadda, C. K. Prasad, C. Kumar-Sinha, K. S. Deshpande,
and A. Pandey, “Human protein reference database as a discovery resource for
proteomics,” Nucleic Acids Res, vol. 32, no. Database issue, pp. D497–501, 2004.

4. M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. . Araki, and M. Hirakawa, “From genomics to chemical ge-
nomics: new developments in kegg,” Nucleic Acids Res, vol. 34, no. Database issue,
pp. D354–7, 2006.

5. M. Krull, S. Pistor, N. Voss, A. Kel, I. Reuter, D. Kronenberg, H. Michael,
K. Schwarzer, A. Potapo v, C. Choi, O. Kel-Margoulis, and E. Wingender,
“Transpath: an information resource for storing and visualizing signaling path-
ways and their pathological aberrations,” Nucleic Acids Res, vol. 34, no. Database
issue, pp. D546–51, 2006.

6. K. Fundel, R. Küffner, and R. Zimmer, “Relex - a new approach for relation ex-
traction using dependency parse trees,” manuscript in preparation, 2006.

7. C. Nedellec, “Learning language in logic - genic interaction extraction challenge,”
Proceedings of the ICML05 workshop: Learning Language in Logic (LLL05), 2005.

8. D. Hanisch, K. Fundel, H. T. Mevissen, R. Zimmer, and J. Fluck, “Prominer: rule-
based protein and gene entity recognition,” BMC Bioinformatics, vol. 6 Suppl 1,
p. S14, 2005.

9. R. Küffner, K. Fundel, and R. Zimmer, “Expert knowledge without the expert:
integrated analysis of gene expression and literature to derive active functional
contexts,” Bioinformatics, vol. 21 Suppl 2, pp. ii259–ii267, 2005.

10. D. Klein and C. D. Manning, “Fast exact inference with a factored model for natural
language parsing,” Advances in Neural Information Processing Systems 15 (NIPS
2002), 2002.

11. M. Porter, “An algorithm for suffix stripping,” Program, vol. 14 (3), pp. 130–137,
2003.

12. T. Joachims, Learning to Classify Text Using Support Vector Machines. Disserta-
tion, Kluwer.

73



Invited Talk

Docking protein domains using a contact map representation

Stefano Lise and David Jones

University College London, UK

In this talk I will discuss the possibility of predicting protein-protein
interactions (docking) using a contact map representation. Rather than
providing a full three dimensional model of the predicted complex, the
method predicts contacting residues across the interface. A scoring function
is used that combines structural, physicochemical and evolutionary
information, where each potential residue contact is assigned a value
according to the scoring function and the hypothesis is that the real
configuration of contacts is the one that maximizes the score. The search is
performed with a simulated annealing algorithm. The method has been
tested on interacting domain pairs with encouraging results. Lastly, we find
that predicted contacts can often discriminate the best model (or the native
structure, if present) among a set of optimal solutions generated by a
standard 3-D docking procedure.
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Annotation-based Distance Measures for Patient Subgroup
Discovery in Clinical Microarray Studies

Claudio Lottaz∗, Joern Toedling†, Rainer Spang
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Berlin Center for Genome Based Bioinformatics,

Ihnestr. 73, D-14195 Berlin (Germany)

Abstract:
Background Clustering algorithms are widely used in the analysis of microar-

ray data. In clinical studies, they are often applied to find groups of co-regulated genes.
Clustering, however, can also stratify patients by similarity of their gene expression
profiles, thereby defining novel disease entities based on molecular characteristics.
Several distance-based cluster algorithms have been suggested, but little attention has
been given to the choice of the distance measure between patients. Even with the
Euclidean metric, including and excluding genes from the analysis leads to different
distances between the same objects, and consequently different clustering results.

Methodology We describe a novel clustering algorithm, in which gene selec-
tion is used to derive biologically meaningful clusterings of samples. Our method
combines expression data and functional annotation data. According to gene anno-
tations, candidate gene sets with specific functional characterizations are generated.
Each set defines a different distance measure between patients, and consequently dif-
ferent clusterings. These clusterings are filtered using a novel resampling based signif-
icance measure. Significant clusterings are reported together with the underlying gene
sets and their functional definition.

Conclusions Our method reports clusterings defined by biologically focused
sets of genes. In annotation driven clusterings, we have recovered clinically relevant
patient subgroups through biologically plausible sets of genes, as well as novel sub-
groupings. We conjecture that our method has the potential to reveal so far unknown,
clinically relevant classes of patients in an unsupervised manner.

1 Introduction

Gene expression profiling using whole genome microarrays has generated large amounts
of data in various clinical contexts. One goal of these studies is the discovery of clinically
relevant patient subgroups. Of interest are e.g. groups of patients which require a particular
treatment.

∗Corresponding author
†Current address: EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,

Cambridge CB10 1SD (UK)

75



An example from lymphoma research Alizadeh et al. [AED+00] define two new sub-
types of diffuse large B-cell lymphoma based on a hierarchical clustering analysis using a
functionally restricted set of genes. The two disease entities refer to distinct differentiation
stages of B-cells. Monti et al. [MSK+05] postulate a different partitioning of diffuse large
B-cell lymphomas supported by genes which have been excluded from the first analysis.
Their disease entities reflect proliferation properties of the B-cell malignancies. None of
the results can be easily proven wrong. In fact, they do not contradict each other. The two
research groups had a priori different notions as to which genes are relevant. This led to
two dissimilar but relevant clusterings of samples.

Different genes - different distances - different results In the context of class dis-
covery, the objects that are to be clustered are patient samples. For clustering, pairwise
distances between these objects are calculated. Using the Euclidean metric to do so, does
not yet uniquely define these distances, though. Which genes to include in the analysis
is very important. Using all measured genes as such is not a good choice. Several in-
dependent molecular characteristics of the patients like age, gender, and disease status
will overlap and obscure the result. Gene selection is called for but certainly affects the
clustering. Each choice of a gene set to use defines a particular distance between any two
samples. Different gene sets lead to different distances between the same objects, although
we always use the Euclidean metric to compute them. In many clinical studies, gene se-
lection is used for unsupervised analysis, too. The intention is either to reduce noise in
the expression data (e.g. [CSF+05]) or, in addition, to focus on reproducible features (e.g.
[BRS+01, MSK+05]). However, little attention on the effect of gene discarding on the
resulting disease class definition has been given.

The concept of our algorithm Instead of selecting genes according to purely statistical
characteristics, we suggest a systematic approach to gene selection according to functional
annotation. We describe an algorithm that produces a list of alternative clusterings using
different gene sets for computing distances between samples. We derive candidate gene
sets from functional annotation data, and filter the list by a novel significance measure for
clustering strength.

Previous work Clustering of gene expression data is routine in bioinformatics. Several
methods have been suggested in this field (for a review, see Chapter 4 of [Spe03]). Various
approaches to score the quality of clusterings, and to determine the best number of clusters
exist [DF02, KC01]. All these methods have in common that the underlying metrics need
to be specified beforehand. Several authors also have suggested ways to judge stability and
statistical significance of clusters [HBV01, LRBB04, MRF+02, MTMG03, MSS+05].
Semi-supervised clustering approaches include additional clinical information about pa-
tients. Bullinger et al. [BDB+04] as well as Bair and Tibshirani [BT04] suggest finding
classes of patients using a clustering metric derived from the expression data and additional
survival times. In a completely unsupervised setting, biclustering [CC00, TSKS04, MO04]
and class-finding algorithms [vHHPV01, RL04, VS04] combine the gene selection process
with the clustering. These methods produce alternative clusterings and characterize them
by underlying gene sets. Unfortunately, such methods are rarely used in clinical studies.
One reason might be that a large set of alternative clusterings is hard to interpret, unless
the driving genes have a clear functional focus.
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The role of functional annotations We believe that the major shortcoming of class
discovery algorithms is that they treat gene expression levels as anonymous variables.
For many genes, a lot is known about their function and their role in cellular processes.
This knowledge is stored in databases like the Gene Ontology [ABB+00], Transpath
[SCG+01], Biocarta (http://www.biocarta.com) or the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [Kan96]. Today, such annotations are routinely used to interpret results
produced by statistical analysis. Several tools for such a-posteriori analysis are available
[BS04, DSH+03, AS04, DSD+03, STM+05, GBRV06].

A-priori use of functional annotations Unlike a-posteriori methods, we propose using
annotations within the statistical analysis of the expression data. In different contexts
this a-priori use of functional annotations has already been investigated. Pavlidis et al.
[PLN02] and Zien et al. [ZKZL00] use functional annotations to improve the sensitivity
of algorithms for detecting differentially expressed genes. Rahnenführer et al. [RDML04]
apply pathway annotations to investigate metabolic pathways. Subclass finding in complex
clinical phenotypes using functional annotations is the topic of [LS05]. Here, we apply
similar concepts to the problem of molecular class discovery in patients.

Outline of the paper In the next section, we describe the clustering procedure as well
as the scoring of clustering results. In Section 3, we illustrate the usefulness of functional
gene annotation for producing alternative clusterings of samples on a number of cancer
related clinical microarray datasets. Finally, we discuss possible extensions of the method
and interpret our observations from a biological perspective in Section 4.

2 Method

We present a novel algorithm for producing a list of alternative patient clusterings in clini-
cal microarray studies. The key idea is to use meaningful gene sets for computing distances
between samples. For practical use, it is desirable to have functional rationales character-
izing clusterings, such as clusterings related to proliferation or apoptosis. To this end, we
define candidate gene sets using functional annotations, and call the resulting clusterings
annotation driven.

We use the k-means algorithm to generate clusterings based on candidate gene sets. The
quality of these clusterings is assessed using the diagonal linear discriminant (DLD)
score [vHHPV01]. In order to determine the statistical significance of scores, we also
compute DLD scores for clusterings driven by randomly chosen gene sets. Empirical p-
values are calculated and false discovery rates (FDR) computed according to Benjamini
and Hochberg [BH95]. Finally, we filter the list of clusterings for minimal subgroup size
and to control the FDR. In a nutshell, the algorithm consists of the following steps:

For each biological term / pathway of interest, denoted Bi:

1. Find all nBi genes annotated to Bi and discard all others.

2. Perform 2-means clustering on the reduced expression matrix. This yields an anno-
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tation-driven clustering CBi
.

3. Compute DLD score S(CBi
) for this clustering.

4. Draw 10000 random gene sets of size nBi from the set of all measured genes. For
each of them compute steps 2 and 3. This yields a vector rnBi

of 10000 scores.

5. Assign an empirical p-value to the original clustering, denoting the proportion of
entries of rnBi

being greater or equal than S(CBi
).

In the following, we provide more details on certain steps of the procedure.

2.1 Annotation data

We suggest the use of annotation data to generate candidate gene sets of interest. Genes
in a candidate set have common involvement in biological processes or pathways. To
generate such gene sets, pathway databases such as KEGG [Kan96] and Gene Ontology
[ABB+00] are particularly adequate.

Sets of genes collected for a particular application from literature or a biologist’s expe-
rience are possible alternatives. Very small gene sets should not be considered, since
clusterings supported by very few genes are unlikely to represent a clustering of biological
interest. On the other hand, sets containing too many genes are prone to be very unspecific,
and thus their results are of little explanatory power.

2.2 Distance metric

K-means clustering is based on pairwise object dissimilarities. Objects in our case are
the samples’ expression profiles. We obtain dissimilarity measures from the family of
restricted Euclidean metrics, which we will define next.

Let (xi, xi�) be any two expression profiles, both containing measured expression values
for p genes. Reducing the expression profiles to a limited set of genes before computing
the distance, can also be interpreted as computing a Euclidean distance specific for gene
set G between the original profiles

DG(xi, xi�) =

���
 p�
j=1

Ij∈G · (xij − xi�j)
2

where Ij∈G is an indicator variable taking the value 1 if gene j is in set G and 0 otherwise.
We call DG a restricted Euclidean metric on patient space.

By selecting different gene sets before clustering, we choose different measures of distance
between any two expression profiles. Since the choice of the distance measure affects the
outcome of clustering stronger than the choice of the clustering algorithm (see Chapter 14
in [HTF01], clusterings of the same samples with different metrics disagree substantially.

78



2.3 K-means initialization

K-means clustering critically depends on its initialization step. We derive an initialization
based on the first split of a divisive hierarchical clustering (Chapter 6 in [KR90]). Of
the resulting two clusters, we compute centroids which provide the starting points for
the k-means algorithm [Mac67]. This has been shown to outperform standard k-means
with random starting points [MS80]. In other words, k-means is used to refine individual
clusters and to correct inappropriate assignments made by the hierarchical method.

2.4 Scoring clusterings

For clustering evaluation, we employ the diagonal linear discriminant (DLD) score, adop-
ted from [vHHPV01]. We briefly review it here.

Let X be the reduced expression matrix with rows containing the genes from the set of
interest and columns representing the patient samples. Given a clustering C of samples,
i.e. a binary vector of class labels for classes A and B, we are interested in those genes,
whose expression levels reflect this class division best. A natural score for this purpose is
Student’s t-statistic. We discard all genes except those 50 genes with the highest absolute
t-statistic. In case there are less than 50 genes in the functional group, all are kept. We
avoid clusterings with very few supporting genes by discarding the top m genes with the
highest absolute t-statistic to prevent the final DLD score from being strongly influenced
by very few genes with extreme expression levels. This also makes results more robust
against imprecise annotations. We chose m = 5. Discarding the respective rows (genes)
from X, yields a shortened expression matrix X∗.

Now, the same projection method, which is used in the classification step of diagonal
linear discriminant analysis [MKB79], is used to project the samples (columns) of X∗

onto a one-dimensional space. The projection is defined by the vector

v = S−1 (μA − μB)

where μK denotes the centroid of all samples of class K and S is a diagonal matrix con-
taining the weighted sums of within-class variances for each gene g:

Sgg = (a− 1)σ2
gA + (b− 1)σ2

gB

where A and B denote the two classes with cardinalities a and b respectively. Each pa-
tient sample, which is represented as a column of the shortened expression matrix X∗

•j , is
projected onto the coordinate, given by the inner product v� · X∗

•j .

The DLD-Score S of a clustering C is the Student’s t-statistic of the projected coordinates:

S(C) =

�
a·b
a+b · (μzA − μzB)�

1
a+b−2 · ((a− 1)σ2

zA + (b− 1)σ2
zB)
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where z denotes the projected coordinates, μzK and σ2
zK denote the mean and the variance

of the projected coordinates of group K, while A and B denote the two groups with
cardinalities a and b respectively.

2.5 Assessing clustering significance

We introduce a new approach to address the question whether an annotation-driven clus-
tering is statistically significant. To this aim, we observe clusterings based on randomly
drawn gene sets, which have the same size as the set of functionally related genes but
otherwise no restrictions on included genes. For each of these random gene sets, we find
the optimal clustering and compute its DLD-Score as described above. The score derived
from the annotation-driven clustering is compared with these random scores.

The DLD-Scores derived from random gene sets define a null-distribution of scores for
gene sets of the given size. For each annotation-driven clustering C, we can compute an
empirical p-value πE(C) denoting the proportion of random scores r being equal to or
greater than the annotation-driven clustering’s DLD-Score S(C):

πE(C) =
1
|r| ·

�
r∈r

Ir≥S(C)

where Ir≥S(C) is an indicator variable taking the value 1 if the random score r is bigger or
equal than S(C) and 0 otherwise, and |r| denotes the number of simulated random gene
sets. This empirical p-value provides us with a measure of significance for clusterings.

