
Enterprise Modelling and Information Systems Architectures
Vol. 3, No. 1, July 2008

Wojciech Ganczarski, Robert Winter24

Wojciech Ganczarski, Robert Winter

On the Interplay of Organizational Archi-
tecture and Software Architecture

Enterprise architecture frameworks sometimes provide an additional architectural layer between business-orient-
ed artefact types (e.g., business processes, organizational units) and technical artefact types (e.g., software com-
ponents, data structures). This "integration" or "alignment" layer is intended to bridge the gap, which results from
different life cycles, different ownerships, and other sources of IT/business misalignment. The development of spe-
cific models and artefact types on the integration layer is in its early stage. Existing methods for information systems
design constitute a first starting point. However, most of them lack a clear differentiation between the integration
layer and the software layer and therefore cannot be reused as-is. This paper contributes to the research of design
methods, models, and artefact type specifications for the integration layer. The focus lies primarily on the alignment
of organizational architecture and structural software architecture, two important components of enterprise archi-
tecture. A comparison of organizational and software architecture design methods yields that both types of structures
are usually constructed according to different design criteria so that un-aligned architectures result. Traditional in-
tegration artefacts, such as "logical" applications, which specify coherent areas of ownership over software artefacts,
are too closely linked to actual software system structures and therefore usually fail in aligning with the organiza-
tional architecture. It is argued in this paper that instead, integration artefacts should be much more decoupled from
actual software structures.

1 Introduction

The lack of alignment between information systems
and their corresponding business environment is seen
as one of the root causes for why today's companies
are not able to realize value from their IT investments
[HeVe93]. By focusing on the interplay of organiza-
tional architecture and structural software architec-
ture, this paper concentrates on a subset of the
multifaceted IT/business alignment problem. Organi-
zational architecture is understood as the fundamen-
tal organization of activities and decision rights over
corporate assets. Structural software architecture is
understood as the fundamental organization of soft-
ware systems (or business applications as a specific
class of software systems).

By looking at a company's structural software archi-
tecture, it is often possible to tell the industry the
company is operating in, or to generate first hypoth-
eses about the company's business model. However,
it is much less straightforward to conclude the com-
pany's organizational architecture. Why is it that or-
ganizational architecture and structural software
architecture are usually so different? According to Or-
likowski and Barley [OrBa01], structural

differences between organizational and software
structures can be attributed to epistemological differ-
ences of information systems (IS) research and or-
ganizational research. Whereas IS research focuses
on the functioning of engineered artefacts, organiza-
tional research is more concerned with the interrela-
tions of human behaviour [OrBa01]. Enterprise
architecture frameworks, which acknowledge those
structural differences explicitly foresee a specific ar-
chitectural "integration" or "alignment" layer which is
comprised of models that link business-related archi-
tectures with technical architectures. A simple owner-
ship allocation model (OAM), which specifies the
decisions rights of organizational units over individual
software artefacts, is one example for such an inte-
gration model. Beyond ownership, information ex-
change constitutes a further relationship that can be
found between the business and the IS environment.
Other types of integration models can therefore be
utilized to ensure alignment in terms of information
exchange. 

Whereas the information exchange relationship has
already been thoroughly analyzed in the work of other
authors (e.g., see [Wall96]), only few contributions
have been dedicated to the ownership relationship.



Enterprise Modelling and Information Systems Architecture
Vol. 3, No. 1, July 2008
On the Interplay of Organizational Architecture and Software Architecture 25

Therefore, the goal of this paper is to analyze the ef-
fectiveness of existing integration models, especially
OAMs based on "applications", and to propose modifi-
cations to those models in order to enhance the align-
ment between the business and the IS environment.
But before those models can be analyzed, a detailed
understanding of the reasons is necessary for which
organizational architecture and software architecture
structurally diverge. 

The paper is organized into six sections. Following this
introduction, Section 2 discusses related work. In
Section 3, the (extended) Business Engineering
framework is introduced which will be used as the
frame of reference. Section 4 will provide a compari-
son of organizational design and state-of-the-art ap-
proaches for IS and software architecture design. In
order to understand the effectiveness of OAMs based
on "applications", the property rights theory is applied
in Section 5. A modification is proposed on how more
effective ownership allocations over software arte-
facts could be defined. The paper closes in Section 6
with an outlook on how those insights can be taken
further to support in the development of effective in-
tegration models.

2 Related Work

The analysis of differences and commonalities be-
tween the design of organizational architecture and
software architecture fits into the subject area of IT/
business alignment. In 1993, Henderson and Venkat-
raman introduced the Strategic Alignment Model
[HeVe93], which since then is referred to as the
standard framework for classifying IT/business align-
ment issues. They distinguish four individual problem
domains which require mutual alignment: business
strategy, organizational infrastructure, IT strategy,
and IT infrastructure. Within this framework, the or-
ganizational architecture constitutes one piece of the
organizational infrastructure, whereas the software
architecture belongs to the IT infrastructure. The
question under analysis within this paper can there-
fore be assigned to the problem domain of aligning or-
ganizational infrastructure and IT infrastructure.
While proposing roles and responsibilities, Henderson
and Venkatraman do not provide a specific alignment
method.

Further work which deals with the alignment problem
can be found within the subject area of IT Govern-
ance, a term coined by Weill and Ross in 2004
[WeRo04]. Weill and Ross define IT Governance as an
act of specifying the decision rights and the account-
ability framework to encourage desirable behaviour in
using IT [WeRo04]. They distinguish between deci-
sions concerning IT principles, IT architecture, IT in-
frastructure strategy, business application needs, and

IT investments [WeRo04]. Through an analysis of IT
Governance processes in 300 international compa-
nies, they found a correlation between "good" IT Gov-
ernance and enterprise performance [WeRo04].
Although various best practice examples for effective
IT Governance processes are provided in their work,
Weill and Ross do not propose specific integration
methods or models which could help companies in ac-
tually defining and monitoring IT decision rights.

