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Abstract: Related-cipher attack was introduced by Hongjun Wu in 2002 [25]. We can
consider related ciphers as block ciphers with the same round function but different
number of rounds. This attack can be applied to related ciphers by using the fact that
their key schedules do not depend on the total number of rounds. In this paper we
introduce differential related-cipher attack on block ciphers, which combine related-
cipher attack with differential cryptanalysis. We apply this attack to the block ciphers
ARIA [15] and SC2000 [24]. Furthermore, related-cipher attack can be combined with
other block cipher attacks such as linear cryptanalysis, higher-order differential crypt-
analysis, and so on. With these combined attacks we also analyze some other block
ciphers which use flexible number of rounds, SAFER++, CAST-128 and DEAL.
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1 Introduction

Related-key attack [4] allows the cryptanalyst to obtain plaintext and ciphertext pairs by
using different but related keys. For this attack, the cipher is fixed while the keys are
related. For related-cipher attack [25], the key is fixed while the ciphers are related. In
[25] the author considered related ciphers as block ciphers with the same round function
but different number of rounds. In related ciphers their key schedules do not depend on
the total number of rounds. Related-cipher attack can be applied to block ciphers with
flexible number of rounds, which have some weaknesses on key schedules. This attack
has great affect on protocols, where changing the cipher might introduce weaknesses. As
an example of its applications, this kind of attack can be applied to WinZIP’s encryption
mechanism [23].

In this paper we introduce differential related-cipher attack on block ciphers. This attack
combines related-cipher attack with differential cryptanalysis by exploiting a weakness of
key schedule. With this method we analyze the block ciphers ARIA [15] and SC2000
[24]. We also combine related-cipher attack with other block cipher attacks such as linear
cryptanalysis and higher-order differential cryptanalysis. With these methods we analyze
some other block ciphers with flexible number of rounds, SAFER++ [18], CAST-128 [1]
and DEAL [13]. Finally, we summarize our results.

2 Key-Schedule Cryptanalysis

There are some attacks which use some weaknesses of key schedules of block ciphers,
such as weak-key attack [10, 11], slide attack [8, 9], related-key attack [12, 4], and related-
cipher attack [25].

In weak key attack, weak keys can be defined as the keys which are more vulnerable to
block cipher cryptanalysis such as differential cryptanalysis, linear cryptanalysis, and so
on. Due to the simple design of the key schedule of IDEA, various weak-key attacks on
IDEA [16] were introduced in [10, 11, 7]. Since IDEA uses multiplication in modular
216 + 1, the round keys such as 0 and 1, which can be used in the multiplication, have a
weakness against differential or linear cryptanalysis. For details, see [10].

Slide attack exploits the degree of self-similarity of a block cipher. The attack is applicable
to iterative block ciphers with a periodic key schedule and does not depend on the number
of rounds. It also uses a weakness of the key schedule of block ciphers.

Related-key attack uses relationships between keys which are different but related. For
this attack the cipher is fixed while the keys are related.

Related-cipher attack can be applied to the ciphers with flexible number of rounds. In
[25] they applied the attack to the block cipher SQUARE and the AES variant [19] which
was proposed at ACISP 2002. An interesting feature of the related-cipher attacks is that
they are independent of the number of rounds. They only depend on the difference of
the number of rounds. While the related-key attack uses different but related keys for
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the fixed number of rounds, the related cipher attack uses related ciphers with flexible
number of rounds. If the difference of round numbers between related ciphers is small, it is
more vulnerable to the related-cipher attack. However typical related-cipher attack is more
difficult to apply as the difference of round numbers becomes bigger. In order to overcome
this problem we combine related-cipher attack with differential cryptanalysis, which we
call differential related-cipher attack (or, related-cipher differential attack). Moreover we
can also extend related-cipher attack by combining other block cipher attacks, such as
linear cryptanalysis, higher-order differential cryptanalysis and so on.

3 Differential Related-Cipher Attack on ARIA

3.1 The Block Cipher ARIA

ARIA is the 128-bit block cipher with an involution SPN structure. ARIA has 10/12/14
rounds for 128-/192-/256-bit keys, respectively.