2.6 Multiple testing

The algorithm described so far, determines an empirical p-value for each term we can find
associated genes for. Depending on the employed annotation sources and the microar-
ray at hand, hundreds of terms are considered to generate annotation-driven clusterings.
Hence, the determination of empirical p-values is subject to multiple testing. A conser-
vative approach to correct for the multiple testing problem is to determine false discovery
rates according to Benjamini and Hochberg [BH95]. We employ this correction although
its results are to be interpreted with care given the many dependencies between GO and
KEGG terms which share commonly associated genes.

2.7 Implementation

We have implemented our clustering method in the statistical programming language R
[IG96, R D05]. We employ the divisive hierarchical clustering method from the cluster
package and the implementation of k-means clustering [HW79] from R’s stats pack-
age. The implementation of the DLD score is taken from the isis package [vHHPV01].
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We also use Bioconductor’s [GCB+04] meta-data packages to retrieve gene annotations
for GO and KEGG. Our code is available in the R package adSplit [LTS05] from
http://compdiag.molgen.mpg.de/software. The package is also part of release 1.8 of the
Bioconductor bundle of packages related to the life sciences.

3 Results

We show results of our method on several cancer related datasets from clinical gene ex-
pression studies. We focus on the use of Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) for annotations.

3.1 Expression data

We have used 15 clinical microarray studies to investigate the behavior of our cluster-
ing procedure. These studies investigate diagnostic and prognostic issues in the context
of brain tumors [FCVF+04, NMB+03, PTG+02, RBM+01], breast cancer [HCD+03,
WBD+01], leukemia [ASS+02, CYP+03, RMO+04, WJS+04, YRS+02], lung cancer
[BKH+02, BRS+01] and prostate tumors [SFR+02].

All 15 microarray studies are based on Affymetrix R� GeneChip technology. Eight datasets
were generated using the genome wide HG-U95Av2 microarray based on release 95 of
UniGene [Sch97]. Four studies are based on the older HU6800 chip, and in [RMO+04]
as well as [FCVF+04] the newer HG-U133A chip based on release 133 of UniGene was
applied. Finally, Willenbrock et al. have worked with the HG-Focus chip, a microarray
holding a subset of the probe-sets of the HG-U133A chip. Table 1 holds further informa-
tion on the results obtained for these 15 studies.

For each of these datasets, gene expression profiles were background corrected and nor-
malized on probe level using variance stabilization [HvHS+02] before summarizing the
probes into probe-set expression levels using median polish [Tuk77] as suggested in the
RMA method by Irizarry et al. [IHC+03]. Implementations of these methods were taken
from Bioconductor [GCB+04].

3.2 Annotation data

For the systematic exploration of functional gene annotations, we suggest the use of the
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). GO
holds 17,601 biological terms, while KEGG comprises 231 pathways. For the considered
Affymetrix R� microarrays, Table 2 states the number of terms and pathways, which have
more than 20 probe-sets but less than 10% of all probe-sets on the chip annotated.

Strikingly many GO terms have very few genes attributed: more than 75% of all terms
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Author Cancer type Study topic Chip 7N 7C FDR
Freije brain survival U133A 85 71 9.2
Nutt brain subtypes U95Av2 50 8 9.1
Pomeroy brain outcome HU6800 100 23 8.8
Rickman brain subtypes HU6800 51 0 −
Huang breast (lns) risk groups U95Av2 37 40 9.9
Huang breast (rel) outcome U95Av2 52 0 −
West breast (rel) outcome HU6800 49 0 −
Armstrong leukemia subtypes U95Av2 72 18 9.2
Cheok leukemia treatment U95Av2 31 0 −
Ross leukemia subtypes U133A 142 133 10.0
Willenbrock leukemia outcome Focus 45 11 9.6
Yeoh leukemia subtypes U95Av2 327 179 9.6
Beer lung outcome HU6800 96 2 8.3
Bhattacharjee lung survival U95Av2 254 113 9.9
Singh prostate subtypes U95Av2 102 40 8.8

Table 1: Cancer related datasets used for evaluation. In the column ’�C’ contains the number of an-
notation driven clusterings with smallest group size at least 5 when false discovery rate is controlled
at 10 %. The column �N holds the number of samples. lns=lymphnode status, rel=relapse.

Probe-sets GO KEGG
HU6800 7129 4534 / 752 130 / 63
HG-U95Av2 12625 5000 / 962 132 / 77
HG-U133A 22283 5417 / 1223 132 / 92

Table 2: Gene sets defined by GO and KEGG per chip. Numbers of gene sets are given before/after
filtering for gene sets holding more than 20 and less than 10% of all probe-sets on the chip.

hold less than 20 probe-sets. On the other hand, very few terms are too general holding
more than 10% of the genes on the whole-genome microarrays. The KEGG database also
defines some very small gene sets, but roughly two thirds hold more than 20 genes.

On commercial Affymetrix R� oligonucleotide microarrays, many genes are represented by
more than one probe-set, thus several rows in an expression matrix give measurements for
the same gene. When extracting probe-sets with a common annotation, either all or none
of the probe-sets representing the same gene are included. When drawing random sets
of probe-sets, we mimic this fact, by actually drawing Entrezgene-IDs and including all
probe-sets mapped to these in our random set. In this manner, we make sure that random
scores actually correspond to random gene sets rather than random sets of probe-sets.

All data sets discussed in this article are based on Affymetrix microarrays. Thus, we can
use BioConductor’s meta-data packages to deduce associations of genes to GO terms and
KEGG pathways. Our method, however, is not restricted to this chip technology. For other
microarrays the needed annotation data can be extracted from corresponding databases.
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P−Values for Annotation Driven Splits
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Figure 1: Distribution of empirical p-values of annotation driven clusterings on the gene expression
study by Yeoh et al. on leukemia translocations.

3.3 Annotation driven clusterings

We observe that many annotation driven clusterings of patients obtain low empirical p-
values. As illustrated in Figure 1 for the leukemia study by Yeoh et al. [YRS+02], the dis-
tribution of empirical p-values has a peak close to zero. Apparently, certain gene sets with
common functional annotation provide a better basis for clustering samples than random
sets of genes. Moreover, the clusterings corresponding to low p-values are of particular
interest for the biological focus of their supporting genes.

Our second observation is that many clusterings with small p-values assign only few sam-
ples to one of the two clusters. In addition to a stringent p-value, we therefore also require
a minimum group size of at least five samples for interesting clusterings. For the datasets
analyzed, we thus obtain the number of interesting clusterings shown in the column ’Clus-
terings’ of Table 1.

From the same table, we see that our clustering procedure behaves differently on different
datasets. While it finds dozens of annotation-driven clusterings with false discovery rate
lower than 10% and size of the small subgroup larger than 5 on most of our evaluation
studies, it does not find any clustering in four datasets. In [YRS+02] very heterogeneous
expression profiles caused by chromosomal aberrations are included, thus leading to a
large number of significant annotation driven clusterings. We observe that our algorithm
typically finds fewer annotation driven clusterings in small datasets. This may be caused
by our second filtering criteria, which is more stringent on small datasets, given the abso-
lute requirement of 5 samples per group in this criterion.

The set of annotation driven clusterings for one project may be quite heterogeneous. Figure
2 illustrates such a case occurring in the study on embryonic brain tumours by Pomeroy
et al. [PTG+02]. Stratifying these tumors by morphological features is controversial.
Hence, they present an interesting field of research for diagnosis on a molecular level. The
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authors of this study acknowledge that the investigated tumours are very heterogeneous.
In accordance with this observation, our method reports clearly differing annotation driven
clusterings. Based on terms widely spread over the whole Gene Ontology, we determine
23 different gene sets justifying splits of samples into two groups on significantly better
grounds than randomly picked genes.
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MF : single−stranded DNA binding
BP : regulation of DNA metabolism
MF : translation initiation factor activity
BP : RNA splicing, via transesterification reac ...
BP : RNA splicing, via transesterification reac ...
BP : nuclear mRNA splicing, via spliceosome
BP : DNA recombination
MF : protein−tyrosine kinase activity
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CC : eukaryotic 48S initiation complex
CC : eukaryotic 43S preinitiation complex
CC : small ribosomal subunit
MF : transmembrane receptor activity
BP : transmission of nerve impulse
BP : neuromuscular physiological process
BP : synaptic transmission
BP : neurogenesis

23 annotation driven clusterings on 100 patient samples

Figure 2: Annotation driven clusterings for the study by Pomeroy et al. Colors code the cluster to
which a patient is attributed with respect to the corresponding gene set. In the gene set descriptions
to the right of the image, the GO source ontologies of the annotations are indicated by BP for
biological process CC for cellular component and MF for molecular function. Columns correspond
to samples and rows to gene sets. The image is clustered in both directions in order to bring similar
clusterings and similarly attributed samples close together. The depicted set of clusterings achieves
a false discovery rate of 8.8%.

3.4 Coherence between clusterings and clinical parameters

The cited datasets from clinical microarray studies come with clinical information. For
instance, in the lung-cancer study discussed in [BRS+01], histologically defined subtype
assignments are provided for the biopsies, while in [RMO+04], cytogenetically deter-
mined translocations are given for each patient. In order to assess the clinical relevance of
identified significant clusterings, we compare these with clinical parameters. We employ
the χ2-test to search for clusterings which are highly correlated with clinical parameters.

On several datasets, we observed clusterings of striking correlation with clinical param-
eters, thus supporting previous findings. For instance, on the acute myeloid leukemia
(AML) data set of Ross et al. [RMO+04], we found 11 patient splits for which the two
groups correspond to some phenotypical separation of the samples. Less than 10 profiles
are attributed inconsistently by these splits to the corresponding phenotypical separation
and χ2 contingency table tests yield p-values below 10−10. Seven of these clusterings
consistently separate the group of megakaryocytic leukemia profiles plus one other profile
described as having an unspecified AML subtype from the other AML subtypes. The 7
clusterings stem from gene sets annotated to blood coagulation (GO:0007596) and related
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Figure 3: Clusterings driven by the gene sets associated to the 7 nodes colored in yellow identify
acute megakaryocytic leukemia with just one conflicting class assignment in the dataset by Ross et
al. The figure shows the GO subgraph induced by these nodes.

GO-terms. See Figure 3 for a display of the relationships between the 7 GO-terms and
their ancestors within the Gene Ontology.

On the lung-cancer dataset by Bhattacharjee et al. [BRS+01], we identified 17 cluster-
ings showing p-values < 10−10 in the χ2-test and differing by not more than 10 cluster
assignments from the corresponding morphological classification of the tumors. 9 of these
clusterings separate the group of 20 pulmonary carcinoid tumors from all other tumors.
Five of the 9 clusterings also assign one or two other profiles to the cluster of carcinoid
tumors. The 9 clusterings are derived from gene sets annotated to central nervous system
development (GO:0007417), ion channel activity (GO:0005216) and related terms.

4 Discussion

An important goal of clinical microarray studies is the discovery of cohesive subgroups
of patients according to molecular criteria. Commonly, unsupervised clustering is em-
ployed to this aim, although the evaluation of clustering results is notoriously difficult.
One suggestion, to show whether a clustering is biologically meaningful, is to point out
that functional annotation of the genes supporting the clustering are coherent or plausible.

In this paper, we propose an algorithm to use functional annotations stored in the Gene
Ontology and the KEGG database of pathways directly to search for cohesive groups of
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samples. By selecting genes sharing common annotation in GO or KEGG and limiting
gene expression profiles to these, we define distinct distances between samples for each
term or pathway. Consequently, different clusterings are found for each GO term or KEGG
pathway. A notable difference to other approaches to select genes before clustering (e.g.,
[BDB+04]) is that the selection stems from independent data, which represent biological
expert knowledge and are not affected by experimental variations.

The use of curated databases like GO and KEGG to extract functional annotations leads
to the inclusion of some unreliable data. These databases, however, are always incomplete
and the computationally derived annotations may contain errors. We expect our approach
to be robust against such erroneous annotation data as long as the erroneous annotations do
not dominate. Robustness is enhanced by the fact that clusterings are always supported by
several genes with common annotation. Another characteristic of the Gene Ontology not
taken into account by our method is its hierarchy. Genes annotated to a given GO term are
also used to find clusterings for all parent terms. However, we do not very often observe
that parents of children with significant clustering also have significant clusterings. The
dependency between parents and children does not seem to be very strong.

We applied our method to a number of gene expression data sets (see Table 1) and found
several significant annotation driven clusterings, which strongly correlate to patient strat-
ifications based on clinical criteria and agree with previous reports on the biology be-
hind tumor development. For instance, on the acute myeloid leukemia (AML) data set of
[RMO+04], we found a large number of significant clusterings. AML is a heterogeneous
disease, comprising abnormal proliferation of the precursors of granulocytes, monocytes,
and thrombocytes [JHSV01]. Thus, it is not surprising to find many significant cluster-
ings dividing one type of AML from the rest. For example, 7 clusterings that separate
AML of the FAB-M7 type, i.e. acute megakaryocytic leukemia, from the other AML
types, are based on gene sets attributed to blood coagulation (GO:0007596), cell adhesion
(GO:0007155) and five related terms. Since megakaryocytes give rise to thrombocytes,
whose primary function is to mediate cell adhesion to damaged endothelium and blood
coagulation, they are bound to excel in the expression of genes involved in these pro-
cesses. Remarkably, one patient profile that was clinically described as having an unspeci-
fied AML subtype is consistently assigned to the cluster of FAB-M7 samples. This sample
seems to display molecular characteristics of the FAB-M7 subtype, although it would not
be assigned to this subtype based on clinical criteria.

In accordance with other studies, Bhattacharjee et al. [BRS+01] have described lung can-
cer to be a general concept comprising very different tumor subtypes. We as well observe
large biological differences between these subtypes in form of significant annotation driven
clusterings. For example, 9 clusterings clearly separate pulmonary carcinoid tumors from
all other types of lung cancer. These 9 clusterings are derived from gene sets annotated
to central nervous system development (GO:0007417), ion channel activity (GO:0005216)
and 7 related terms. Pulmonary carcinoid tumors have been previously reported to be of
neuroendocrine origin and to be closely related to brain tumors [ATB+99]. Our finding
of remarkable expression of nerve-cell associated genes by these tumors supports such
reports.

In summary, the method presented in this paper has the potential to uncover clinically
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relevant clusterings in gene expression studies. Moreover, such clusterings may be of
particular interest due to the biological focus of their supporting genes.
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Invited Talk

Imaging-Based Systems Biology

Gene Myers

Howard Hughes Medical Institute, Janelia Farms

Arguably the most significant contribution of the human genome project is
that we can now build a recombinant construct of every gene and every
promotor in C. elegans (worm), D. melanogaster (fly), M. musculus (mouse),
and H. sapiens (human). These include fluorescent proteins and other
markers that can be induced at controlled time points via a change in
temperature, light, or chemistry. Combined with tremendous advances in
light and electron microscopy in recent years, I believe we are now poised
to visualize the meso-scale of the cell, and development and small organs
(e.g. a fly’s brain) at the resolution of individual cells.