With respect to the work of Weill and Ross, this paper
will focus on the analysis of business application deci-
sion rights which empower organizational units to
buy, build, or adapt individual business applications
[WeRo04]. Ownership as it is used here refers to a
mandate which is granted to organizational units by
the top management. It empowers the grantees to
make decisions about buying, building or adapting in-
dividual business applications and makes them ac-
countable for the effective use of these resources.

According to Weill and Ross, those decision rights are
the least mature and also least understood within to-
day's companies. Once allocated badly, they may lead
to redundant system capabilities, wasted resources,
and excessive time to market.

3 Modelling Enterprise Architec-
tures

3.1 The business engineering 
framework 

Business Engineering (BE) [ÖsWi03] constitutes a
comprehensive and integrated approach to the de-
sign and evolution of business architecture, organiza-
tional architecture, and IT architecture. Due to its fo-
cus on consistent "business-to-IT" design, BE is
adopted as the terminological and methodological
foundation for this paper. The initial BE framework as
described by [Wint03a] consists of three major archi-
tectural layers: strategy, organization, and IS. In par-
ticular the IS layer has been extended and detailed by
recent work of, e.g., Schelp and Schwinn [ScSc05].
This paper is based on the five-layer extension of the
BE framework which comprises the following architec-
tural layers:

The strategy layer represents the business architec-
ture which positions the company (or business unit, or
company network) according to market needs and
competencies. It provides specifications of products /
services and organizational goals from a strategic
perspective [BrWi05]. Design criteria for the business
architecture can be derived from different approaches
to strategic management [WiFi07].



Enterprise Modelling and Information Systems Architectures
Vol. 3, No. 1, July 2008

Wojciech Ganczarski, Robert Winter26

On the organization layer, the static and dynamic
organization of service development, service creation,
and service distribution are represented [WiFi07]. The
organization layer can be subdivided into the process
architecture which provides specifications for busi-
ness processes, and the organizational architecture,
which specifies individual organizational units, their
relationships and key performance indicators
[BrWi05]. Major design principles for this layer are ef-
fectiveness and efficiency [WiFi07].

On the integration layer, IS components are organ-
ized in the relevant enterprise context [WiFi07]. The
integration layer represents the fundamental depend-
encies and links between IS components (or software
artefacts, such as software components and data
structures) on the one hand and business require-
ments (specified by processes, organizational units,
responsibilities, performance indicators, and informa-
tional flows) on the other hand [BrWi05]. Integration
architecture design focuses on agility, cost efficiency,
integration, and speed [WiFi07], but may also be
aimed at transparency, consistency, and/or simplifi-
cation. 

The software layer can be subdivided into the struc-
tural and the behavioural software architecture. The
structural software architecture represents the funda-
mental organization of software artefacts, such as
software components and data structures [WiFi07],
which altogether form software systems. Software
components can be installed, configured, and execut-
ed whereas data structures can be stored, retrieved
and manipulated. Software services constitute specif-
ic software components which are designed according
to W3C Web Services design standards. Beyond that,
the behavioural software architecture represents dy-
namic aspects, such as data flows or interactions of
software components, services or systems. The gen-
eral design goals for this architectural layer are high
reuse of software artefacts [BrWi05] as well as mini-
mization of data redundancies [ScSc05].

The infrastructure layer represents the organiza-
tion of computing and telecommunication hardware
[WiFi07]. Design criteria on this layer are, e.g., effi-
ciency of resource usage, robustness, and scalability.

The explicit separation of the integration and the soft-
ware layer constitutes one of the major characteris-
tics of the extended BE framework. It is motivated by
the notion of the business environment (represented
on the strategy and on the organizational layer) and
the IS environment (represented on the software and
on the infrastructure layer) as two separate, self-con-
tained systems connected via a provider-consumer-
relationship. Within this relationship, the IS environ-
ment provides services to the business environment. 

As good practice, general systems theory proposes to
shield the internal design of the provider system from
the consumer system so that changes of the provid-
er's internal design are not propagated to the con-
sumer [AiWi08] and the overall system's
manageability is enhanced. This shielding, also re-
ferred to as loose coupling, can be achieved through
the introduction of an additional abstraction layer be-
tween both systems. This abstraction or integration
layer (technically spoken) offers a stable interface to
the consumer, translates consumer requests into the
internal design of the provider, and finally transforms
the provider's response back into the format of the
stable interface. Such an integration layer is not only
capable of buffering changes of IS environment and
prevent adoptions on the business environment, but
also vice versa [ScWi07b]. Due to significant differ-
ences in innovation cycles of organizational artefacts
(lifetimes of up to 2 years) and software artefacts
(lifetimes of more than 10 years) [BrWi05], buffering
changes from each of the layers becomes a crucial ca-
pability for IT/business alignment.

This loose coupling can be compared with the loose
coupling introduced by the Java Virtual Machine
(JVM), which allows to port software systems seam-
lessly between multiple hardware platforms. Here,
changes of the hardware platform are fully buffered
through the JVM and not propagated to the software
system. Key to the JVM is that it offers the consumer
(or software system) the Java programming language
as a stable, hardware-independent interface towards
the services of any specific hardware platform.

Similarly as the JVM, the integration layer requires a
stable interface which is comprised of artefacts that
encapsulate the internals of the software layer and
that can be referenced by the organizational layer. Ar-
tefacts, such as logical applications, which will be de-
tailed in the following paragraphs, are already in use
today. It is however argued in this paper that those
artefacts and corresponding interfaces are not suffi-
ciently shielding the organizational layer from the in-
ternals of the software layer and therefore need to be
adapted.

3.2 Information systems, business 
applications and logical applications

The precise understanding of what constitutes an "in-
formation system" compared to an "application", and
a "software system" varies considerably. 