Inverse of involution Ciphers such as Khazad [2] and Anubis [3] differs from the forward
operation in the key scheduling only. This property can reduce the required chip areas in
a hardware implementation as well as the code and table size. However, there were found
some flaws caused by the totally involution structure [6]. In this point of view, ARIA was
not designed to be a totally involutional block cipher. More precisely, the substitution layer
is not an involution.

Each of round of the cipher consists of three layers ; Round key addition layer, Substitution
layer, and Diffusion layer. The substitution layer uses four S-boxes such that S1, S2, S−1

1 ,
and S−1

2 , where S1 and S2 are defined as an affine transformation of the inverse function
over GF (28). The diffusion layer uses a 16× 16 binary matrix A.

The two substitution layers, type 1 and 2, are arranged for ARIA to be an involution even
though each of two substitution layers is not an involution. Let SL1 : GF (28)16 →
GF (28)16 be the S-box layer type 1 and SL2 : GF (28)16 → GF (28)16 be the S-box
layer type 2. Then

SL1 = ( S1 , S2 , S−1
1 , S−1

2 , S1 , S2 , S−1
1 , S−1

2 , S1 , S2 , S−1
1 , S−1

2 , S1 , S2 , S−1
1 , S−1

2 )

SL2 = (S−1
1 , S−1

2 , S1 , S2 , S−1
1 , S−1

2 , S1 , S2 , S−1
1 , S−1

2 , S1 , S2 , S−1
1 , S−1

2 , S1 , S2 )

It follows that SL2 ◦ SL1 and SL1 ◦ SL2 be the identity transformation.

The matrix A : GF (28)16 → GF (28)16 used in the diffusion layer is an involution, i.e.,
A2 = I . In [14] they gave how to construct an involution binary 16 × 16 matrix with a
branch number 8. They indicated that the maximum branch number of invertible 16× 16
binary matrices is 8 while the maximum branch number of invertible 16×16 matrices over
GF (28) is 17.

They also showed that ARIA has the cryptanalytic properties such as the resistance to dif-
ferential, linear, impossible differential, and truncated differential cryptanalyses in [14].
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The Cipher ARIA: Let σ[eki] be the i-th round key addition layer with encryption key
eki and A be the diffusion layer. Define γi be the substitution layer such that γi is SL1
if i is odd and SL2 if i is even. Then the i-th round of ARIA is denoted by φ[eki] =
A ◦ γi ◦ σ[eki].

We can denote t-round ARIA with respect to 128-/192-/256-bit key sizes as the following
(t = 10, 12, 14);

ARIAt(MK) = σ[ekt+1] ◦ γt ◦ σ[ekt] ◦ φ[ekt−1] ◦ · · · ◦ φ[ek2] ◦ φ[ek1].

Key Schedule of ARIA: ARIA uses different key sizes (128/192/256 bits) with different
number of rounds, respectively. The key schedule of ARIA consists of two parts, the
initialization and round key generation.

In the initialization part, four 128-bit values W0, W1, W2, and W3 are generated from the
master key MK by using a 3-round Feistel cipher. The MK can be of 128, 192, or 256
bits. First, we fill out the 128-bit value KL with bits from MK and use what is left in
MK on the 128-bit value KR. The remaining on KR is filled with zeroes as follows.

(KL||KR) = MK||00 · · · 0.

After we obtain the values Wi’s from the expanding key (KL||KR) (Wi depends only on
(KL||KR)), we obtain the round key eki in the round key generation part as the following,
where * a and ' a denote the a-bit left and right rotations, respectively;

ek1 = (W�7
0 ) ⊕ (W�11

1 ), ek2 = (W�22
1 ) ⊕ (W2),

ek3 = (W�17
2 ) ⊕ (W�16

3 ), ek4 = (W�14
0 ) ⊕ (W�32

3 ),
ek5 = (W�21

0 ) ⊕ (W�34
2 ), ek6 = (W�33

1 ) ⊕ (W�48
3 ),

ek7 = (W�44
1 ) ⊕ (W�51

2 ), ek8 = (W�28
0 ) ⊕ (W�64

3 ),
ek9 = (W�55

1 ) ⊕ (W�80
3 ), ek10 = (W�35

0 ) ⊕ (W�68
2 ),

ek11 = (W�42
0 ) ⊕ (W�66

1 ), ek12 = (W�77
1 ) ⊕ (W�85

2 ) ⊕ (W�96
3 ),

ek13 = (W�49
0 ) ⊕ (W�102

2 ), ek14 = (W�119
2 ) ⊕ (W�112

3 ) ⊕ (KR�64),
ek15 = (W�56

0 ) ⊕ (W�88
1 ) ⊕ (KR).