Toward this end, my group is working on a number of preliminary imaging
projects along these lines. These include (a) studies of development and
gene expression in worms and flies, (b) the biophysics of mitosis, (c) neural
patterning in flies and mice, and (d) the interpretation of signals from a new
sub-wavelength resolution light microscope. We describe preliminary
results on limited data sets and extrapolate on what we might be able to
infer from such data. We further speculate on the potential implications of
such work for the future of molecular biology.
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Abstract: The analysis of small circular sequences requires specialized tools. While
the differences between linear and circular sequences can be neglected in the case of
long molecules such as bacterial genomes since in practice all analysis is performed in
sequence windows, this is not true for viroids and related sequences which are usually
only a few hundred basepairs long. In this contribution we present basic algorithms
and corresponding software for circular RNAs. In particular, we discuss the problem
of pairwise and multiple cyclic sequence alignments with affine gap costs, and an ex-
tension of a recent approach to circular RNA folding to the computation of consensus
structures.
Keywords: RNA secondary structure, circular RNA, dynamic programming, viroids

1 Introduction

Circular DNA is a common phenomenon in nature. Indeed, bacterial genomes as well
as their plasmids are circular. Most organellar genomes of mitochondria and plastids are
circular as well. In practice, however, the distinction between linear and circular sequences
is irrelevant for bioinformatics at least in the case of long sequences, because the analysis
will always focus on individual genes or on short sequence windows. Shorter sequences,
on the other hand, with a length of, say, less than 10kb or 20kb, could be investigated
as a whole. While mitochondrial genomes (with a length between 15 and 17kb for most
metazoan animals and much longer for most other Eukaryote clades) have to be treated at
the gene level due to rapid genomic rearrangements [BB98], this is not the case for most
virus families. Proper virus genomes can be as short as 2kb, see Tab. 1. They form a
heterogeneous group consisting of sequences from various viral families, two of which are
retro-transcribing (Hepatitis B Virus and Caulimo-Virus), several have double-stranded
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Table 1: Natural Short Circular Nucleic Acids Groups

Name Type Size(kb) Seq.∗ Remarks
rCarSV ssRNA 0.2-0.3 13 viroid-like
Viroids ssRNA 0.3-0.4 659
Satellite RNAs ssRNA 0.35 11 9 distinct groups
Cherry SCV ssRNA 0.45 1 viroid-like
Deltavirus ssRNA 1.7 51 viroid-like
Circoviridae ssDNA virus 2 299
Hepadnaviridae dsDNA RT-virus 3 893 Hepatitis B
Parvoviridae ssDNA virus 4-6 84
Microviridae ssDNA virus 4-6 92
Polyomaviridae dsDNA virus 5 447
Geminiviridae ssDNA virus 5 301 1 or 2 chromosomes
Nanovirus ssDNA virus 6-9 2 4-6 chromosomes
Papillomaviridae dsDNA virus 7-8 169
Inoviridae ssDNA virus 8 42
Caulimoviridae dsDNA RT-virus 8 57
Corticoviridae dsDNA virus 9 2
Plasmaviridae dsDNA virus 12 2
Fuselloviridae dsDNA virus 15 9
Mitochondria dsDNA virus ≥13 ∼1000 rapid rearrangements
Plasmids ≤ 20kb dsDNA 50

NCBI Query: Name[orgn] and ‘‘complete genome’’, 2006-03-12

circular DNA genomes, and a few have short, single-stranded DNA genomes.

The overwhelming majority of single-stranded nucleic acid is RNA, and most RNA mole-
cules are linear. The Subviral RNA DB [PRPP03, RP06], nevertheless lists more than
1000 circular RNA genomes of viroids and related objects. Viroids are important plant
pathogens that induce symptoms similar to those accompanying virus infections. They
are composed of a small, nonprotein-coding, single-stranded, circular RNA, with au-
tonomous replication that proceeds through an RNA-based rolling-circle mechanism, see
[FHMdA+05] for a recent review. Several different classes of satellite RNAs are also cir-
cular [SR99]. In addition, there are three distinct classes of viroid-like sequences: cherry
small circular viroid-like RNA [DSDRR97], carnation small viroid-like RNA (CarSV
RNA), which is unique in that is has a DNA form and behaves similar to a retrovirus
[HDB04], and Hepatitis delta virus [Tay06]. A phylogenetic analysis of viroid and viroid-
like satellite RNAs can be found in [EDdlP+01].

Recently, several additional (mutually unrelated) groups of circular RNAs have been dis-
covered. In particular, alternative splicing may lead to circular RNAs from intronic se-
quences. This appears to be a general property of nuclear group I introns [NFB+03]
and was also observed during tRNA splicing in H. volcanii [SSGG03]. Circularized C/D
box snoRNAs were recently reported in Pyrococcus furiosus [SMJ+04]. Circular nu-
cleic acids, furthermore, have been investigated in the context of in vitro selection experi-
ments [KZG+02].
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Single-stranded nucleic acids, in particular, have to be treated with care when windowing
techniques are used. For instance, secondary structure formation is well known to be an in-
herently global phenomenon. As demonstrated in [HS06], neglecting circularity can have
quite dramatic effects. Substantial errors might furthermore result from the inconsistent
treatment of “end-gaps” when circular sequences are aligned as if they were linear, even if
the cut-point is chosen between homologous positions.

The wide variety of short circular nucleic acids listed above calls for the development
of specific computational tools to deal with these exceptional sequences in a consistent
way. In particular, for the case of single-stranded nucleic acids one will be interested in
determining conserved RNA secondary structures, which have been demonstrated to exist
in many viral RNA genomes [HSS04], in viroids [SHF+84,RWR+99], which were among
the first RNAs for which secondary structures have been studied systematically, and also
in some ssDNA viruses including parvoviridae, circoviridae, and geminiviridae [VCF05].

2 Cyclic Alignments

An alignment A of two strings x and y of length n and m, resp., is a sequence of pairs
of the form (xi, yj), (xi,−), and (−, yj) that preserves the order of sequence positions in
both x and y. A maximal sequence of (xi,−) pairs is called a deletion, while a maximal
sequence of (−, yj) is called an insertion. We assume that the (similarity) score S(A) of
the alignment A is the sum of scores for individual substitutions, insertions, and deletions.

In the case of cyclic sequences, insertions and deletions may wrap around the ends, of
course. Thus the cyclic score SC(A) is in general larger than the score S(A) of the linear
(representation of the) alignment A. The cyclic shift operator σ that rotates a string or
an alignment by one position: σ(x) = (x2, . . . , xn−1, xn, x1). The cyclic score of the
alignment is thus

SC(A) = max
k

S(σk(A)) (1)

under the above additivity assumption on the scoring model.

The cyclic string associated with an ordinary string x conveniently represented as the
equivalence class [x] = {x, σ(x), σ2(x), . . . , σn−1(x)}. The cyclic alignment problem
thus consists of finding the optimal linear alignment of σp(x) and σq(y) for the optimal
choices of p and q [BB93,GT93,Mae90,MVC02]. This problem can be solved in polyno-
mial time in full generality: One simply has to compute the optimal alignment A(p,q) of
σp(x) and σq(y), which can done inO(nm max(n+m)) time andO(nm) space [Dew01],
for all nm combinations of p and q. This quintic algorithm is implemented in the circal
approach to aligning mitochondrial genome arrangements [FSS06], which uses a complex
gap cost function while having to deal with only short “sequences”. This approach be-
comes impractical, however, for sequences with several hundred or thousand characters.

In the case of linear gap cost functions (g(k) = kδ), [Mae90] introduced a O(n2 ln n)
algorithm that is based on the fact that optimal alignment paths cannot cross in this case.
The most widely used alignment programs, including clustalW [THG94], uses a scor-

95



Figure 1: Alignments of x with σq(y) in which the longer sequence x ends in a gap need not be
considered. The “tail” of σky after the last matched position can always be rotated to the beginning
of the alignment without decreasing the score. Of the three possible cases for the beginning of the
alignment we show only the two non-trivial ones. If the alignment begins with a (mis)match we
have the same situation as in the second case. � indicates changes that do not influence the score of
the alignment, < indicates a possible increase in the score, and a brace means that the alignment is
scored as circular alignment rather than as a linear one.

ing scheme with affine gap costs. In this model a sequence of k contiguous insertions
(deletions) incurs a cost g(k) = δo + (k − 1)δe independent of the inserted or deleted
characters. In the case of affine gap function, optimal alignment paths may cross, so that a
direct generalization of Maes’s idea does not seem to be feasible.

The alignment problem for linear strings with affine gap costs is solved by Gotoh’s algo-
rithm [Got82]: Let Si,j be the score of an optimal alignment of the prefixes x[1 . . . i] and
y[1 . . . j]; similarly, Eij and Fij are the optimal alignments on the prefixed subject to the
constraint that they end with a deletion or an insertion, respectively. We have the following
recursions

Ei,j = max{Ei−1,j − δe, Si−1,j − δo}
Fi,j = max{Fi,j−1 − δe, Si,j−1 − δo}
Si,j = max{Ei,j , Fi,j , Si−1,j−1 + σ(xi, yj)}

(2)

with initial conditions S0,0 = 0, E0,0 = F0,0 = −∞. Combined with the understanding
that terms with negative indices are set to −∞, the above recursions are properly initial-
ized.

This automatically yields a quartic algorithm for the cyclic case by simply considering
all cyclic shifts of x and y. In the case of linear gap costs one easily sees that it is suf-
ficient to use all rotations of the shorter string, which reduces the CPU requirements to
O(nm min(n, m)), i.e. a cubic algorithm. This simplification does not work for more
general gap costs, however, since gaps may “wrap around” the ends of the sequence.

In the case of affine gap functions we can also obtain a cubic algorithm using the fact
that we have to distinguish only three cases: (1) The alignment of x with σq(y) ends in
a match (xn, (σq(y))m), (2) it ends in a deletion (xn,−) or (3) it ends in an insertion
(−, (σq(y))m). In the first case, the score of the cyclic alignment is the same as in the
linear alignment. In case (2), we simply start the recursions with the initialization S0,0 =
F0,0 = −∞, E0,0 = 0, and again all terms involving negative indices considered to be
−∞. Consequently, we obtain the optimal score in En,m. Case (3) works analogously:
we initialize S0,0 = E0,0 = −∞, F0,0 = 0 (while again, all terms involving negative

96



-2
-1.8

-1.6
-1.4

-1.2
-1

-0.8
-0.6

-0.4
-0.2

-3
-2.5

-2
-1.5

-1
-0.5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.6
0.5
0.4
0.3
0.2
0.1

log(p_mut)
log(p_del)

fraction of
suboptimal alignments

Figure 2: Fraction of non-optimal alignments computed using the best local heuristic as a function
of the fraction of substitutions (0-50%) and indels (0-30%) for sequence of length N = 100. The
average score of the heuristic alignments is above 97% of the optimal score in the entire range.

indices are considered to be −∞) and obtain the optimal solution from Fn,m. Since we
rotate the sequence y we do not need to consider case (3) where (σq(y)y) is unpaired
since this situation can always be achieved by rotating the remaining tail after the last
match in (σq(y)y) to the beginning of the string, see Fig. 1. This yields a simpleO(nm×
min(n, m)) algorithm for the cyclic alignment problem with affine gap costs.

The close relationship between cyclic and linear alignment suggests a number of plausible
heuristics. For instance, one may search for the best local alignment of x and y and use
a central match from this local alignment to “anchor” the alignment of cyclic sequences.
Fig. 2 summarizes the performance of this heuristic approach: as long as there is only a
moderate fraction of insertions and deletions, it yields the correct solution in most cases,
and only slightly sub-optimal alignments in the remaining cases.

The O(n3) exact algorithm as well as the O(n2) heuristic algorithms are implemented in
the cyclope package1.

3 Multiple Alignments and Phylogenetics

Progressive multiple alignments can be constructed by generalizing the pairwise algo-
rithms described above to profiles in the same way as in clustalW [THG94]. To this
end, we use the sum-of-pairs score to measure the similarity of two profiles and employ
iterative clustering to construct the guide tree. After each step, similarity scores to the
newly joined profile are computed explicitly rather than estimated by an averaging proce-
dure such as WPGMA.

1Available from www.bioinf.uni-leipzig.de/Software/cyclope/.
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Figure 3: Neighbor-Joining tree obtained from an alignment of sequences from the Subviral
RNA DB. Starting with 987 viroid sequences from 25 known classes of viroids, we applied
cyclope to compute one alignment for the sequences of each of the 25 classes. These 25 align-
ments were used to derive 70 representative sequences, an alignment of which was taken as input to
obtained the neighbor joining tree shown here. The circular multiple alignment was computed using
cyclope, followed by a realignment step using clustalW. Major edges in the tree are shown
along with their bootstrap values, as computed by the SplitsTree package.

An issue common to all progressive alignment methods, independent of whether linear or
cyclic sequences are considered, is the assignment of appropriate weights to the individual
sequences. Without a weighting scheme, groups of highly similar sequences tend to be
overemphasized and dominate the alignment, while individual highly divergent sequences
are neglected. Avoiding the costly computation of all distances in a neighbor joining
tree, cyclope supports a simple, yet effective weighting scheme that works as follows:
Initially, each individual sequence is assigned weight 1. After two alignments A and B
with K and L many sequences, respectively, have been aligned to one alignment C with
M = K + L sequences, the weights are readjusted. Let v1, . . . , vK and w1, . . . , wL

denote the original weights of the sequences in A and B. We compute the alignment
distance (i.e., the relative number of of matching nucleotides in the alignment of A and B)
D := d(A, B) between A and B, which then allows us to update the weights by setting
vi := (vi + D)/(2K) as well as wi := (wi + D)/(2L). This essentially corresponds
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to setting branches in the guide tree to the midpoint at each vertex, while the weights
are adjusted such that small and highly divergent classes receive higher scores than large
groups of similar sequences. During any alignment step, those weights are normalized
such that the largest weight will be 1.

In order to utilize the much more sophisticated features of standard linear alignment pack-
ages such as clustalW, one can use cyclope to obtain a rough preliminary multiple
alignment and realign those with linear alignment packages. Note that the heuristic for
shifting implemented by cyclope is based on conserved blocks, so that the likeliness of
gaps at starting positions – which linear alignment programs are not capable of handling –
is kept minimal.

As a demonstration of Cyclope we constructed a multiple alignment of representative
sequences from the Subviral RNA DB. Neighbor-joining was then used to infer the
phylogenetic tree in Fig. 3. In general, the results are in good agreement with an earlier
study [EDdlP+01]. A few details, however, deviate. For example, our data places Avocado
Sunbloch Viroid ASB-Viroid within the Pelamoviroid group.

4 RNA Folding Algorithms for Circular Sequences

Now that we can compute alignments of circular RNAs, it makes sense to extendRNAalifold
to folding of circular sequences. Approaches such as RNAalifold generalize single-
sequence RNA folding to alignments. Michael Zuker’s approach to computing both the
minimum energy structure and a certain class of suboptimal folds for an RNA sequence
is directly applicable to circular RNAs. In fact, mfold treats linear RNAs as exceptional
variants of the circular ones [Zuk89, Zuk03]. In contrast, the Vienna RNA Package2

[HFS+94, Hof03] optimizes the memory requirements for linear RNAs; this approach
saves approximately a factor of 2 in memory as well as some CPU time. Circular RNAs
can be treated as a kind of “post-processing” step of the forward recursion and as a cor-
responding “pre-processing” step for the the backtracking part of the folding algorithms
without requiring significant additional resources or a re-design of the recursions that are
optimized for the linear RNA case, see [HS06] for details.