According to Ferstl and Sinz, an information system is
defined as a set of communicating corporate objects,
which work on or deal with information resources
[FeSi95]. Those corporate objects can be either of
manual or automated type. Human beings represent
manual corporate objects whereas automated



Enterprise Modelling and Information Systems Architecture
Vol. 3, No. 1, July 2008
On the Interplay of Organizational Architecture and Software Architecture 27

corporate objects are implemented within business
applications. The term "application" is sometimes also
used in a slight different context. For example, the BE
framework regards applications as logical constructs
which link implemented IS functionalities and infor-
mation subjects to joint business ownership and re-
spective activities ([BrWi05] or [ScSc05]). Those
applications are specified as components of applica-
tion architecture [WiFi07], which itself constitutes a
component of the integration layer. But how do these
understandings of business applications and applica-
tions match with each other? 

Business applications are specific software systems
which implement corporate objects. They consist of
software artefacts and can be ascribed to the software
layer. Their fundamental organization is specified
within the software architecture, which is part of the
IS architecture. In comparison to business applica-
tions, other types of software systems may for exam-
ple provide solely infrastructure services without
implementing specific corporate objects.

Compared to that, applications that define ownership
areas are logical constructs and belong to the integra-
tion layer. To avoid misunderstandings in the follow-
ing, we will explicitly designate these constructs
logical applications. Logical applications are not com-
posed of software artefacts and therefore can be nei-
ther installed, configured nor executed. Instead, they
are linked to software artefacts on the one hand and
business artefacts on the other hand. Due to their re-
lational nature, logical applications are capable of rep-
resenting organizational ownership of software
artefacts.

For many state-of-the-art IS design methods, the
"software" and the "logical" view of an application is
tightly coupled. Either the structure of a business ap-
plication automatically determines the structure of a
logical application or vice versa (1:1 relationship).
Sometimes, logical applications refer to a set of busi-
ness applications, while the structure of all business
applications jointly again determines the logical appli-
cation (1:n relationship). A n:m relationship, which
would allow to structurally decouple software archi-
tecture from integration architecture is not foreseen
within those approaches.

4 Comparing Organizational and 
Software Architecture Design 

4.1 Organizational design

Organizational design is concerned with the structur-
ing of goal-oriented social systems [HiFU94]. The
need for structuring a social system stems from the

limited information processing and problem solving
capacities of individual human beings, a phenomenon
also referred to as the "organization problem"
[Fres05]. Two basic types of structures for the organ-
ization of a social system are usually distinguished: a
static organizational architecture and a dynamic pro-
cess architecture [Schr96].

Companies are specific social systems whose per-
formance considerably depends on the quality of their
organizational design [Mack86]. Hill et al. point out
that the evaluation of any organizational design
therefore needs to be conducted on the basis of how
well the design supports overall performance
[HiFU94]. Frese proposes to evaluate an organiza-
tional structure against two major criteria: a) its co-
ordination efficiency, and b) its motivational efficiency
[Fres05]. Coordination efficiency is primarily con-
cerned with the efficiency of a corporate system to
utilize its resources and potentials, whereas motiva-
tional efficiency focuses on how well the system is
able to motivate individual human beings to maximize
their performance. Hill et al. also differentiate two ba-
sic evaluation criteria that are very similar to those of
Frese, which they call productivity and socio-emotion-
al satisfaction [HiFU94].

But how are organizational architectures actually con-
structed? According to Hill et al. [HiFU94], tasks,
competencies, and responsibilities constitute the fun-
damental structural elements of static organizational
design [HiFU94]. Those fundamental elements are
grouped within organizational units, departments,
and divisions, which itself are linked within hierar-
chies. Multiple forms of structuring exist. For exam-
ple, Hill et al. differentiate four approaches: a)
functional structuring, b) object-oriented (or division-
al) structuring, c) regional structuring, and d) phase-
oriented structuring [HiFU94]. Functional structuring
results in functionally oriented organizational units.
Object-oriented structuring is primarily concerned
with the objects that tasks are performed upon. Those
objects can be, e.g., product lines or customer seg-
ments [HiFU94]. There are different opinions on what
is exactly meant by object-oriented structuring.
Whereas Hill et al. [HiFU94] as well as Frese [Fres05]
only consider product and market segment based
structuring as object-oriented, for Schreyögg
[Schr96] regional structuring constitutes a further
sub-type of an object-oriented structuring. In con-
trast to that, Hill et al. see regional structuring as a
separate dimension. Finally, phase-oriented structur-
ing distinguishes between tasks, competencies, and
responsibilities that are either related to the planning,
execution, or monitoring phase of an enterprise's val-
ue generation process.

In addition to the formation of organizational units, a
coordination mechanism which defines the basis for
their collaboration needs to be put in place. Two



Enterprise Modelling and Information Systems Architectures
Vol. 3, No. 1, July 2008

Wojciech Ganczarski, Robert Winter28

separate coordination paradigms can be distin-
guished. On the one hand, hierarchical coordination
organizes units as a hierarchy which empowers indi-
vidual units to govern and coordinate its subordinated
units. On the other hand, market coordination estab-
lishes internal markets within a company which coor-
dinate relationships between organizational units
primarily on the basis of internal market prices
[Fres05]. 

Even though market coordination concepts, such as
profit centres or agreements on transfer prices are
widely used, hierarchical coordination can be still re-
garded as the primary coordination mechanism em-
ployed in today's companies. The deployment of
market mechanisms as coordination mechanisms
within a company has its clear limitations which origi-
nate in the nature of a firm as described by Coase
[Coas37]. Thus, companies are required to realize in-
ternal scale effects in order to stay competitive. This
limits the number of potential partners as well as the
negotiation power within internal market relationships
[Fres05]. 