Note that the number of rounds ARIA uses is 10, 12, or 14 which depends on the size 128,
192, or 256 bits of master key. Since there is one more key addition layer in the last round,
we need 11, 13, or 15 round keys depending on the sizes of master key.

3.2 Attack on ARIA

ARIA has different number of rounds with respect to the sizes of key bits. However, since
the key schedule does not depend on the size of key bits and has relatively simple, we
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can construct semi-equivalent keys which we can use in differential related-cipher attack
(semi-equivalent keys will be defined in the below).

From a master key MK, we construct the 256-bit value (KL||KR), which is equal to
MK||00 · · · 0. As mentioned before, we exploit the 256-bit value (KL||KR) which con-
struct each round key eki.

Let K be an arbitrary 128-bit key value. If the size of the master key is 128 such that
MK = K, (KL||KR) equals to K||0128. Furthermore, if the MK has 192-bit size
with MK = K||064, the (KL||KR) equals to K||0128(= (K||064)||064). Similarly, if
the MK has 256-bit size with MK = K||0128, (KL ||KR) has the same value just
like the 128 and 192 bit cases. We define the keys which have the same (KL||KR) as
semi-equivalent keys.

Let us consider the case that 128-bit and 192-bit keys are semi-equivalent. Let K be the
128-bit key value and P be a plaintext and C and C � be the corresponding ciphertexts with
respect to the key size. Then we have the following;

C = ARIA10(K)(P )

= σ[ek11] ◦ γ10 ◦ σ[ek10] ◦ φ[ek9] ◦ · · · ◦ φ[ek2] ◦ φ[ek1] (P )

C � = ARIA12(K||064)(P )

= σ[ek13] ◦ γ12 ◦ σ[ek12] ◦ φ[ek11] ◦ · · · ◦ φ[ek2] ◦ φ[ek1] (P )

= σ[ek13] ◦ γ12 ◦ σ[ek12] ◦ φ[ek11] ◦ A ◦ σ[ek11] (C)

Since A is linear and involutional, we have the following relation between C and C � (See
Fig. 3).

C � = σ[ek13] ◦ SL2 ◦ A ◦ σ[A(ek12)] ◦ SL1 ◦ σ[ek11 ⊕ A(ek11)] (A(C))

⇔ A(C) = σ[ek11 ⊕ A(ek11)] ◦ SL1−1 ◦ σ[A(ek12)] ◦ A ◦ SL2−1 ◦ σ[ek13] (C �)

Note that the inverse transformation of SL2 is SL1 and vice versa. The above equation
is same as 2.5-round ARIA relation between C and C �. Analysis of this type appeared in
[21] by using algebraic equations. In this paper, we find the round keys, ek11, ek12, and
ek13 directly by using the technique in differential cryptanalysis. Let us see the details.

Let X = (X1, X2, · · · , X16) be an 128-bit value, where Xi be an 8-bit value for each. Let
(C1, C �

1) and (C2, C �
2) be two ciphertext pairs of related-cipher corresponding to plaintexts

P1 and P2, respectively.

Note that, in differential cryptanalysis, if we know the two right values of S-box inputs
and output difference, then we can obtain the right key value using the difference table of
S-box.

In order to get ek13 and ek12, we first guess the seven 8-bit values of ek13 (ek4
13, ek5

13,
ek7

13, ek9
13, ek10

13 , ek14
13 , ek15

13) and the one 8-bit value of A(ek12) (A(ek12)1) which affect
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Figure 1: Related Ciphers between the 10- and 12-round ARIA

to the first S-box input of SL1−1, then we can determine whether the guessing key is right
or not, using the difference tables of S-boxes. Since the probability that a random key
passes the test is about 2−8, we can obtain the right key values with about 9 pairs since
264 × 2−8·9 is less than 1.

By observing the second S-box in the SL1−1, we can obtain 5 more 8-bit keys of ek13

and one 8-bit key A(ek12)2. We can also get the remaining four 8-bit values of ek13 in
the similar way. So we can find the right key values of ek13 and 4 bytes of A(ek12). After
finding ek13, we can find the right A(ek12) values using the difference tables of S-boxes.