Using the same algorithmic approach, it is straightforward to generalize RNAalifold
[HFS02] to from linear to circular sequences. This option, which allows the computa-
tion of the consensus structure of an alignment of circular single-stranded RNA or DNA
molecules, is implemented in the current version of Vienna RNA Package.

As an example we show the consensus structure for eggplant latent viroid in Fig. 4. The
structure is very stable and moreover supported by several consistent and compensatory
mutations. Unusual structural stability is sometimes used as a marker for functional non-
coding RNAs. A well-tested measure for structural stability is the z-score comparing
the consensus folding energy of an alignment with randomized alignments obtained by
shuffling columns, which is computed by the alifoldz program [WH04]. Interestingly,

2Available at http://www.tbi.univie.ac.at/RNA/

99



G
A

G
A

U
A

G
A

G
G

A
C G A C

C U
C U C C C C

A U A
G G G U G G U G U G U R C

C A C
C C C U G A U G A G W C C R A A A G G A C G A A A U G G

G G U
U U C K C C

A U G G G
U C R G R A C U U U

A
AA

UUCG G A G G A
UUC GW

C
C U

U
W

AAACG
UUCCUCC

AAGAGUYCC
UUCCC

C
R

A
W
C
C
C
U
U
A
C

U
UW

a
G
U
A

A
GWA
aG

G
AW

C
GGMGAA

UGUA
CCGUUUCGCCCUUUCGGRCUCAUCAGGG

AAA
GCRCACACUUUCC

GAC
GGUGRG

UUC
GUCG

A
C

A
C

C
U
C
UCCC

C
C

U
C

C
CA

G
G

UA
C

U
A

U
C

C
C

UUU
U
C
A A G

G
A

W
GU

G
U
U

C C
C

U
A G

G
A

G
G

G
U G

R
G

U
G

U
A
C

C
U

C
U
UUU-

G
GA
U

U
K

C
U

C
C

G
GU

C
U U

C
CAR

G
A

Figure 4: Consensus secondary structure for eggplant latent viroid as predicted from a cyclope
alignment by RNAalifold -circ. The alignment comprises four sequence selected to have
have less than 95% sequence identity. Base pairs shown in ochre are supported by a consistent or
compensatory mutation with circles marking the sites of variation.

viroids exhibit the strongest signals for structural conservation of all RNAs investigated so
far. While most “classical” ncRNA can be detected by alifoldz at a z-score cut-off of
−4, the ELVd alignment exhibits a z-sore of −13.8.

5 Concluding Remarks

So far, circular RNA and DNA sequences have been considered as a rather exotic side-line
that do not warrant specialized tools. With increasing sequence information becoming
available, the (ab)use of methods that are designed for linear sequences becomes increas-
ingly tedious as it requires manual corrections of both alignments and subsequent analysis.
In this contribution we presented a dedicated alignment tool for (short) circular sequences,
which is particularly geared towards viroids and small virus RNAs. While the time com-
plexity is higher than classical alignment algorithms, it is efficient enough in practice for
use with viroid and other subviral sequences. Based on the pairwise dynamic program-
ming alignments, cyclope also features a clustal-like progressive alignment tool.
These alignments can be used without further processing for phylogeny reconstruction or
RNA secondary structure analysis.

In the case of viroid phylogeny, previous studies were essentially confirmed based on ex-
tended data sets. An RNA consensus folding program for circular RNAs, which combines
the RNAalifold approach with a recent algorithm for folding circular RNAs, shows that
viroids have exceptionally strong signals for structural stability when compared to other
functional ncRNAs.
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Invited Talk

Combining Sequence Information with T-Coffee

Cedric Notredame
CNRS, Marseille, France

Well integrated biological data lends itself to the identification of
biologically meaningful patterns. Multiple Sequence Alignments constitute
one of the most powerful ways of carrying out such a task. In this context,
the integration takes the form of simultaneously aligning related sequences
in order to reveal evolutionary conserved patterns. Multiple Sequence
Alignments have so many applications that they have become household
items in biology and few data processing pipelines exist that do not require
the assembly of an alignment. Yet, the wealth of available alternative
methods means that the user is not only faced with the problem of selecting
and aligning sequences, but also with the necessity of choosing one method
or integrating the results delivered by many. In the course of this seminar I
will discuss how various methods can be integrated into one. I will also go
further and show that a multiple sequence alignments can be used to
integrate much more than sequence information, as long as this information
is properly mapped onto the sequences. This concept, named template-based
multiple sequence alignment will be illustrated with a simple example: the
combination of sequences and structures within multiple sequence
alignments. I will finally discuss how multiple sequence alignment methods
are currently validated and why I believe we need to challenge these
procedures in order to take further our understanding of biological
sequences. Most of the tools discussed in this talk are available from
www.tcoffee.org.
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PALMA: Perfect Alignments using
Large Margin Algorithms

G. Rätsch,a B. Hepp,b U. Schulze,a and C.S. Onga,c

a Friedrich Miescher Lab., Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany,
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Abstract: Despite many years of research on how to properly align sequences in the
presence of sequencing errors, alternative splicing and micro-exons, the correct align-
ment of mRNA sequences to genomic DNA is still a challenging task. We present a
novel approach based on large margin learning that combines kernel based splice site
predictions with common sequence alignment techniques. By solving a convex opti-
mization problem, our algorithm – called PALMA – tunes the parameters of the model
such that the true alignment scores higher than all other alignments. In an experimen-
tal study on the alignments of mRNAs containing artificially generated micro-exons,
we show that our algorithm drastically outperforms all other methods: It perfectly
aligns all 4358 sequences on an hold-out set, while the best other method misaligns
at least 90 of them. Moreover, our algorithm is very robust against noise in the query
sequence: when deleting, inserting, or mutating up to 50% of the query sequence,
it still aligns 95% of all sequences correctly, while other methods achieve less than
36% accuracy. For datasets, additional results and a stand-alone alignment tool see
http://www.fml.mpg.de/raetsch/projects/palma.

1 Introduction
Many genomes have been sequenced recently. This is only a first step to understand
what the genome actually encodes. Fortunately, most of them also come with rather large
amounts of expressed sequence tags (ESTs; sequenced parts of mRNA), which help to ac-
curately recognize genes and to identify the exon/intron boundaries as well as alternative
splice forms (see [ZG06] and references therein).
Many methods for aligning ESTs to genomic DNA have been proposed, including ap-
proaches based on blast [AGM+90], spliced alignments [GMP96], sim4 [FHZ+98], Gene-
Seqer [UZB00], Spidey [WS01], blat [Ken02], an approach to find additional microexons
[VHS03] and most recently exalin [ZG06]. The identification of exon/intron boundaries is
important for finding the correct alignment. Therefore most approaches try to find an align-
ment that prefers splice site consensus signals in the identified introns (usually GT/AG,
considerably less often GC/AG and in some organisms also AT/AC) that help to accu-
rately identify these boundaries. This is done by employing either dynamic programming
or sophisticated heuristics.
[ZG06] used an information theoretic approach to combine the two types of information
available during alignment: the sequence similarity and splice site predictions. Given this
model, dynamic programming is used to compute the maximum-log likelihood alignment.
Our algorithm, called PALMA, is based on similar ideas as exalin. The main difference is
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the modeling of splice sites using support vector machines, the modeling of intron lengths
and the large margin based combination of the different types of information. Our ap-
proach does not include any probabilistic models and hence does not return probabilities
for a particular alignment. It is, however, able to very accurately and robustly align se-
quences as will be seen in the experimental section where we consider the problem of
aligning modified EST sequences to genomic DNA (here of the model organism C. ele-
gans) using the most difficult setup: We consider artificially generated short internal exons
(2-50nt) combined with small to large amounts of noise in the query sequence. We show
that our method perfectly aligns all sequences while other methods fail as soon as the
exons become too short or the amount of noise too large.

2 Method
The idea of our algorithm is to compute an alignment by dynamic programming that uses
a scoring function. We tune the parameters of the scoring functions such that the true
alignment does not only achieve a large score (to be “most likely”), but also that all other
alignments score considerably lower than the true alignment (to obtain a “large margin
between the alignments”). Similar ideas are used in other large margin algorithms such
as Support Vector Machines [Vap95] and Boosting [FS97]. Also, a similar approach for
aligning protein sequences (without intron related gaps) has been proposed independently
by [JGE05]. The resulting scoring function can then be maximized using dynamic pro-
gramming in order to obtain the optimal alignment. Our method consists of three indepen-
dent parts: the splice site prediction model, the dynamic programming algorithm and the
optimization of the scoring function which we describe in the following sections.
Training the splice site model and also the large margin combination requires separate
sequence data sets. For the splice site model, we used genes that were EST confirmed
but without full length cDNA support (set 1). We consider a random subset of 40% of
all cDNA confirmed genes without evidence for alternative splicing for training the large
margin combination (set 2). The remaining 20% and 40% were used for hyper-parameter
tuning (set 3) and final evaluation (set 4) respectively.

2.1 Splice Site Predictions
From the set of EST sequences (set 1) we extracted sequences of confirmed donor (intron
start) and acceptor (intron end) splice sites (see Appendix A for details). For acceptor
splice sites we used a window of 80bp upstream to 60bp downstream of the site (on the
DNA). For donor sites we used 60bp upstream and 80bp downstream. Also from these
training sequences we extracted non-splice sites that are within an exon or intron of the
sequence and have AG (acceptor) or GT/GC (donor) consensus. In order to recognize ac-
ceptor and donor splice sites, we trained two Support Vector Machine classifiers [Vap95]
with soft-margin using the so-called “weighted degree” kernel [SRJM02, RSS06]. The
kernel mainly takes positional information (relative to the splice site) about the appear-
ance of certain motifs into account. It computes the scalar product between two sequences
x and x�:

k(x,x�) =
d�

j=1

vj

N−j�
i=1

I(x[i,i+j] = x�
[i,i+j]), (1)
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where N = 140 is the length of the sequence and x[a,b] denotes the substring of x
from position a to (excluding) b. The function I is the indicator function, I(true) = 1,
I(false) = 0 and the weights vj := d − j + 1. We used a normalization of the kernel
k̃(s1, s2) = k(s1,s2)√

k(s1,s1)k(s2,s2)
and d = 22 for the recognition of splice sites. Addition-

ally, the regularization parameter of the Support Vector Machine was set to be C = 2 and
C = 3 for acceptor and donor sites, respectively. All parameters (including the window
size, regularization parameters etc) have been tuned on data set 2 (cf. [RSS05]).
Given a DNA sequence as target of an alignment we can now use the two SVMs to compute
scores for each position with corresponding consensus1 for being a splice acceptor or
donor site, respectively. Since we consider C. elegans where U12 splicing is extremely
rare or not present, we exclude the AT/AC splice sites from our splice site model.

2.2 Needleman-Wunsch Alignments with Intron Model
The classical deterministic and exact alignment algorithm is the Needleman-Wunsch al-
gorithm and is based on dynamic programming. Its running time is O(m · n), where m is
the length of the EST sequence SE , and n is the length of the DNA sequence SD. It builds
up a m · n matrix and hence has the same space complexity.
The main idea of the algorithm is to compute an overall alignment by determining the
maximum over all alignments of all prefixes SE(1 : i) := (SE(1), . . . , SE(i)) and SD(1 :
j) := (SD(1), . . . , SD(j)) of the two sequences SE and SD, respectively. An alignment
is given by a sequence of pairs (ar, br), r = 1, . . . , R, where R ≤ m + n depends on
the alignment and ar, br ∈ Σ := {A, C, G, T, N, −}. A pair consists either of the
two corresponding letters of the two sequences or a single letter in one sequence paired
with a gap in the other sequence. The alignment is scored using a substitution matrix M ,
which we interpret as a function M : Σ × Σ → R. Then the score for the alignment
A = {(ar, br)}r is simply

�
r M(ar, br).

We define V (i, j) to be the score of the best possible alignment of prefixes SE(1 : i) and
SD(1 : j). Then V (n, m) can be computed using the following recurrence formula (for
all i = 1, . . . , m and j = 1, . . . , n):

V (i, j) = max

⎧⎨⎩V (i− 1, j − 1) + M(SE(i), SD(j))
V (i− 1, j) + M(SE(i),�−�)
V (i, j − 1) + M(�−�, SD(j))

(2)

The recurrence is initialized with V (0, 0) := 0, V (i, 0) := 0 and V (0, j) := 0 for all
i = 1 . . . m and j = 1 . . . n. There are three possibilities:

• SE(i) and SD(j) are aligned to each other (possibly a mismatch).

• SE(i) is aligned to a gap in the DNA sequence.

• SD(j) is aligned to a gap in the EST sequence.

In the original setting there are only these three possibilities and one can straightforwardly
fill the matrix from left to right and top to bottom to finally compute V (n, m). The optimal
alignment can then be obtained by backtracking [DEKM98].

1AG for acceptor sites and GT or GC for donor sites.
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The Needleman-Wunsch algorithm only aligns the single bases of two sequences and does
not distinguish between exons and introns – it essentially treats everything as exons. We
therefore propose to extend the Needleman-Wunsch algorithm to better model introns: We
allow an additional “intron transition” that is separately scored based on its length and the
scores of splice sites at its ends. We denote by fI(i1, i2) the intron scoring function for an
intron starting at i1 and ending at i2. The intron scoring function fI(i1, i2) is computed
based on the intron length i2 − i1, the donor SVM output gdon(i1) for position i1 and
the acceptor SVM output gacc(i2) for position i2. During learning we determine three
functions f�, facc and fdon : R → R to combine these three values:

fI(i1, i2) = f�(i2 − i1) + fdon(gdon(i1)) + facc(gacc(i2)). (3)
When there is no donor consensus at position i1, then we define fdon(gdon(i1)) := −∞
(similarly for facc(gacc(i2))). Given the intron scoring function fI we can now restate the
recurrence formula (for all i = 1, . . . , m and j = 1, . . . , n):

V (i, j) = max

⎧⎪⎪⎨⎪⎪⎩
V (i− 1, j − 1) + M(SE(i), SD(j))

V (i− 1, j) + M(SE(i),�−�)
V (i, j − 1) + M(�−�, SD(j))

max1≤k≤j−1(V (i, k) + fI(k, j))

(4)

where we consider the additional possibility of an intron starting at position k and ending
at j. Please note that the above recurrence formula is considerably more computation-
ally expensive than the previous one: every step involves finding the optimal intron start
(O(n)). However, one only needs to consider those positions where the intron start and end
exhibit the corresponding splice consensus sites and also the splice site predictors output
large enough scores. Additional strategies for speeding up such algorithms are discussed
in [ZG06].
For completeness we need to extend our notation for alignments with introns. We use
again alignment pairsA = {(ar, br)}r, but extend the alphabet for ar to Σ∪{+} (“intron
sequence missing”) and for br to Σ ∪ {∗} (“intron sequence”). Note that br should only
contain strings of length greater than one if ar = �+�. Then the score f(A) for an align-
ment A with intron is computed as before, i.e.

�
r M(ar, br), except when ar = +: In

this case the intron score function is used to score the corresponding intron.