According to Frese, hierarchically coordinated func-
tional, divisional, and regional forms of structuring
suffice to describe most of the organizational struc-
tures of today's companies. Frese also provides a first
comparison of those three forms of structuring with
respect to the design criteria of coordination and mo-
tivational efficiency. Functionally structured organiza-
tions require high coordination between individual
organizational units, because most of the business
processes span across multiple organizational units
[Fres05]. However, functionally grouped organiza-
tions provide a high efficiency with respect to re-
source utilization and utilization of market
opportunities, because resources that are required for
those activities are bundled within the same unit
[Fres05]. Divisionally structured organizations enable
organizational units to act with high autonomy
[Fres05] and, as an immediate consequence, maxi-
mize individual responsibility and therefore

motivational efficiency. Schreyögg adds that a divi-
sional (or object-oriented) organizational design en-
hances manageability and is more result-oriented
than a functional design [Schr96]. On the other hand,
resource efficiency is lower in a divisional structure,
because resources, which are required to execute
similar or identical business processes are not pooled
(like in a functional setup), but rather need to be rep-
licated for each division [Fres05]. Finally, the main
advantage of a regionally structured organization is a
high focus on market efficiency. However, similar to
the divisional setup, a regional organization requires
a replication of resources which reduces resource ef-
ficiency [Fres05]. 

Table 1 summarizes the described design criteria and
forms of structuring for organizational design.

4.2 Information systems design

Compared to organizational design, the discipline of
IS design has not yet agreed on a specific set of de-
sign criteria and a well-defined system of structuring
types. This could be ascribed to the different maturity
levels of both disciplines. Therefore, design criteria
and forms of structuring need to be extracted out of
representative state-of-the-art approaches for IS de-
sign. The following three approaches have been se-
lected for the analysis:

• IBM's Business Systems Planning (BSP)
method [Zach82]

• IMG's Promet Systems and Technology Plan-
ning (STP) method [IMG99]

• Winter's application architecture model
[Wint03b]

Business Systems Planning (BSP): The BSP meth-
od supports in the construction of a high-level IS ar-
chitecture. This architecture is comprised of individual
"applications" that are determined by their functional

Architectural 
layer 

Partial archi-
tecture in focus Design criteria Forms of structuring 

Organization  
layer 

Organizational 
architecture

- Coordination efficiency - By functions 
- By products 
- By market segments 
- By regions 
- By phases 

 Market effectiveness 

 Resource efficiency 

 Process efficiency 

 Delegation efficiency 

- Motivational efficiency  
  and effectiveness 

 High responsibility 

 High manageability 

 High market pressure 

Table 1: Summary for the organizational design analysis



Enterprise Modelling and Information Systems Architecture
Vol. 3, No. 1, July 2008
On the Interplay of Organizational Architecture and Software Architecture 29

scope (see [Wint03b] and [IBM84]). Those BSP appli-
cations simultaneously define structures for
ownership areas, which are assigned to organiza-
tional units (i.e., logical applications), but also set the
foundation for the structure of individual business ap-
plications. The BSP method is based on a matrix,
which represents dependencies between business
processes and data clusters. Areas with a high density
of dependencies define the functional scope of individ-
ual BSP application candidates (see [Wint03b] and
[IBM84]). Structuring BSP applications along data
clusters intends to ensure data consistency and to
avoid data redundancies [Zach82], because, when
structured along data clusters, (business) applica-
tions define and store data structures uniquely within
their own boundaries. On the other hand, structuring
BSP applications along business processes shall re-
duce integration complexity, because there are few
data handovers across multiple (business) applica-
tions. This is due to the fact that the majority of infor-
mation flows within a company occurs between
individual activities belonging to the same business
processes.

Promet Systems and Technology Planning
(STP): Similar to BSP, the Promet STP approach con-
structs a high-level IS architecture by defining the
functional scope of individual "applications". Again,
STP applications simultaneously define the structure
for business applications as well as for ownership ar-
eas (i.e., logical application). In comparison to BSP,
the STP method uses a matrix comprising business
units on the one axis and functionality clusters on the
other axis. This matrix is primarily intended to docu-
ment functionality ownership within a given organiza-
tional architecture. STP application candidates
describe high-density areas of functional ownership
(see [Wint03b] and [IMG99]). (Business) applications
structured along functionality clusters ensure a high
reuse of functionality. On the other hand, (logical) ap-
plications, which are structured along business units,
ensure clarity of the ownership structure and a sus-
tainable organizational embedding [Wint03b].

Winter's application architecture model: Winter
found that the BSP and Promet STP methods are com-
plementary to each other and proposed to merge
them within a three-dimensional architecture model
[Wint03b]. The architecture model is defined along
three dimensions: Functionality clusters, information
subjects, and business processes [Wint03b]. Struc-
turing (business) applications along functionality clus-
ters shall enhance reuse of functionality. Information
subjects correspond to data clusters used in the BSP
approach and structuring along those shall enhance
data consistency. The third dimension is assumed to
represent business processes jointly with organiza-
tional units. Winter assumes that the dimension of
business processes and that of organizational units
could be merged [Wint03b].

Most of the presented approaches for IS design pre-
sume a tight link between the structures of logical ap-
plications, which define ownership areas on the one
hand and business applications that represent actual
software systems on the other hand. The objective of
the presented design methods is to define an IS archi-
tecture that fulfils two goals simultaneously: 1) to
satisfy technical needs of the software architecture,
and 2) to ensure an efficient integration into the or-
ganizational context. BSP, STP, and Winter's proposal
are therefore highly influenced by design criteria from
pure software architecture design.

This also implies that design criteria used by those ap-
proaches cannot be automatically assigned to either
the integration or the software architecture layer. We
argue that except for the clarity of ownership, all re-
maining design criteria and structuring dimensions
should be assigned to the software architecture layer,
since they all have immediate impact on the efficiency
of the software architecture as such. Integration com-
plexity, functional reuse and data consistency can be
measured within a software architecture even without
any knowledge about the organizational environment.
On the other hand, clarity of ownership clearly re-
quires a link to the organizational architecture.

Assigning the data consistency and functional reuse
criteria to the software layer is consistent with the BE
framework. On the integration layer, the BE frame-
work regards integration complexity as a design crite-
rion whereas clarity of the ownership structure is not
found explicitly. 

4.3 Software architecture design

Similar as for IS design, design criteria and forms of
structuring for software architecture design are ex-
tracted through the analysis of a state-of-the-art de-
sign method. The well-known Architecture Trade-off
Analysis (ATAM) developed by Kazman et al. has been
selected for this purpose [KaKZ00]. 