2.3 Large Margin Combination
In the previous section we assumed that the functions facc, fdon and f� as well as the
substitution matrix M were given. We now describe a algorithm to determine these pa-
rameters based on the training set of sequences and their true alignments.
Two methods based on a similar idea have been independently proposed in [JGE05] and
[KK06]. They both present a simpler algorithm for learning the substitution matrix re-
quired for aligning protein sequences. [KK06] presents an algorithm–based on the method
from [GBN94]–that can learn hundreds of parameters simultaneously and is able to model
affine gap-costs. [JGE05] propose an algorithm related to support vector machines. How-
ever, both approaches do not model introns or splice sites explicitly and are therefore
expected to fail in identifying microexons.
Note that our proposed algorithm is two-layered: First one learns the splice site model
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and then how to combine the different pieces of information. In principle these two steps
can be combined to one step. Then the piecewise linear functions can be replaced with
linear combinations of kernel elements as similarly done in [ATH03]. However, this makes
training much slower and is not expected to improve the results in our case.
Since the three functions are one-dimensional, it suffices to use a simple piecewise linear
model: Let s be the number of supporting points xi (satisfying xi < xi+1) and yi their
values, then the piecewise linear function is defined by

f(x) =

⎧⎨⎩
y1 x ≤ x1

yi(xi+1−x)+yi+1(x−xi)
xi+1−xi

xi ≤ x ≤ xi+1

ys x ≥ xs

. (5)

After having appropriately chosen supporting points on the x-axis we only need to opti-
mize the corresponding y-values. For facc and fdon we use 30 supporting points uniformly
sampled between−5 and +5 (our SVM outputs are typically not larger). For f� we use 30
log-uniformly sampled supporting points between 30nt and 1000nt.2 Given the three func-
tions and the substitution matrix, the alignment scoring function f(A) is fully specified.
Moreover, for a given alignment A, it can be verified that f(A) is linear in all parameters
that we denote by θ, i.e. in the values of the substitution matrix and the y-values of the
three piecewise linear functions, θ := (θacc, θdon, θ�, θM ).

2.3.1 Optimization
For training we are given a set of N true alignmentsA+

i , i = 1, . . . , N . The goal is to find
the parameters θ of the alignment scoring function f such that the difference of scores
fθ(A+

i ) − fθ(A−) is large for all wrong alignments A− �= A+
i . This can be done by

solving the following convex optimization problem:

min
ξ≥0,θ

1
N

N�
i=1

ξi s.t. fθ(A+
i )− fθ(A−) ≥ 1− ξi ∀i and A− �= A+

i . (6)

Here we introduced so-called slack-variables ξi to implement a soft-margin [CV95]. The
above optimization problem has exponentially many constraints and cannot be easily solved
directly. Instead one adopts a column generation technique (cf. [HK93] and references
therein) and for every true alignment one maintains a set of wrong alignmentsA−

i,j �= A+
i ,

for all j. Initially this set is empty but it can easily be filled by running the dynamic
programming algorithm discussed in the previous section to generate wrong alignments
(based on some arbitrary initial parameters). Then one solves the following optimization
problem

min
ξ≥0,θ

1
N

N�
i=1

ξi s.t. fθ(A+
i )− fθ(A−

i,j) ≥ 1− ξi ∀i, j (7)

Given a set of wrong alignments one can now determine the intermediate optimal parame-
ters θ, and further use the dynamic programming algorithm to find other wrong alignments
to be included in the set of wrong alignments. The procedure is iterated and provably con-
verges to the solution of (6) in a finite number of steps (in our application often not more
than 10 iterations).

2For other organisms one might want to choose a larger range.
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2.3.2 Regularization
In empirical inference it is common to regularize the parameters in order not to overfit. We
implement this by adding a regularization term CP(θ) to (6), where C is the regularization
constant and P a regularization function. Recall that the parameter vector consists of four
parts, and we define the regularization term as follows:

P(θ) =
n−1�
i=1

(θacc,i+1−θacc,i)2+
n−1�
i=1

(θdon,i+1−θdon,i)2+
n−1�
i=1

(θ�,i+1−θ�,i)2+
�
a,b

M(a, b)2.

It implements the idea that the piecewise-linear functions should be smooth and the values
in the substitution matrix small.

3 Results and Discussion
Most alignment algorithms work very well for aligning mRNA sequences against genomic
DNA when query and target perfectly match and the matching blocks are long enough. In
our experimental study we are interested in the most difficult cases, where most algorithms
start to fail. If an algorithm works in such case we expect that it will also return correct
alignments for easier cases.
We evaluate our proposed method, PALMA, and other methods such as (exalin, sim4 &
blat). We consider the alignment of mRNA sequence fragments containing three exons
where we artificially shortened the middle exon (final length of 2-50nt, see Appendix B
for details). Artificially generating the data has the benefit of knowing exactly what
the correct alignment has to be. Additionally, we add considerable amounts of noise
(p = 0%, 1%, 10%, 20%, 50% of random mutations, deletions and insertions) to the query
sequence. We then measure how often the methods find the middle exons and the whole
alignment correctly. The evaluation is done on a separate test set which was not used
during training of our method (set 4, cf. Appendix B).
The model selection for the splice site predictors have been performed on separate val-
idation sets (set 2). Model selection of regularization parameter C in our method (cf.
Section 2.3.2) was done by simple validation on a separate validation set (set 3). While
the method was trained on noise-free data, we applied it to the noisy versions during val-
idation since otherwise the validation error rate was always zero, almost independently of
the choice of C. We determined C = 0.01 as optimal regularization constant. To analyze
the importance of the splice site predictions relative to the sequence similarity for correct
alignments, we additionally trained a second model that does not use splice site informa-
tion (but only intron lengths and the substitution matrix). We call it PALMA without splice
sites (SS).
Figure 1 shows the alignment error rate for different methods on the 4358 test sequences.
Here we counted an alignment as a mistake if the exon boundaries deviated by at least one
nucleotide. 3 We also looked at how often the middle exon has been correctly identified.

3For exalin we noticed that the alignment is very often off by 2nt. We assume that this is a fixable bug in the
exalin implementation. For fairness we therefore allowed deviations of ±2nt for exalin only. The problem often
occurs for high noise levels. For instance at p = 20% we find 20% error rate for the strict evaluation, while only
6% error when using the relaxed criterion.
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We observed that in most cases an alignment error is induced by the inaccurate identifica-
tion of the middle exon.4 From our results in Figure 1 we observe that there are drastic
differences between the methods. Almost all methods perform reasonably well when the
query perfectly matches the target – with the exception of sim4 which has problems align-
ing at least 18% of the sequences. For blat and sim4 the error rates drastically increase
when adding noise to the query sequence. Only exalin and PALMA (with and without
splice site information) have low error rates for noise levels of at most 20%. When delet-
ing, inserting or mutating up to 50% of the query sequence, PALMA (with splice sites)
still aligns 95% of all sequences correctly, while the other methods achieve less than 36%
accuracy. For high noise levels the splice site information helps to reduce the error rate
considerably. But also in the low noise cases the splice site predictions help to accurately
identify very short exons that can be found ambiguously in the intronic regions (0.4% of
the test sequences).

Figure 1: Comparison of differ-
ent methods for aligning mRNAs
to genomic DNA: We considered
the particularly difficult task of
aligning exon triples with short
middle exons (2-50nt) in the
presence of noise. Although
an alignment is already declared
as true if the intron boundaries
are correct, only PALMA (with
splice sites) achieves 0% error
rate for aligning queries with up
to 10% noise.

Figures 2-4 show the optimized parameters determined by our algorithm. For the piece-
wise linear functions in 2 we obtain smooth sigmoid-shaped functions (“differences be-
tween large score values do not matter”). Comparing with Figure 4 we observe that the
difference between a weak and a strong splice site is worth about 3-4 matches, since the
substitution matrix contains values between −0.4 and +0.4. Figure 3 illustrates the piece-
wise linear function for scoring intron lengths. We observe that the maximum coincides
with the most frequent intron length of around 50nt. The optimized substitution matrix is
essentially diagonal, which is not surprising as there was no preference for substitutions in
our data.

4 Conclusion
We have proposed a new alignment algorithm that computes the optimal alignment of
mRNA sequences to genomic DNA while exploiting existing very accurate kernel-based
splice site predictions. In a simulation study on aligning sequences with very short exons
and considerable amounts of noise we have shown that our method achieves significantly

4Since it gives a very similar figure, we omitted it from the manuscript.
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Figure 2: PALMA’s optimized functions facc and fdon scoring acceptor and donor SVM outputs.

lower error rates than other methods. This indicates that the proposed method would be
more effective than current approaches for discovering microexons, i.e. exons between 2-
25nt in length. This is especially true in the presence of sequencing errors or mutations
which may render current approaches and heuristics inaccurate. In addition, by combining
it with other methods such as blast we can reduce the computational cost in order to apply
our method for alignments of ESTs to whole-genomes.
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A Processing of Sequence Databases
We collected all known C. elegans ESTs from Wormbase [HCC+04] (release WS120;
236,893 sequences) and dbEST [BT93] (as of February 22, 2004; 231,096 sequences).
Using blat [Ken02] we aligned them against the genomic DNA (release WS120). The
alignment was used to confirm exons and introns. We refined the alignment by correcting
typical sequencing errors, for instance by removing minor insertions and deletions. If an
intron did not exhibit the consensus GT/AG or GC/AG at the 5’ and 3’ ends, then we tried
to achieve this by shifting the boundaries up to 2 base pairs (bp). If this still did not lead
to the consensus, we split the sequence into two parts and considered each subsequence
separately. In a next step we merged consistent alignments, if they shared at least one
complete exon or intron. This lead to a set of 124,442 unique EST-based sequences.
We repeated the above procedure with all known cDNAs from Wormbase (release WS120;
4,855 sequences). These sequences only contain the coding part of the mRNA. We used
their ends as annotation for start and stop codons.
We clustered the sequences in order to obtain independent training, validation and test
sets. In the beginning each of the above EST and cDNA sequences were in a separate
cluster. We iteratively joined clusters, if any two sequences from distinct clusters match to
the same genomic location (this includes many forms of alternative splicing). We obtained
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Figure 3: Shown is the optimized intron length
scoring function f�: The maximum is located at
around 50nt, which is also the most frequent in-
tron length in C. elegans.

Figure 4: Shown is the optimized substitution ma-
trix: matches score high and gaps low. Mismatch
scores are all close to zero and do not contribute
much.

21,086 clusters, while 4072 clusters contained at least one cDNA.
For set 1 we chose all clusters not containing a cDNA (17215), for set 2 we chose 40% of
the clusters containing at least one cDNA (1536). For set 3 we used 20% of clusters with
cDNA (775). The remaining 40% of clusters with at least one cDNA (1,560) were used as
set 4. Sets 2-4 were filtered to remove confirmed alternative splice forms. This left 1,177
cDNA sequences for testing in set 4 with an average of 4.8 exons per gene and 2,313bp
from the 5’ to the 3’ end.

B Artificial Microexon Dataset
Based on sets 2-4 described in the last section we created sets of consecutive exon triples
from the confirmed transcripts in these sets. This lead to 4604, 2257 and 4358 triples.
In a first processing step we shortened the middle exons to a random length between 2nt
and 50nt (uniformly distributed). To do so, we removed the correct number of nucleotides
from the center of the middle exon – from the query as well as the DNA. This leaves the
splice sites mostly functional. In a second step we added varying amounts of noise. For a
given noise level p and a query sequence of length L, we first replaced p · L/3 positions
with a random letter (Σ = {A, C, G, T, N}). Then we deleted the same number of non-
overlapping positions in the sequence and added the same number of random nucleotides
at random positions. We used p = 0%, 1%, 10%, 20%, 50%.
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Pushing details into interaction networks

Rob Russell
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Many experiments suggest that pairs of proteins are involved in physical
interactions, though few give any insights as to the details of how they are
mediated. We have worked on inferrring details at various levels from
interaction networks. I will discuss our attempts to: infer details of
interaction strength from purification data (and use this to deduce
complexes, ref. 1), model interactions within complexes using three-
dimensional structures (2), and identify new modes of domain/peptide
recognition involved in mediating interactions (3).
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Abstract: Large amounts of protein and domain interaction data are being
produced by experimental high-throughput techniques and computational
approaches. To gain insight into the value of the provided data, we used our new
similarity measure based on the Gene Ontology to evaluate the molecular functions
and biological processes of interacting proteins or domains. The applied measure
particularly addresses the frequent annotation of proteins or domains with multiple
Gene Ontology terms. Using our similarity measure, we compare predicted
domain-domain and human protein-protein interactions with experimentally
derived interactions. The results show that our similarity measure is of significant
benefit in quality assessment and confidence ranking of domain and protein
networks. We also derive useful confidence score thresholds for dividing domain
interaction predictions into subsets of low and high confidence.

1 Introduction

Experimental high-throughput techniques have produced enormous amounts of protein-
protein interaction (PPI) data for different species [1]. These data can now be mined for
new information on the functions and interrelationships of proteins [2]. In particular,
different bioinformatics methods, mainly based on the homology of protein sequences,
have supported the large-scale prediction of human protein networks [3-8]. Additionally,
manually curated literature data and four large-scale yeast-2-hybrid maps have recently
become available for the human interactome [9-13]. However, in contrast to predicted
data, the experimental coverage of the human interactome is still low. To predict protein
interaction networks, domain-domain interactions (DDIs) are often taken into account [8,
14-16]. For this purpose, different sets of DDIs have been predicted using bioinformatics
methods [16-18] and supplement experimental DDI sets derived from 3D structure data
[19, 20].

1Presenting author at GCB
2Corresponding author
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The Gene Ontology (GO) consortium provides a standardized vocabulary that is
commonly used to annotate genes and their products with biological processes and
molecular functions [21]. This annotation particularly allows for assessing the functional
similarity of genes or their products. Resnik [22] and Lin [23] introduced semantic
similarity measures for the comparison of single terms in “is-a” ontologies. Both
measures are based on the information content of ontology terms. Based on these
semantic similarity measures, several methods for the functional comparison of gene
products have been introduced. Lu et al. [24] and Lin et al. [25] evaluated the usefulness
of different features, ranging from expression profiles to functional relationships
between genes, for the prediction of PPIs. They concluded that functional similarity
based on GO annotation leads to high accuracy in predicting PPIs. Wu et al. also
introduced new similarity measures between GO terms and proteins [26]. Their measures
were used to create a predicted network of PPIs and to evaluate genome-scale datasets.
Very recently, Guo et al. assessed the applicability of GO-based similarity measures to
human regulatory pathways [27]. They showed that the functional similarity between
two proteins decreases as their distance within the same regulatory pathway increases.

One problem with existing GO-based similarity measures is that they do not account for
the frequent annotations of gene products or protein domains with multiple GO terms or
that they simply average over all annotations. To address this problem, we use our novel
GO similarity measure that explicitly deals with this functional multiplicity [28]. The
measure is applied to ranking the interaction networks and the corresponding prediction
methods based on the overall functional similarity of the interacting proteins or domains.
The comparison of experimentally derived sets with predicted sets of DDIs using our
GO similarity measure results in confidence score thresholds separating low- and high-
confidence subsets of predicted DDIs. In addition, we utilize our measure to analyze
experimental and predicted networks of human protein interactions.3

2 Materials and Methods

2.1 Experimental and predicted datasets

Two experimental sets of DDIs were taken from iPfam [19] and the database of 3D
interacting domains (3did) [20] and compared to three sets of predicted interactions
between Pfam-A domains [29]. The first predicted set is InterDom, a database of
putatively interacting domains compiled from different data sources [17]. The other two
sets are taken from two recent publications by Liu, Liu, and Zhao (LLZ) [16] and by
Riley et al. (domain pair exclusion analysis, DPEA). Their bioinformatics approaches
are methodological extensions of an expectation-maximization algorithm first applied to
the prediction of domain interactions by Deng et al. in 2002 [15]. The DDI prediction
methods assign a confidence score (CS) to each DDI and rank the predicted DDIs

3Abbreviations: ATX, ataxin; BP, biological process; CS, confidence score; DDI, domain-domain interaction;
GO, Gene Ontology; HTT, huntingtin; MF, molecular function; PPI, protein-protein interaction; Y2H, yeast
two-hybrid.
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according to the score. InterDom uses different data sources to infer DDIs and calculates
the CS based on the support from each source [17]. LLZ and DPEA compute maximum-
likelihood estimates to derive a CS, and we use the probability and the log-odds score
E as CS from LLZ and DPEA, respectively [16, 18]. The pfam2go file from the GO web
site (http://www.geneontology.org/external2go/pfam2go) contains a mapping of Pfam-A
domains to GO terms. This file (downloaded on July 7, 2005) was used to annotate the
Pfam-A domains with GO terms. Table 1 summarizes the number of DDIs in each
dataset.

Table 1: Total number of Pfam-A
domains in the different datasets of DDIs
(column 'Total'). The columns for
biological process ('BP') and molecular
function ('MF') contain the fraction of
interactions whose interacting domains
are both annotated with GO.

Dataset Total BP (%) MF (%)
iPfam 3,046 52.07 56.30
3did 3,034 49.51 54.19
InterDom 29,957 27.07 37.64
LLZ 9,160 17.75 19.64
DPEA 3,005 22.40 24.19

We also analyzed six predicted sets of human PPIs named Bioverse [6], HiMAP [8],
HomoMINT [7], Sanger [4], OPHID [5], and POINT [3]. Additionally, subsets of core
interactions with high confidence were derived from Bioverse, HiMAP and Sanger. The
Bioverse-core set contains very reliable interactions based on a sequence similarity
threshold of at least 80% between human and the homolog of the source species [30],
HiMAP-core interactions have a large likelihood ratio [8], and Sanger-core comprises
only predictions with the greatest experimental support [4]. Additionally, we assembled
five consensus sets named ConSetn that consist of protein interactions contained in at
least n predicted interactomes, with n ranging from 2 to 6.

As experimental datasets, we downloaded the manually curated human protein reference
database (HPRD) [13], release of 13 September 2005, and two yeast two-hybrid (Y2H)
maps that we named ‘Vidal’ [10] and ‘Wanker’ [11] after the senior authors. We also
merged the two Y2H maps into the combined dataset Vidal & Wanker. Both Y2H maps
and the HPRD data became available after the six predicted human networks were
published. Further experimental PPIs were extracted from the published networks of
direct and indirect interaction partners for ataxins (ATX) [12] and huntingtin (HTT) [9].
These networks include Y2H and literature-derived datasets, which we call ATX-/HTT-
Y2H and ATX-/HTT-literature, respectively. The ATX-interologs set comprises
interactions from the ATX network that have been derived by mapping interologs [12],
and thus we regard it as another predicted set of PPIs. Generally, the diverse gene and
protein accession numbers of the PPI sets were mapped to NCBI Entrez gene identifiers
[31]. The mapping of Entrez gene identifiers to GO annotations was obtained from
NCBI (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz). Furthermore, we compiled
another set of PPIs using the interacting proteins that underlie iPfam DDIs with both
domains belonging to different proteins. This set was annotated from two different
sources, that is, with the GO annotation from the UniProt release 5.4 (IUP-set) and with
GO terms from the pfam2go file (IPG-set).
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2.2 Functional similarity measure

The GO controlled vocabulary consists of three different ontologies: biological process
(BP), molecular function (MF), and cellular component. The ontologies are organized as
directed acyclic graphs with terms being represented as nodes and parent-child
relationships as edges. There are two types of edges: “is-a” links, indicating that the
child is an instance of its parent, and “part-of”, used if the child is a component of its
parent. Each node may have several parents and children.

Our semantic similarity measure is an extension of previous measures by Resnik and Lin
[22, 23]. As suggested by Resnik, we defined the probability of a term as its relative
frequency of occurrence in a set of annotated gene products. The root node of each
ontology has the probability 1. We used the GO annotation of all proteins in the UniProt
release 5.4 for the calculation of term frequencies. The semantic similarity of two terms
is defined as follows:
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where t1 and t2 are GO terms, p(t1) and p(t2) their probabilities, and CA is the set of their
common ancestors in the graph. This similarity measure takes into account how similar
and detailed both terms t1 and t2 are, and it ranges from 0 (for terms that only have the
root node in common) to 1.

This semantic similarity measure for single GO terms can be expanded to a functional
similarity measure of gene products. Let g1 and g2 be two gene products annotated with
the GO term sets GO1 and GO2 of size N and M, respectively. The similarity matrix S
containing all pair-wise similarity values is computed as
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The row vectors and column vectors of matrix S represent the two possible directions of
comparing g1 and g2. While the similarity computed from g1 to g2 (rowScore) is defined
as the average over the row maxima, the similarity from g2 to g1 (columnScore) is
defined as the average over the column maxima:
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The rowScore and the columnScore are always between 0 and 1. Furthermore, we define
the functional similarity of two gene products with respect to one ontology as

)g,e(gcolumnScor),g,rowScore(g=)g,GOscore(g 212121 max .

We refer to this GOscore as MFscore for MF and BPscore for BP. One important aspect
of this score is that it allows for comparing gene products with multiple functions. This
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property is especially important when comparing GO annotations of domains because
they occur in diverse proteins involved in different processes. For more details on our
GO similarity measure, see Schlicker et al. [28].

3 Results and Discussion

3.1 Comparing confidence scores for domain interactions

The predictions of DDIs by InterDom, LLZ and DPEA are compiled from diverse data
sources using different bioinformatics methods. To gain insight into the similarity and
the quality of the predictions, we compared the predicted sets of DDIs with each other
and to the experimentally derived sets iPfam and 3did. The overlap of the datasets
InterDom, LLZ and DPEA regarding Pfam-A domains as well as regarding their
predicted interactions are given in Table 2. LLZ and DPEA share many Pfam-A domains
and predicted DDIs with InterDom, while the overlap between LLZ and DPEA is much
smaller.

Table 2: Overlap of the InterDom, LLZ and DPEA datasets with regard to Pfam-A domains and
predicted domain interactions. Each number refers to the percentage of domains or interactions in

the row datasets that are also contained in the respective column dataset. Percentages in
parentheses give the number of DDIs shared between two datasets in ratio to the overall number of

DDIs with interacting domains contained in both datasets.

Pfam-A domains (%) Domain-domain interactions (%)
Dataset InterDom LLZ DPEA InterDom LLZ DPEA
InterDom 100.0 44.4 25.1 100.0 (100.0) 11.4 (19.3) 4.8 (23.2)
LLZ 79.3 100.0 26.9 58.8 (72.7) 100.0 (100.0) 10.6 (60.8)
DPEA 86.5 51.9 100.0 78.9 (89.3) 32.9 (62.2) 100.0 (100.0)

Figure 1 and Table S1 give an overview of the overlap of the experimental interactions
contained in iPfam and 3did and the three sets of predicted interactions InterDom, LLZ
and DPEA. 11.8% of the DDIs predicted by DPEA are confirmed by iPfam or 3did,
whereas only 7.4% and 3.0% of the DDIs predicted by InterDom and LLZ, respectively,
are in common with iPfam or 3did. Thus, DPEA appears to be the best of the three
prediction methods.

Fig. 1: Overlap of the datasets containing predicted or experimental Pfam-A domain interactions.
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Other criteria for prediction quality are the CS and the rank assigned to domain
interactions observed experimentally. The distributions of CSs show that many
interactions in iPfam and 3did receive a high CS by LLZ and a low CS by InterDom and
DPEA (Figure S1). However, DDIs contained in iPfam and 3did are assigned top ranks
by all three prediction methods (Figure S2). Surprisingly, further analyses indicate only
weak correlations between CSs and ranks of different prediction methods (Figures S3-
S5). However, DDIs from iPfam that are predicted by two different computational
methods are assigned a good rank by at least one method. This suggests that all methods
are able to detect correct domain interactions. Further details on the results are described
in the online supplement.

3.2 Background distribution and randomized domain networks

In order to obtain a background distribution, all available Pfam-A domains (release 17.0)
were mapped to BP and MF terms of GO, and the distributions of the MFscore and
BPscore for all pairs of Pfam-A domains were calculated (Figure S6). Apparently, most
domain pairs have very lowMFscore, which indicates that the molecular functions of the
domains are generally quite distinct. The mean is about 0.1 and the median is 0. The
BPscore is distributed similarly, but there are fewer domain pairs with BPscore below
0.1. This finding is also reflected by the higher mean and median of 0.23 and 0.17,
respectively. These results indicate that the BPscore should generally be higher than the
MFscore.

Subsequently, we randomized all DDI networks in our analysis to determine a possible
bias towards specific functions or processes. This was accomplished by keeping one of
the two nodes of the interaction edges fixed while randomly shuffling the other nodes of
the edges. The obtained distributions are all very similar and closely resemble the
background distribution for BP and MF (Figures S7 and S8). The distributions of the
randomized experimental iPfam and 3did networks for BP contain more DDIs with
BPscore below 0.1, but fewer with BPscore between 0.1 and 0.2 in contrast to the
predicted datasets. The means and medians of all randomized experimental and predicted
networks are similar, suggesting that neither of the networks is biased towards specific
processes or functions.

3.3 Computing and analyzing GOscore distributions

The BPscore distributions for iPfam and 3did (Figure 2) show that most DDIs have a
very high similarity score exceeding 0.8, which means that the corresponding interacting
domains are part of the same process or closely related processes. This is supported by
high means of about 0.9 and medians of almost 1. The distributions for the predicted sets
InterDom or DPEA look alike. Interestingly, only one third of the predicted interactions
have a BPscore above 0.8. Furthermore, both datasets include a large fraction of
interactions with BPscore below 0.4, indicating almost no functional similarity between
the domains. The mean is 0.51 for both datasets and the medians 0.39 and 0.41 for
InterDom and DPEA, respectively. The LLZ predictions contain substantially fewer
interactions with high BPscore, and many more interactions with very low BPscore. This
is reflected by the relatively low mean of 0.35 and the median of 0.2. In summary,
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DPEA performs slightly better than InterDom, and both show a better performance than
LLZ.

Fig. 2: BPscore distribution for the different datasets of experimental DDIs (iPfam and 3did) and
predicted DDIs (InterDom, LLZ and DPEA). The BPscore bins correspond to the following

intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3: [0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[;
B7: [0.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[; B10: [0.9, 1.0].

Figure S9 contains the MFscore distributions of all datasets. Interestingly, the
distributions for iPfam and 3did are quite distinct from the other distributions. Almost
80% of the domain interactions in iPfam or 3did have an MFscore above 0.8, which
indicates related molecular functions annotated to the interacting domains. In addition,
both sets contain very few interactions with very low MFscore. The means of over 0.8
and the medians of almost 1 corroborate this interpretation. The predictions made by
InterDom and DPEA show similar distributions, but rather low means and medians.
Similar to the findings for the BPscore distribution, predictions made by LLZ show a
lower MFscore. As in the case of the BPscore distribution, InterDom and DPEA have
similar performance and both perform significantly better than LLZ.

3.4 Deriving confidence score thresholds

The methods InterDom, LLZ and DPEA all provide CSs for the prediction of DDIs.
However, in order to utilize sets of predicted interactions in practice, it is important to
derive reasonable thresholds for low- and high-confidence sets of DDIs. It is to be
expected that the functional similarity of domains predicted to interact increases as the
confidence in these predictions rises. To verify this expectation, we used different CS
thresholds to calculate the GOscore means and medians of all interactions with a CS
larger than the respective threshold. We also calculated the overlap of these interactions
with iPfam and 3did.

Figure 3 shows the change in BPscore mean and median, and the change in dataset size
with varying CS threshold for the DPEA dataset. When raising the DPEA CS threshold
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from 3 to 6, the BPscore median increases from slightly over 0.4 to almost 1, and the
mean raises from 0.51 to approximately 0.7. The MFscore median and the overlap with
iPfam and 3did show a steep increase in this CS range (Figures S10 and S11).
Consequently, we suggest assigning predictions with a CS between 3 and 6, and above 6
to DPEA subsets of low- and high-confidence DDIs, respectively.

Fig. 3: Change in BPscore mean and median, and in dataset size with varying confidence score
threshold for DPEA. Size refers to the number of DDIs with confidence score above the threshold.

The analysis of the InterDom set reveals that the BPscore median reaches 0.98 with a CS
threshold of 30 (Figure S12). The BPscore mean is 0.68 at this point and increases with
higher thresholds. The same score development holds true for MFscore, but it is shifted
slightly towards higher thresholds (Figure S13). At a threshold of 60, the dataset consists
of 1,888 interactions and the median increase diminishes. The overlap with iPfam and
3did increases with rising InterDom score and is about 27% for a threshold of 60 (Figure
S14). Altogether, these results suggest a threshold of 60 for InterDom predictions of high
confidence.

The analysis of LLZ predictions reveals that the BPscore mean and median, and the
overlap with iPfam and 3did are very low over the whole CS range (Figures S15-S17).
These results do not allow deriving any reasonable CS threshold for some LLZ subset of
DDIs.

3.5 Comparing human protein interaction networks

We calculated the BPscore for all datasets of PPIs. Table 3 summarizes the results
ranked by the average BPscore. The BPscore means range from 0.82 for Bioverse-core
to 0.37 for Wanker PPI set. While the average BPscores for the predicted datasets vary
significantly, the experimental Y2H datasets have rather low mean BPscore. In contrast,
predicted datasets such as both HiMAP datasets and Bioverse-core as well as the
manually curated sets HPRD and HTT-literature receive high mean scores. The different
results for the HTT and ATX networks also indicate that literature-curated, carefully
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validated, PPIs reach a higher BPscore than PPIs derived by high-throughput
experiments.

Table 3: Ranking of predicted and experimental protein networks based on BPscore. The column
'Scored' contains the fraction of PPIs with an assigned BPscore. The two rightmost columns give

the percentages of PPIs contained in HPRD or the combined Y2H set Vidal & Wanker.