Architecture Trade-off Analysis (ATAM): ATAM
was developed by Kazman et al. in 2000 to formally
evaluate individual architectural decisions for soft-
ware systems. The evaluation of architectural deci-
sions is based on the following predefined quality
attributes: performance, modifiability, availability,
and security [KaKZ00]. For each individual architec-
ture evaluation project, a utility tree is constructed to
rate the specific importance of those parameters. The
utility tree is then used to evaluate multiple optional
architectural styles and to make a recommendation.
The ATAM method complements the previously pre-
sented methods since it focuses on aspects that are
solely relevant for the design of software systems,
and is not restricted to business applications, as well,



Enterprise Modelling and Information Systems Architectures
Vol. 3, No. 1, July 2008

Wojciech Ganczarski, Robert Winter30

as less concerned with the integration of software
systems into the organizational environment.

Table 2 summarizes the design criteria and forms of
structuring, which have been extracted from the anal-
yses of IS design and software architecture design
methods.

4.4 Comparison

A first comparison of Tables 1 and 2 shows that struc-
turing along functions constitutes a common form of
structuring, intended to enhance reuse and avoid re-
dundancies. In addition, data consistency can be un-
derstood as a specialization of resource efficiency
criteria, because the goal is to avoid multiple storage
locations and therefore synchronization efforts for the
same type of data. Within software architecture, this
goal is achieved by structuring along information sub-
jects. However, no corresponding form of structuring
can be found within organizational design. On the oth-
er hand, a structuring along phases, such as planning,
execution, and monitoring, is less relevant for soft-
ware architecture, because software is primarily used
as an executing resource and less for (e.g., strategic)
planning and monitoring activities. Moreover, motiva-
tional efficiency represents a design criterion which is
specifically relevant for maximizing human resource
performance, but has no relevance for technical arte-
facts, such as software systems.

Given the assumption that different design criteria
and forms of structuring also lead to different struc-
tures, these results can be taken as a starting point to
explain why organizational architecture and structural
software architecture are so different. The analysis
shows that both types of structures are usually opti-
mized with respect to design criteria that are specific
to each structure and overlap only partially.

5 Aligning Organizational and 
Software Architecture

The previous sections provide a first explanation for
the existence of structural differences between organ-
izational and software architecture. Based on these
findings, the effectiveness of logical applications – a
specific integration and alignment mechanism be-
tween those two architectural layers – is now ana-
lyzed. Later, a modification to this alignment
mechanism will be proposed in order to enhance its
effectiveness. 

5.1 OAM based on logical applications 

This paragraph is intended to illustrate how organiza-
tional architecture and structural software architec-
ture are aligned traditionally using logical
applications. A conceptual model is introduced in or-
der to represent the relevant characteristics of these
architectures. Similar to the BE core meta model
[ÖWH+07], the conceptual model will use UML class
diagrams as its modelling language (see, e.g.,
[Oest05]). 

According to the BE framework, an organizational ar-
chitecture is specified by a set of organizational units
and their relationships [BrWi05]. Organizational de-
sign describes an organizational unit in terms of the
competencies (or decision rights) that are assigned to
it. Among the multitude of competencies which can be
assigned to organizational units, a subset empowers
individual units to be responsible for the definition of
business functions or information subjects. These
types of competencies shall be referred to as defini-
tion ownerships. On the other hand, structural soft-
ware architecture is specified by a set of business
applications and their relationships. As was described
above, those business applications group individual
software artefacts (software components or services
and data structures). 

Architectural 
layer 

Partial archi-
tecture in focus Design criteria Structuring dimensions 

Integration layer Logical application 
architecture

- Clarity of ownership - By organizational units 

Software layer Structural software 
architecture

- Integration complexity - By business processes 
- Functional reuse - By functions 
- Data consistency - By information subjects 
- Performance - By time critical procedures 
- Modifiability - By change dependencies 
- Availability - By high-availability areas 
- Security - By data security areas 

Table 2: Summary for the information systems and software architecture design analysis



Enterprise Modelling and Information Systems Architecture
Vol. 3, No. 1, July 2008
On the Interplay of Organizational Architecture and Software Architecture 31

Organizational architecture and structural software
architecture can then be connected in the following
way: Business functions are implemented within spe-
cific software components, and the content of infor-
mation subjects is stored within data structures. In
addition, competencies on the development of busi-
ness applications are grouped within logical applica-
tions, which then are assigned to organizational units.
These types of competencies will be designated as ap-
plication ownerships in the following.

Figure 1 illustrates this (simplified) conceptual model
of logical applications as traditional integration arte-
facts between organizational architecture and struc-
tural software architecture.

5.2 Alignment issues for OAM based on 
logical applications

The intention of this paragraph is to show that an
ownership allocation solely based on logical applica-
tions does not appropriately consider structural differ-
ences between the organizational and the software
architecture. In addition, the property rights theory is
utilized to illustrate that a lack of addressing those
structural differences results in economically undesir-
able behaviour. 

5.2.1 Defining structural differences

What is actually meant by a structural difference be-
tween organizational architecture and software archi-
tecture? Before structural differences can be defined,
it is first necessary to understand and define structur-
al equivalence: An organizational architecture and a
structural software architecture are regarded as
structurally equivalent, if each of the organizational
units has ownership over those software artefacts (or
fragments) which implement and store exactly those
business functions and information subjects that are
under its definition ownership.

Based on the above definition, a structural difference
is simply defined as any deviation from structural
equivalence. Structural differences occur if business
functions or information subjects, which are under the
definition ownership of a unit A, are implemented or
stored within a business application that is owned by
unit B. This means that a single business application
is comprised of software components and data struc-
tures that implement business functions and informa-
tion subjects of multiple (hierarchically independent)
organizational units. 

Based on the findings of the third Section of this paper
it can be argued that OAMs based on logical applica-
tions will inevitably lead to structural differences, be-
cause differing design criteria of software and
organizational design will result in business applica-
tion structures, which comprise software components

and data structures belonging to at least two (hierar-
chically independent) organizational units. In the fol-
lowing, a first analysis indicates economic
implications which are caused by those structural dif-
ferences.