Dataset Interactions Scored (%) mean
BPscore HPRD (%) Vidal &

Wanker (%)
Bioverse-core 3,266 83.2 0.823 28.9 1.1
IPG-set 1,931 45.9 0.815 15.9 0.7
HiMAP-core 8,832 84.6 0.813 9.1 0.6
HiMAP 38,378 89.4 0.799 3.8 0.2
IUP-set 1,931 22.8 0.764 15.9 0.7
ConSet6 484 77.5 0.709 21.3 1.2
HPRD 20,121 86.1 0.662 100.0 0.6
HTT-literature 428 97.4 0.643 90.2 0.2
ConSet5 1,565 73.2 0.642 16.1 1.3
Bioverse 233,941 81.4 0.572 1.5 0.1
ConSet3 10,844 66.5 0.561 9.2 0.8
ConSet4 4,747 67.1 0.559 10.2 0.9
ConSet2 38,258 69.3 0.556 6.0 0.4
Sanger-core 11,131 65.3 0.551 4.5 0.6
ATX-literature 4,796 67.5 0.537 46.9 39.1
HomoMINT 10,870 57.5 0.510 5.6 0.7
OPHID 28,255 62.6 0.499 4.4 0.2
Vidal 2,754 40.2 0.471 3.5 100.0
HTT-Y2H 164 62.2 0.456 3.8 5.1
POINT 98,528 56.9 0.451 2.6 0.2
Sanger 67,518 62.3 0.427 1.3 0.1
ATX-interologs 1,527 62.0 0.418 6.8 1.2
ATX-Y2H 770 39.9 0.394 1.4 1.0
Wanker 2,033 54.8 0.370 1.2 100.0

The BPscore means of the iPfam-derived IUP- and IPG-sets with the same PPIs, but
distinct GO annotations, are 0.76 and 0.81, respectively. These values are lower than the
mean of the corresponding DDIs in iPfam, which may be partly due to the fact that we
excluded self-interactions in the two PPI sets. The score distributions for the IUP- and
IPG-sets show that using the GO annotation of proteins or Pfam domains leads to
different results (Figure S18). In contrast to the small increase in mean BPscore, the
distributions of the IUP- and IPG-sets differ significantly. In comparison, the manually
curated HPRD set has a mean similarity measure of 0.66. The distribution of this set
shows that over 50% of the interactions have a BPscore above 0.7 (Figure S20).
However, 10% of the interactions have a score between 0.1 and 0.2. The consensus PPI
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sets ConSet1-4 show a similar mean BPscore, and ConSet5 and ConSet6 score higher,
but they constitute small interaction sets only.

Especially on the lower ranks, the BPscore ranking of the datasets is similar to rankings
resulting from the computed HPRD or Y2H verification rate (Table 3), that is, the
percentage of interactions contained in HPRD or the combined Y2H dataset Vidal &
Wanker. The predicted Bioverse-core set and the consensus sets have the best
verification rates with respect to HPRD. The fact that the Vidal and Wanker sets have
published validation rates of 78% and 62-66%, respectively, agrees well with the slightly
higher mean BPscore 0.47 of Vidal in contrast to the mean 0.36 of Wanker [10, 11]. The
lower mean BPscore of Wanker may also be due to the use of many protein fragments in
contrast to full-length proteins employed by Vidal [10, 11].

4 Conclusions

Following the idea that interacting domains or proteins should have highly similar
biological process (BP) annotation and, to a smaller degree, similar molecular function
(MF) annotation, we evaluated the functional similarity of three predicted and two
experimental domain-domain interaction (DDI) networks as well as several predicted
and experimental human protein-protein interaction (PPI) networks. Furthermore, we
analyzed to which extent predicted DDIs or PPIs overlap with experimentally derived
interactions.

We demonstrated that the application of functional similarity measures is not restricted
to the validation of PPIs [27], but also useful for DDIs. Our analysis of DDIs revealed
that the BP similarity of interacting domains is generally higher than the corresponding
MF similarity. This observed difference between BP and MF similarity agrees well with
findings by Guo et al. for PPIs using other GO similarity measures [27]. The difference
may be partly due to the fact that interacting domains or proteins may perform different
functions though they act in similar processes. Another reason may be that GO terms are
more densely connected in the top levels of the BP ontology than of the MF ontology.

The iPfam-derived IUP- and IPG-sets encompass the same PPIs, but the IUP-set is
annotated with the GO terms of the proteins in UniProt and the IPG-set with the GO
terms of the Pfam domains. The comparison of these two sets revealed that the BPscore
results depend on the annotation used. This indicates that the choice of the annotation
source contributes to the differing findings for DDIs and PPIs. Moreover, a higher
number of proteins annotated with diverse BPs may decrease the mean BPscore of
protein networks in contrast to sets of DDIs annotated with more generic GO terms.

In agreement with our results on human protein interaction networks, Reguly et al.
observed for yeast interaction datasets that the GO annotation of literature-curated PPI
sets is more coherent than the GO annotation of high-throughput PPI sets [32]. Since
manually curated datasets of PPIs taken from scientific literature have a higher mean
BPscore than most predicted and high-throughput sets, the latter sets may contain a
significant number of false interactions or a large amount of proteins involved in novel
processes. This can lead to a considerable decrease in BPScore. Furthermore, proteins
described in the literature may be annotated particularly well with GO. Therefore, a
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more thorough analysis of the PPI results using alternative measures will be required to
explain differences between predicted and experimental datasets.

Our functional similarity analysis in conjunction with an evaluation of the overlap
between experimentally derived and predicted DDIs allowed the definition of confidence
score thresholds for DDI prediction results. These thresholds are useful for improving
PPI predictions based on DDIs as well as for assessing the confidence of PPIs derived by
high-throughput experiments. In the future, incorporating other similarity criteria besides
GO may improve the confidence assessment of predicted interactions further. As the
coverage and quality of GO annotations improves, the importance of approaches that use
functional similarity for the validation and prediction of PPIs and DDIs will increase.
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Invited Talk

Encoding evolvability: The hierarchical language of polyketide synthase
protein interactions

Mukund Thattai

National Centre for Biological Sciences, Bangalore, India

Polyketide synthases use an assembly-line mechanism to catalyse the
synthesis of antibiotics and other natural products. Each member of a multi-
protein complex adds a particular building block to a growing polyketide
chain, so the order of the proteins determines the order of the product. In the
laboratory, this property has been used to drive combinatorial chemistry; in
the bacterial world, polyketide synthase pathways have been repeatedly
shuffled in an arms race to generate novel poisons. I will show that the
language of polyketide synthase protein interactions has been designed to
facilitate this kind of innovation. I will present the interaction code in detail,
and emphasize the elements it shares with high-level computer languages,
including modularity, hierarchical organization, and abstraction.
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Invited Talk

Genomic Variation and Incipient Speciation in Arabidopsis thaliana

Detlef Weigel

Max Planck Institute for Developmental Biology, Germany
and Salk Institute for Biological Studies, La Jolla, USA.

Comprehensive polymorphism data are a prerequisite for the systematic identification of
sequence variants affecting phenotypes. In the first part of my talk, I will discuss our efforts
to provide a whole genome resource for the study of population level evolutionary
processes in an experimentally tractable, multicellular organism, Arabidopsis thaliana. To
this end, we have collaborated with Kelly Frazer and colleagues at Perlegen Sciences, and
hybridized genomic DNA of 20 strains to custom microarrays that tile all possible single
nucleotide polymorphisms (SNPs) along the entire genome with close to one billion (109)
different oligonucleotides. The analysis of SNP distribution and haplotype maps is being
carried out in collaboration with the groups of Bernhard Schölkopf (MPI for Biological
Cybernetics), Gunnar Rätsch (Friedrich Miescher Laboratory), Daniel Huson (University
Tübingen), Joe Ecker (Salk Institute), and Magnus Nordborg (USC). Using novel analysis
methods, we identified up to 1.1 million non-redundant SNPs at various levels of precision.
In addition, we predicted nearly 5% of the genome to be highly polymorphic or deleted in
at least one strain. These data allow for the first time a systematic description of the types
of genes that harbor major changes (e.g., stop codons or whole gene deletions) in wild
populations. Although major changes are frequent, allele frequency patterns indicate that
they are often associated with a fitness cost. Disease resistance (R) genes are found to be
the most polymorphic class of genes.

Through our work on natural variation, we have also become involved in more general
questions of species-wide evolution. It has long been suggested that post-zygotic hybrid
incompatibility between closely related species arises as a by-product of deleterious
interactions between genes that have diverged since the most recent common ancestor. In
animals, several such gene pairs have been identified in interspecies crosses, but it is not
yet known whether they play only a role in maintaining species boundaries, or whether they
are also important in establishing barriers to gene flow. To understand the mechanisms
underlying nascent incompatibilities, we performed an extensive survey for hybrid
incompatibilities within A. thaliana. We identified numerous independent F1
incompatibilities with a range of phenotypically related abnormalities. Each case is
attributable to two to three epistatic loci. A common autoimmune mechanism--activation of
pathogen responses in the absence of pathogens--underlies the majority of incompatibilities.
Moreover, in a collaboration with Jeff Dangl (UNC), we have found that higher disease
resistance correlates with incompatibility phenotypes, suggesting a fitness trade-off.
Detailed characterization of one hybrid interaction identified a disease resistance (R) gene
variant as causal for the incompatibility phenotype. R genes constitute the fastest evolving
gene family in plants, suggesting that such incompatibilities arise frequently as a by-
product of natural selection.
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A novel, comprehensive method to detect and predict
protein–protein interactions applied to the study of

vesicular trafficking

Christof Winter, Thorsten Baust, Bernard Hoflack and Michael Schroeder
Biotechnological Centre, Dresden University of Technology, 01307 Dresden, Germany

Abstract: Motivation. Computational methods to predict protein–protein interactions
are of great need. They can help to formulate hypotheses, guide experimental re-
search and serve as additional measures to assess the quality of data obtained in
high-throughput interaction experiments. Here, we describe a fully automated three-
step procedure to predict and confirm protein–protein interactions. By maximising
the information from text mining of the biomedical literature, data from interaction
databases, and from available protein structures, we aim at generating a comprehen-
sive picture of known and novel potential interactions between a given set of proteins.
Results. A recent proteomics assay to identify the protein machinery involved in vesic-
ular trafficking between the biosynthetic and the endosomal compartments revealed 35
proteins that were found as part of membrane coats on liposomes. When applying our
method to this data set, we are able to reconstruct most of the interactions known to the
molecular biologist. In addition, we predict novel interactions, among these potential
linkers of the AP-1 and the Arp2/3 complex to membrane-bound proteins as well as
a potential GTPase–GTPase effector interaction. Conclusions. Our method allows for
a comprehensive network reconstruction that can assist the molecular biologist. Pre-
dicted interactions are backed up by structural or experimental evidence and can be
inferred at varying levels of confidence. Our method pinpoints existing key interac-
tions and can facilitate the generation of hypotheses.

Keywords: Protein interaction, text mining, protein structure, interaction predic-
tion, membrane traffic.

Introduction

Protein interactions. Protein–protein interactions are fundamental to almost all cellu-
lar processes. In addition, nearly every major process in a cell is believed to be carried
out by assemblies of ten or more protein molecules [1]. Identification of putative bind-
ing partners of a protein is therefore a desirable ambition. It can contribute to understand
how such complex molecular machines are organised and how their parts work together.
While much effort has been put in large-scale experiments to identify protein–protein in-
teractions in yeast, worm, fly, and human on a genome-wide extent [2–9], the false pos-
itive rates of such approaches are estimated to be as high as 50% [10, 11]. Moreover,
the intersection of large-scale interaction data sets with those derived from the literature
is surprisingly small [8]. By predicting and assessing protein interactions, computational
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approaches can help in separating false positive from true positive ones. Sequence-based
methods for the prediction of protein–protein interactions include gene context conserva-
tion [12], synthetic lethality [13], phylogenetic profiling [14, 15] or co-evolution of gene
expression [16]. Structural approaches have focused on the study of protein complexes of
known structure [17]. Various databases of binding sites and interfaces between proteins
and their domains exist [18–20]. The modelling of interactions using structural templates
of sufficient similarity was employed by Aloy and colleagues to successfully model the
yeast exosome and some 100 yeast complexes [21, 22].

Additionally, much knowledge on interactions is stored in abstracts that are publicly avail-
able in literature databases such as PubMed. While the expert normally is aware of the rel-
evant literature concerning his field, this knowledge remains hidden to the non-specialist
who just encounters a couple of genes, for example as a result of a microarray experi-
ment. Text mining can provide access to theoretically all protein interactions hidden in the
biomedical literature [23].

We will apply the above methods and others to reconstruct networks relevant for vesicu-
lar trafficking. While several recent studies made use of homologous interactions in other
species to assess and predict protein interactions [24–27], no study has so far used se-
quence similarity to literature interactions obtained from text mining to our knowledge.

Vesicle coats and adaptor proteins. Vesicles are small, membrane-enclosed containers
that mediate transport between cellular compartments. The formation of vesicles and the
selective incorporation of cargo molecules are both mediated by protein coats, which are
recruited onto the cytosolic side of the forming vesicle. In the case of clathrin-coated vesi-
cles, the cargo transmembrane proteins are linked via adaptor proteins (APs) with struc-
tural coats such as clathrin [28]. AP-1 mediates the transport of selected transmembrane
proteins that cycle between the trans-Golgi network, endosomes and the plasma mem-
brane. How APs interact with other molecular components of the complex coat machinery
remains largely unclear.

Materials and Methods

As resources, we combine protein–protein interactions derived from text mining of the
biomedical literature, available protein interaction databases, and structural domain inter-
actions. Aim of our method is to obtain all known interactions between a given set of
proteins, and to further predict new interactions that are likely to be present within this
set. The overall approach is a procedure of three steps. It is summarised in Figure 1 and
described in detail below.

Collection of literature-based interactions. In the first step, we start collecting known
interactions from the literature. We use NetPro, an expert curated and annotated database
containing∼100,000 protein–protein interactions [29]. These were extracted from PubMed
abstracts by a semi-automated method and then cross-checked by human experts. For every
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sequences
collected and

stored in database

a Interactions from text mining
• 15 million PubMed abstracts
• ~100,000 extracted protein-protein

interactions

Interactions from interaction databases
• HPRD, DIP, BIND, MINT, MIPS, IntAct
• Including large-scale experiments as

well as small hand-curated data sets
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c Structural template interactions
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Protein A

Protein B similar
or identicalBLAST,

Threading

Figure 1. A three-step approach to gather all knowledge about protein–protein interactions. a. First,
text mining is used to collect interactions from the literature. Sequences of the involved proteins
are stored in a database. In a similar manner, available interaction databases are integrated and their
protein sequences stored. b. Second, for a given protein pair A and B, a search for homologous
interactions is performed using orthologue information and BLAST. Thus, interactions between ho-
mologous proteins in other species or similar proteins can serve as templates to predict an interaction
between the original proteins A and B. c. Third, similarity to structural templates of interacting do-
mains is used to predict interactions. To this end, we employ both sequence similarity (BLAST) and
structural similarity (Threading) measures.

interaction, NetPro lists the two involved gene identifiers, species, the abstract sentences
documenting the interaction, an interaction verb and an interaction nature. The interaction
nature can be direct or indirect, where interactions verbs such as binds to classify an inter-
action as direct, verbs such as colocalises with as indirect. For every protein in NetPro, we
collect its sequence from the NCBI Protein Database (Figure 1a).

Collection of interactions from interaction databases. We complement our collected
literature-derived interactions with data from various interaction databases. Protein–protein
interaction sets are obtained from HPRD [30], DIP [31], BIND [32], MINT [33], MIPS
[34], and IntAct [35]. Again, sequences of the interacting proteins are collected and stored
(Figure 1a). We are aware of potential false positives introduced by high-throughput in-
teractions screens [10]. Since our approach aims at maximum sensitivity, we do not apply
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any filter, but rather record the experimental origin of an interaction finding as confidence
criterion.