5.2.2 Foundations of the property rights theory

The property rights theory (PRT) constitutes an eco-
nomic theory, which is concerned with the creation
and allocation of property rights onto individual eco-
nomic actors [Mart00] and is based on the theory of
asymmetrical information. PRT analyses the implica-
tions of alternative allocations of property rights
[Fees97], which are defined as the sum of all legally
permitted usage rights for a specific resource
[Mart00].

According to PRT, the distribution of property rights
determines the efficiency of the overall resource us-
age [Mart00]. Highest efficiency of resource usage
can only be achieved if each of the economic actors
fully owns the property rights of the resource he or
she is using. Only then economic actors can be fully
compensated or punished based on the effectiveness
of their resource usage. As a consequence, they will
deliver their maximal performance [Mart00]. PRT as-
sumes that individuals exploit their possibilities for
opportunistic behaviour in the case of shared property

Integration
architecture

Organizational 

unit

Information 

subject

Business

function

Definition
ownership

Data structure
Software

component

Business
application

Organizational
architecture

Structural
software
architecture

Application

ownership

Logical
application storesimplements

Figure 1: OAM based on logical applications



Enterprise Modelling and Information Systems Architectures
Vol. 3, No. 1, July 2008

Wojciech Ganczarski, Robert Winter32

rights, when individual behaviour cannot be observed,
a specific type of information asymmetry which is also
called hidden action [Krae99]. This exploitation allows
for an individual optimization, but reduces the effec-
tiveness of the total resource usage. 

Two separate approaches are generally distinguished
on how resource usage effectiveness can be en-
hanced. One solution is the clear delineation of prop-
erty rights onto the resource users; the other solution
is the elimination of information asymmetries.

The delineation of property rights requires to setup
and control contracts between the involved parties,
which itself causes separation costs [Mart00]. On the
other hand, information asymmetries, such as hidden
actions, can be addressed with appropriate incentive
systems [Vari99], where parties using a resource are
also compensated or punished on the basis of the to-
tal resource usage effectiveness.

5.2.3 Structural differences in the light of the 
property rights theory

The property rights theory is applied here to explain
economic implications of structural differences be-
tween organizational architecture and structural soft-
ware architecture. The following case is constructed:
A business application implements business functions
and stores information subjects which are under the
definition ownership of two hierarchically independent
organizational units A and B. Those two units share
the ownership or property rights over the entire busi-
ness application, which leads to a structural difference
as defined in 5.2.1. Each of the units has the compe-
tence to initiate change projects; moreover develop-
ment and maintenance costs for the business
application are shared between both units. 

According to the property rights theory, the lesser
both organizational units are able to observe the oth-
er parties' behaviour, the higher the incentives for
each of them will be to behave opportunistically at the
expense of the other. The ability to behave opportu-
nistically also depends on how good development and
maintenance costs of the business application can be
assigned to the causing organizational unit. It is as-
sumed that each unit has its own cost budget and that
assigned development and maintenance costs for the
business application are deducted from that cost
budget. Based on this, three scenarios can be distin-
guished: 

1) Development and maintenance costs are divided
upon both units using a fixed factor, regardless of
the actual resource usage of both units 

2) Development costs are assigned to the causing
unit and only maintenance costs are divided upon
both units using a fixed factor 

3) Development and maintenance costs are as-
signed fully to the causing unit

In case 3) none of the organizational units is able to
act opportunistically. However, a fair allocation of
maintenance costs, sometimes even development
costs in the case of one joint business application is
usually difficult to achieve. In case 2), both organiza-
tional units will behave opportunistically if this behav-
iour leads to a reduction of their own total costs at the
expense of the shared maintenance costs. Practically,
this could be done by saving development costs, e.g.,
by advising "quick-and-dirty" solutions which incur
higher long-term maintenance costs. In case 1), or-
ganizational units can improve their individual cost
situation if they manage to reduce the rest of their
cost budget at the expense of development or main-
tenance costs, which are then shared with the other
unit. This could for example be done by saving costs
on the elaboration of functional specifications (which
is done by the organizational unit's own staff) at the
expense of additional development costs.

As this application of PRT shows, structural differenc-
es between organizational architecture and software
architecture can have undesirable economic implica-
tions. In the case of shared business

Integration
architecture

Organizational 

unit

Information 

subject

Business

function

Data structure
Software

component

Business

application

n:m n:m

Organizational 
architecture

Structural
software
architecture

Integration
domain

stores
Enterprise

information

entity

Enterprise

service

1:1 1:1

Definition

ownership

Definition

ownership

Domain 

ownership

Figure 2: OAM based on integration domains



Enterprise Modelling and Information Systems Architecture
Vol. 3, No. 1, July 2008
On the Interplay of Organizational Architecture and Software Architecture 33

application ownership, individual organizational
units are incentivized to behave opportunistically and
to reduce their own costs at the expense of the total
business application development and maintenance
costs. According to PRT, this problem can only be
omitted if either all information symmetries are elim-
inated or if the property rights for the business appli-
cation resource are separated. The next paragraph
introduces a new OAM that aims to provide logical ar-
tefacts, which allow to separate property rights for
business applications. Those logical artefacts are
structured according to business structures instead of
software structures (such as in the case of logical ap-
plications).

5.3 A modified ownership allocation 
model

If the delineation of ownership on the basis of logical
applications is not suitable, how then should an OAM
be designed that would encourage more efficient eco-
nomic behaviour of individual organizational units? 

Based on the insights of the former paragraphs, one
requirement for an alternative OAM can be stated as
follows: logical artefacts should allow to assign own-
ership over software artefacts (or fragments) that fits
well with or at least approximates the definition own-
ership of organizational units implied by the organiza-
tional architecture. In other words, such logical
artefacts should be capable of reducing the magni-
tude of structural differences as defined in 5.2.1.

The most straightforward way to fulfil this require-
ment is to decouple logical artefacts from existing
structures and artefacts of the software layer and
structure them according to the design criteria of the
organizational layer instead. In order to achieve this,
the meta model is modified as follows: First, new lo-
gical artefacts named enterprise services are intro-
duced on the integration layer. Enterprise services
represent implementations of specific business func-
tions within software components. They are therefore
linked to business functions using a 1:1 relationship.
Enterprise services itself are linked via a n:m relation-
ship with software components. A n:m relationship is
required here, because differing design criteria of
software and organizational design may require one
enterprise service to be implemented within two or
more software components. Conversely, one software
components may also be used to implement multiple
enterprise services.

Moreover, enterprise information entities are intro-
duced as further logical artefacts to represent infor-
mation subjects which are stored within data
structures. Again, enterprise information entities are
linked to information subjects via a 1:1 relationship,

whereas differing design criteria require a n:m rela-
tionship towards technical data structures.

Logical applications are replaced by artefacts named
integration domains. Those integration domains con-
stitute containers of enterprise services and informa-
tion entities and are assigned to individual
organizational units in order to define their ownership
over the content of linked software artefacts. Instead
of being granted an application ownership, organiza-
tional units are now granted domain ownership. Fig-
ure 2 illustrates the adapted meta model of the new
ownership allocation model based on integration do-
mains.

Because enterprise services and information entities
are structured according to design criteria of the or-
ganizational layer (or can even be seen as structural
copies of business functions and information sub-
jects), integration domains offer ownership areas that
avoid structural differences. In addition, integration
domains are also independent of the underlying soft-
ware architecture and therefore should be robust to-
wards any technical changes. For example, the
consolidation of several business applications should
neither effect the structure of logical artefacts nor in-
tegration domains. Instead, changing the links of log-
ical artefacts to the newly formed consolidated
business applications should suffice to make it con-
sistent with the new software architecture.

Beyond a robustness with respect to changes in the
structural software architecture, integration domains
should also remain stable in cases when the organiza-
tional architecture changes. It should therefore be
avoided to define integration domains as structural
copies of existing organizational units. Instead, inte-
gration domains should be defined on a more granular
level so that in case of a restructuring, existing inte-
gration domains can be reallocated to the newly
formed organizational units.

The challenge for engineering on the integration layer
lies now within making those introduced logical arte-
facts actually tangible. Only if logical artefacts can be
delineated from each other, organizational units will
accept them as substitutes for logical applications and
then can be made fully responsible for their develop-
ment and maintenance costs.

One possibility to make enterprise service tangible is
linking them to a service interface offered on the soft-
ware layer (regardless whether this interface is ex-
posed by a monolithic business application or an
elementary software service). But linking is also pos-
sible when no service-oriented software architecture
is in place, e.g., by linking enterprise services to func-
tions accessible through the GUI of a business appli-
cation.



Enterprise Modelling and Information Systems Architectures
Vol. 3, No. 1, July 2008

Wojciech Ganczarski, Robert Winter34

5.3.1 Example

An example shall be provided that demonstrates the
application of the new OAM in the financials domain.
The work of a financial accounting and a management
accounting unit (both belonging to the finance depart-
ment) is supported by a single highly-integrated ERP
system. Ownership over the ERP system is delineated
between both units using integration domains. On the
one hand, the financial accounting unit is responsible
for the two integration domains core bookkeeping and
legal reporting. On the other hand, the management
accounting unit is responsible for the integration do-
mains planning and management reporting. Each of
the integration domains can be broken down to indi-
vidual enterprise services. E.g., the legal reporting
domain can be further broken down into the two en-
terprise services financial consolidation and financial
statements reporting.

Integration domains and enterprise services are inde-
pendent of the actual ERP system's software architec-
ture. Therefore, even if the underlying software
structures change (e.g., a new version of the ERP sys-
tem is introduced or the provider is switched), enter-
prise services and integration domain structures can
remain stable and therefore provide the organization-
al layer a robust and stable reference to the software
layer. However, it is much more difficult to define in-
tegration domains that are also stable with respect to
organizational changes, since not all possible reor-
ganizations can be anticipated upfront. In the given
example, the definition of the integration domains
would for example support a reorganization that splits
the financial accounting unit into a book-keeping and
a legal reporting unit without having to redefine the
integration domains. However, in case of any other
possible split, the integration domains would have to
be redefined.

6 Conclusion

The results of this paper can be summarized as fol-
lows: First, it has been shown that the construction of
organizational architecture on the one hand and soft-
ware architecture on the other hand adheres to differ-
ent design criteria so that inconsistent structures are
created. Alignment mechanisms, such as ownership
allocation models (OAMs) are required to align these
different architectures. It has been argued that a tra-
ditional OAM for software artefacts on the basis of lo-
gical applications creates opportunities for organiza-
tional units to act opportunistically which leads to
suboptimal solutions on a company-wide level.

Ownership over IS artefacts therefore needs to be de-
fined not on the basis of business applications, but on
the basis of logical artefacts that are structured ac-
cording to organizational design criteria, thereby

more accurately approximating actual ownerships
over business functions and information subjects im-
plied by the organizational architecture.

This paper is focused on a rather static alignment of
organizational and software architecture. Further
analysis might include dynamic aspects. For example,
the flexibility of traditional versus more granular
OAMs could be compared in cases where organiza-
tional architectures change, but software architecture
remains unchanged (at least on a short-term basis).
The assumption so far is that an OAM based on logi-
cal artefacts will be able to adjust more easily to
changed organizational architectures compared to a
mechanism based on logical applications. This hy-
pothesis however needs to be verified by further re-
search.

References

[AiWi08] Aier, Stephan; Winter, Robert: Virtual Decoupling
for IT/Business Alignment – Theoretical Foundations,
Architecture Design and Implementation, Research
Report, Institute of Information Management, Univer-
sity St. Gallen, St. Gallen, 2008, pp. 1–22.