Identification of interactions for a given data set. To identify known interaction in a
given data set, we simply query our databases of collected interactions. The result is a
protein–protein interaction network where an interaction either was described in the lit-
erature or stored in an interaction database. In a second step, we expand this network.
Orthologues, i.e. homologues in other species, of proteins in our given data set are identi-
fied using the NCBI HomoloGene Database (Release 46.1). Our collected interactions are
again checked for the orthologues. Following the idea of interologs described in [36], we
predict a putative interaction between two proteins if they have interacting homologues in
another species. We further extend this idea of homologous interactions by performing a
BLAST search with our data set against the collected interaction sequences. Thereby, we
are able to find a template protein pair A’ and B’ known to interact, where A’ and B’ are
similar to two proteins A and B from our data set (Figure 1b). If the similarity (e.g. mea-
sured in sequence identity) is sufficient, we infer a putative interaction between A and B.
In order to obtain a score reflecting the reliability of the prediction, we calculate the joint
percentage identity. For a protein pair (A, B), this score is defined as min(IA, IB) where
IA, IB are the sequence percentage identities between the protein pair and the template. In
this study, we require a joint percentage identity of at least 40%.

Structure-based interaction prediction. The third step of our approach is shown in
Figure 1c. To predict interactions on the basis of known structures, we use SCOPPI [18], a
database of domain–domain interactions and their interfaces derived from all multi-domain
proteins in the Protein Data Bank [37]. Domains are defined by SCOP, the Structural Clas-
sification of Proteins. Domain residues within a distance of 5 Å to another domain are
considered interacting, thus being in accord to other interface definitions [38]. As struc-
tural interaction templates for our predictions, we use a subset of SCOPPI obeying the
following filter criteria: 1) interacting domains are required to be on different polypeptide
chains, 2) interface size (defined as change in accessible surface area, ΔASA, calculated
with Naccess) ≥ 600 Å2 to filter out unspecific interfaces, 3) exclusion of homo-dimers to
avoid false positive predictions between highly similar proteins. Two proteins are predicted
to potentially interact if they contain domains that are known to interact structurally, ac-
cording to the SCOPPI subset described above. To assign these domains to a given protein
sequence, we employ both sequence similarity and structure prediction methods: First,
we perform a BLAST search against a database containing the defined SCOPPI subset.
By using a sequence identity cut-off at 40%, we ensure that the assigned domains have a
similar structure to our structural interaction templates. Second, all protein sequences are
threaded with GenTHREADER [39], considering hits with p-values < 0.001 only. This
procedure assigns probable SCOP domains being part of GenTHREADER’s fold library
to each protein sequence. As above, we assign a score of min(IA, IB) for the sequence
identities between the protein pair and the template, and max(pA, pB) where pA, pB are
the threading p-values, respectively.
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Figure 2. Theoretical model of the adaptor protein 1 (AP-1) related machinery. Several small GTP-
ases along with their GAP and GEF effectors are involved. Some of the depicted interactions are
known, while others are still presumptions [41].

Data set origin: Experimental identification of coat proteins. The data set of proteins
used in our study was previously obtained by a collaborating group [40]. Aim of this study
was to identify cytosolic proteins that are involved in the adaptor protein 1 (AP-1) coat
assembly. The result comprises 35 murine proteins that could be selectively recruited onto
liposomes that exhibit cytoplasmic domains of AP-1 cargo molecules. Among these, the
AP-1 complex, clathrin, several GTPases and their effectors as well as an actin nucleation
machinery was found. Table 1 shows the 35 proteins identified by mass spectrometry.
How these proteins spatially arrange on liposome membranes is still speculative. Here,
our method can help to suggest possible interactions and thus aid to formulate hypotheses
concerning the recruited molecular machinery.

Results and discussion

Construction of an interaction network for proteins from clathrin-coated vesicles.
As a use case for our method, we choose the data set described above. It contains 35
proteins shown in Table 1. Figure 2 shows the putative spatial arrangement of a subset
drawn by the collaborating expert biologist.

Figure 3 shows the resulting network after taking the steps described in detail in Materials
and Methods. Interactions that could be found from the literature or interaction databases
are shown in red. Homologous interactions in close species (human, rat) are also red.
Predicted interactions, inferred by orthology in remote species or by sequence similarity,
are depicted in yellow. In addition, indirect literature interactions are dashed, whereas
direct ones are solid lines. Blue lines indicate predictions based on structural templates.
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Figure 3. Constructed interaction network for the AP-1 complex. Interactions known by literature
or interaction database are depicted in red, predictions based on these are yellow, and blue lines
represent predictions based on 3D structural templates. Numbers indicate the sequence identity in
percent that the predicted interaction shares with the template. The higher this number, the more
reliable the prediction. For the sake of clarity, the cut-off is set at 50% here, except for the discussed
example of the AP-1–Clatrhin example.

In case of yellow and blue lines, numbers specify the joint sequence identity percentage
score of the prediction. The result allows for the generation of several new hypotheses
about the molecular machinery around AP-1. In the following, three predicted examples
will be discussed in detail.

Literature- and interaction databases approach. The ability to blast against a mul-
titude of literature interactions represents a quite powerful tool. First, it allows for the
detection of seamless grades of similarity. Second, it deals with the problem of synonyms
in a very elegant way. Once text mining matched a protein name to a protein entity, we
do not further rely on synonyms but on the sequence which—in combination with the
species—unambigously described the protein entity.

PAK3 is a potential interactor of the Arp2/3 complex subunit 1A. The literature-
derived search predicts, for example, the interaction between murine p21-activated kinase
3 (PAK3) and the Actin-related protein 2/3 complex subunit 1A. Basis of this prediction
is a literature-documented interaction between human p21-activated kinase 1 (PAK1) and
human Arp2/3 subunit 1B, reported in [42]. Overall sequence identity is 69% between the
kinases, and 83% between the Arp2/3 subunits. We cannot be not sure if this interaction
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is indeed true, but our method provides evidence that an interaction is likely. This would
suggest that PAK3 functions in the given data set of mouse proteins in a similar manner as
PAK1, namely by phosphorylating the Arp2/3 complex, thus influencing vesicle motility.
Further inspection of this example reveals additional support for the prediction. In the
abstract of [42], we learn that PAK1 phosphorylates p41-Arc (another name for the Arp2/3
subunit) on threonine 21. As we check the alignment, we find threonine 21 present in a
well-conserved region in both proteins.

Text mining challenges: Clathrin should be linked to the AP-1 complex subunit beta.
General problems of text mining still affect our approach. If interactions are not extracted
in the first place, we lack this information and hence cannot infer any similar predictions.
In our study, this occurs in case of the AP-1—Clathrin interaction. It is has long been
known that Clathrin is associated with adaptor proteins on clathrin-coated vesicles that
mediate traffic of between intracellular compartments. The physical interaction between
Clathrin and the beta 1 and beta 2 subunits of the AP complexes was first described 1993
in [43]. However, neither the incorporated interaction databases, nor the literature-based
NetPro database contain this particular interaction. For NetPro, the reason seems obvious.
The relevant sentence in the abstract of [43] states: “It was found that, in the absence of
all the other AP subunits, beta 1 and beta 2 interact with clathrin.”. The fact that the in-
teraction partners are just described as “beta1” and “beta2” makes it extremely hard for an
algorithm to reason that these two are actually AP subunits. As we are lacking this interac-
tion, and since no such interaction could be inferred from structural templates, we cannot
connect Clathrin with the AP-1 complex in the interaction network. There is, however, a
homologous interaction our method detects: According to interaction database DIP [31],
yeast beta-adaptin homolog APL2 interacts with yeast clathrin heavy chain 1 [44]. The
BLAST search of our method picks up the similarity between the yeast and mouse ortho-
logues of AP-1 beta subunit (40 % identities, 62 % positives) and Clathrin heavy chain
(49 % identities, 70 % positives). On this basis, our approach predicts a potential interac-
tion between the two murine proteins. In this case, it turns out that the prediction is correct,
with the known, but missing interaction validating our prediction.

Structural template-based approach. Structures are available for a considerable num-
ber of the AP1-related proteins (Table 1). The first stage easily detects these templates by
sequence identity search via BLAST. If at 40% sequence identity cut-off no domain struc-
tures are found, we employ threading to assign domains. For every protein pair, we check
if the SCOPPI database lists any of the assigned domains as interacting. If so, we mark
these two proteins as potentially interacting (for details, see Materials and Methods).

Since crystal structures are available for the AP-1 and the Arp2/3 complex, the structural
templates-based approach connects the subunits according to their contacts (blue lines in
Figure 3). One interesting candidate is the predicted connection between the Rho GTPase
CDC42 and Arfaptin, an effector of the Arf GTPase.
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Figure 4. Structural modelling of the CDC42–Arfaptin 1 interaction. Left: The known complex
structure p21Rac1 (blue) interacting with Arfaptin 1 (grey) serves as a template. CDC42 (red) and
Rac1 (blue) structurally align reasonably well (RMSD 0.8). Bottom: Residues contributing to the
binding site in the complex. Interacting residues are marked yellow, mismatching interacting residues
are marked with a star. Right: Interface mismatches (Ala/Thr, Asn/Thr, Trp/Phe) after structural
superposition of CDC42 and Rac1. Although being different amino acids, their structural side chain
arrangement is similar.

The small Rho GTPase CDC42 is a potential interactor of Arfaptin 1. The small
GTPases Rho, Rac and CDC42 are regulators of actin structures, cell adhesion and motil-
ity. Here, we predict the interaction between CDC42 and Arfaptin 1. As template, we use
the crystal structure of RAC1-GDP in complex with Arfaptin (PDB ID 1i4l, [45]). Fig-
ure 4 shows the superposition of CDC42 and Rac1 with an RMSD of 0.8. The interfacial
residues of both GTPases, as defined to be within 5 Angstrom distance to the Arfaptin, are
aligned and highlighted in yellow. Closer examination of the three mismatches (Ala/Thr,
Asn/Thr, and Trp/Phe) in the interface reveals that all three residues align reasonably well
in the superposition of CDC42 and Rac1. We therefore have reason to believe that at least
from a steric point of view the interaction is feasible.

Reliability scores and evidence. Our approach generates reliability scores as well as
supporting evidence for the protein–protein interactions predicted. For structure-based pre-
dictions, we provide a structural template as well as confidence scores. These are sequence
identity percentages and/or threading p-values. For literature-derived predictions, we pro-
vide statements from PubMed articles which explicitly document details of the interaction.
In addition, joint sequence identity scores are available for every predicted interaction.
These are 100% for known interactions described in the literature and lower for decreas-
ing degrees of potential homology. An introduction of various cut-off levels could account
for the different interaction nature of proteins, e.g. a stricter level for GTPases, and a more
relaxed level for unspecific protein interactions. If the binding site is known, the matches
of interfacial residues serve as additional parameters for the quality of the predicted inter-
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action. The more conserved the interface, the more likely the interaction.

Limitations of method. Our method shares the common limitations of interaction pre-
diction methods. Technical false positives (i.e. those due to the method) are likely, espe-
cially for predictions with low joint sequence percentage. Biological false positives (i.e.
interactions that could be observed in vitro, but have no biological relevance, because the
two proteins are not expressed in the same tissues or compartments, or not at the same
time) can at least in this study be ruled out due to the experimental setup used to produce
the data set. It ensures that the tested proteins are within close proximity, thus displaying
a considerable potential to form interactions.

Another problem is that of the specificity of our predictions. Small GTPases and their ef-
fectors (such as GTPase activating and guanine nucleotide exchanging proteins) are good
examples for forming specific interactions [46]. The problem can be addressed by a rigor-
ous sequence identity threshold, as suggested above.

Although a considerable number of proteins in our study are known by structure, and al-
though our method has access to ∼25,000 different domain interaction templates, we are
not able to link the AP-1 or the Arp2/3 complex to any other protein in the data set by
merely using structural information. This points at the problem that there are still com-
paratively few multi-domain structures available that can serve as modelling templates for
interactions. As a positive outlook, we observe a supra-linear growth of these templates.

Evaluation of method. It is difficult to assess predicted interactions by other means than
the biological experiment. The main problem is estimation of a false positive rate. How
can one be sure that two proteins do not interact? Simple absence of the interaction in
reliable data sources is not sufficient—the interaction might just not have been discovered
yet. The closed-world assumption, i.e. interactions not known are also not true, does not
hold for biology. Our predicted interactions are currently being tested by our collaborating
group. The result of these experiments will allow for a thorough evaluation of our method.

Summary

We propose a fully automated method for the retrieval and prediction of protein–protein
interactions. By merging information from literature abstracts stored in PubMed, interac-
tion databases, and structures in the Protein Data Bank PDB we obtain a comprehensive
picture on documented interactions. On the basis of this knowledge, we can construct an
interaction network for any given data set, and further extend it predicted interactions at
various confidence levels based on sequence or structural similarity to known interaction
templates.

Applied to a data set of proteins that form coat complexes on vesicle membranes, our
method identifies almost all relevant interactions. Further interactions are predicted, among
them potential linkers for the AP1- and the Arp2/3 complex. Therewith, we provide po-
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tential interaction candidates for further experimental testing. By incorporating the whole
spectrum of text mining interactions described in the biomedical literature, data stored in
interaction databases, and all structurally known domain–domain interactions, our method
ensures a comprehensive network reconstruction that can assist the molecular biologist.
Applying it on a genome-wide scale, we can further scale up this network to a systems
biology level that provides a view on a whole interactome, thus providing a valuable tool
for the life sciences.

Acknowledgements. Funding by EFRE project CODI no. 4212/04-07 is kindly acknowl-
edged.
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Protein NCBI gi Known structure

COAT COMPONENTS
Clathrin heavy chain 66773801 1xi5, 1xi4
Clathrin light chain B 62510439 1xi5, 1xi4
Clathrin light chain A 2493731 1xi5, 1xi4

AP1 beta 1 21541948 1w63
AP1 gamma 1 113349 1w63
AP1 mu 1 543817 1w63
AP1 sigma 1B 21541960 1w63
AP1 sigma 1A 48428720 1w63
AP1 gamma subunit binding protein 1 (gamma-synergin) 34996507

ARF-1/ARF-3 51316986 1r8q
47117658

ARF-GEF 2 (Brefeldin A-inhibited) 63492672
G protein-coupled receptor kinase-interactor 1 (ARF-GAP Git1) 58864889
G protein-coupled receptor kinase-interactor 2 (ARF-GAP Git2) 18203126
Arfaptin 1 63501125
Arfaptin 2 67460562

ACTIN POLYMERIZATION
Nck-associated protein 1 (HEM-2) 26986194
SH3 adapter protein SPIN90 57015413
WASP-family protein member 1 16877274
WASP-family protein member 3 20071942
CYFIP2 19526988
Abi-1 50400517
Abi-2 50400259

ARP2/3 complex subunit 1A 59797974 1u2v
ARP2/3 complex subunit 2 23621467 1u2v
ARP2/3 complex subunit 4 38372626 1u2v
ARP2/3 complex subunit 3 62899893 1u2v

p21-Rac1 51702788 1i4l
Cdc42 homolog 46397379 1grn

SLIT-ROBO Rho-GAP 3 (WAVE-associated Rac-GAP) 48428625
Rho-GEF 7 (PAK-interacting exchange factor beta) 18202873
PAK 3 47117898 1yhw

MEMBRANE FUSION
Rab-11B 1172815 1oiv
Rab-14 46577103 2aed
Rab-4 15986733 2bme

Table 1. Mass spectrometric analysis of AP-1A-coated liposomes (data from [40]). For proteins
which have a known structure, the Protein Data Bank identifer is given.
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