[BrWi05] Braun, Christian; Winter, Robert: A Comprehen-
sive Enterprise Architecture Metamodel and Its Imple-
mentation Using a Metamodeling Platform. In: Enter-
prise Modelling and Information Systems Architectures,
Gesellschaft für Informatik, Klagenfurt 2005, pp. 64–
79.

[Coas37] Coase, Ronald H.: The Nature of the Firm. In: Eco-
nomica, 4 (1937) 16, pp. 386–405.

[Fees97] Feess, Eberhard: Mikroökonomie – Eine spieltheo-
retische Einführung, Metropolis-Verlag, Marburg 1997.

[FeSi95] Ferstl, Otto K.; Sinz, Elmar J.: Der Ansatz des
Semantischen Objektmodells (SOM) zur Modellierung
von Geschäftsprozessen. In: Wirtschaftsinformatik, 37
(1995) 3, pp. 209–220.

[Fres05] Frese, Erich: Grundlagen der Organisation:
Konzepte – Prinzipien – Strukturen, 9. Ed., Gabler,
Wiesbaden 2005.

[HeVe93] Henderson, John C.; Venkatraman, N.: Strategic
alignment: Leveraging information technology for
transforming organizations. In: IBM Systems Journal,
32 (1993) 1, pp. 4-16.

[HiFU94] Hill, Wilhelm; Fehlbaum, Raymond; Ulrich, Peter:
Organisationslehre 1: Ziele, Instrumente und Bedingun-
gen der Organisation sozialer Systeme, 5. Ed., Haupt,
Bern et al. 1994.

[IBM84] IBM: Business Systems Planning - Information
Systems Planning Guide, IBM-Form GE20-0527-4, 4.
Ed., IBM-Corporation, Atlanta 1984.

[IMG99] IMG: PROMET STP: Methodenhandbuch für die
System System- und Technologieplanung, Release 1.0,
IMG AG, St. Gallen 1999.



Enterprise Modelling and Information Systems Architecture
Vol. 3, No. 1, July 2008
On the Interplay of Organizational Architecture and Software Architecture 35

[KaKZ00] Kazman, Rick; Klein, Mark; Clements, Paul: ATAM:
Method for Architecture Evaluation, Software Engineer-
ing Institute Carnegie Mellon University 2000.

[Krae99] Kräkel, Matthias: Organisation und Management,
Neue ökonomische Grundrisse, Mohr Siebeck, Tübingen
1999.

[Mack86] Mackenzie, Kenneth: Organizational Design: the
Organisational Audit and Analysis Technology, Ablex
Publishing Corporation, New Jersey 1986.

[Mart00] Martiensen, Jörn: Institutionenökonomie – Die
Analyse der Bedeutung von Regeln und Organisationen
für die Effizienz ökonomischer Tauschbeziehungen, Ver-
lag Franz Vahlen, München 2000.

[Oest05] Oestereich, Bernd: Analyse und Design mit UML 2,
7. Ed., Oldenbourg Verlag, München, Wien 2005.

[OrBa01] Orlikowski, Wanda J.; Barley, S. R.: Technology
and Institutions: What Can Research on Information
Technology and Research on Organizations Learn From
Each Other? In: MIS Quarterly, 25 (2001) 2, pp. 145–
165.

[ÖsWi03] Österle, Hubert; Winter, Robert: Business Engi-
neering – Auf dem Weg zum Unternehmen des Infor-
mationszeitalters, 2. Ed., Springer, Berlin et al. 2003.

[ÖWH+07] Österle, Hubert; Winter, Robert; Höning, Frank;
Kurpjuweit, Stephan; Osl, Philipp: Business Engineering
– Core-Business-Metamodell. In: WISU – Das Wirt-
schaftsstudium, 36 (2007) 2, pp. 191–194.

[ScSc05] Schelp, Joachim; Schwinn, Alexander: Extending
the Business Engineering Framework for Application
Integration Purposes. In: The 20th ACM Symposium on
Applied Computing (SAC2005), ACM Press, Santa Fe,
New Mexico 2005, pp. 1333–1337.

[ScWi07b] Schelp, Joachim; Winter, Robert: Towards a
Methodology for Service Construction. In: HICSS-40,
IEEE Computer Society 2007, pp. 61–67.

[Schr96] Schreyögg, Georg: Organisation: Grundlagen
moderner Organisationsgestaltung, Gabler Verlag,
Wiesbaden 1996.

[Vari99] Varian, Hal: Grundzüge der Mikroökonomik, Old-
enbourg Verlag, München 1999.

[Wall96] Wall, Friederike: Organisation und betriebliche
Informationssysteme – Elemente einer Konstruktionsle-
hre, Gabler, Wiesbaden 1996.

[WeRo04] Weill, Peter; Ross, Jeanne W.: IT Governance –
How Top Performers Manage IT, Harvard Business
School Press, Boston 2004.

[Wint03b] Winter, Robert: An Architecture Model for Sup-
porting Application Integration Decisions. In: ECIS,
Naples 2003.

[Wint03a] Winter, Robert: Modelle, Techniken und Werk-
zeuge im Business Engineering. In: Österle, H.; Winter,
R. (Hrsg.): Business Engineering – Auf dem Weg zum
Unternehmen des Informationszeitalters, 2. Ed.
Springer, Berlin et al. 2003, pp. 87–118.

[WiFi07] Winter, Robert; Fischer, Ronny: Essential Layers,
Artifacts, and Dependencies of Enterprise Architecture.
In: Journal of Enterprise Architecture, 3 (2007) 2, pp.
7–18.

[Zach82] Zachman, John: Business Systems Planning and
Business Information Control Study: A comparison. In:
IBM Systems Journal, 21 (1982) 1, pp. 31–53.

Wojciech Ganczarski

Institute of Information Management
University of St. Gallen
Mueller-Friedberg-Strasse 8
9000 St. Gallen
Switzerland
wojciech.ganczarski@unisg.ch

Prof. Dr. Robert Winter

Institute of Information Management
University of St. Gallen
Mueller-Friedberg-Strasse 8
9000 St. Gallen
Switzerland
robert.winter@unisg.ch