If we find ek13 and A(ek12), then we can know the input value of SL1. Let us assume the
value as X . Therefore we have the following equation ;

A(C)⊕ (ek11 ⊕A(ek11)) = X ⇔ (A + I)(ek11) = A(C)⊕X,

where I be the 16×16 identity matrix. Since the rank of A+ I is 14, there exist about 216

equivalent round keys in the eleventh round. However we can not determine the right key
in the equivalent keys. Other methods such as exhaustive key search are need to determine
exactly.

This attack needs about 264 S-box table up operations with some memories. Our attack
can be successful with only about 9 related-cipher pairs.

We can also attack on the related-ciphers between the 12 and 14 round ARIA if the keys
are semi-equivalent in a similar way. Our attack is possible because ARIA uses flexible
rounds with respect to different key sizes and the key schedule of ARIA is independent of
the number of rounds.

4 Differential Related-Cipher Attack on SC2000

This section briefly describes the block cipher SC2000[24] and then presents differential
related-cipher attack on SC2000.

SC2000 is a 128-bit block cipher with 128, 192 and 256-bit key sizes and it has the number
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of 6.5/7.5/7.5 rounds for 128-/192-/256-bit keys, respectively.

One round of SC2000 is divided into two half rounds; The first half round is defined by
I ◦ B ◦ I where the I is a bit-wise key XOR function and the B is a nonlinear function
which consists of 32 4-bit S-box S4. The last half round is defined by R × R where the
R is a data randomizing function and × represents a cross connection (a0, a1, a2, a3) →
(a2, a3, a0, a1), (ai: 32-bit string). Thus one round function of SC2000 consists of (R ×
R) ◦ I ◦ B ◦ I . Note that each round requires two 128-bit keys (i.e., the first one is used
in the I part before the B function and the second one is used in the I part after the B
function) and the last round of 6.5- and 7.5-round SC2000 consists of I ◦B ◦ I ◦ (R×R).

The key schedule of SC2000 is independent of the key size. This fact enables us to con-
struct semi-equivalent keys for 128-bit key and 192-bit key or 128-bit key and 256-bit key.
That is, we can find a number of weak keys which allow us to construct related-ciphers for
SC2000.

Before the key is inserted into the key schedule algorithm, the master key is expanded to
eight 32-bit user keys as follows;

K1 = (K1
1 ,K2

1 ,K3
1 ,K4

1 ) −→ (K1
1 , K2

1 , K3
1 , K4

1 , K1
1 , K2

1 , K3
1 , K4

1 )
K2 = (K1

2 ,K2
2 , ... , K6

2 ) −→ (K1
2 , K2

2 , K3
2 , K4

2 , K5
2 , K6

2 , K1
2 , K2

2 )
K3 = (K1

3 ,K2
3 , ... , K8

3 ) −→ (K1
3 , K2

3 ,K3
3 ,K4

3 ,K5
3 , K6

3 , K7
3 ,K8

3 )

where K1, K2, and K3 are 128-/192-/256-bit keys, respectively and each of Kj
i s is a 32-bit

key string.

If the 128-bit master key is of the form K1 = (K1
1 , K2

1 , K1
1 , K2

1 ) and the 192-bit master
key is of the form K2 = (K1

1 ,K2
1 ,K1

1 ,K2
1 ,K1

1 ,K2
1 ) where K1

1 and K2
1 are arbitrary 32-

bit key strings, then these two keys generate the same round keys for the first 6.5 rounds of
SC2000. Similarly, if the 128-bit master key is of the form K1 = (K1

1 , K2
1 , K3

1 , K4
1 ) and

the 256-bit master key is of the form K3 = (K1
1 ,K2

1 ,K3
1 ,K4

1 ,K1
1 ,K2

1 ,K3
1 ,K4

1 ) where
K1

1 ,K2
1 ,K3

1 and K4
1 are arbitrary 32-bit key strings, then these two keys also generate the

same round keys for the first 6.5 rounds of SC2000. So these keys are semi-equivalent
keys which we can use for our attack.

We now exploit the above semi-equivalent keys (K1, K2) or (K1, K3) to retrieve the last
half round key of 7.5-round SC2000. Let P be a plaintext and C and C � be the correspond-
ing ciphertexts with respect to the key size. Then we have the following relation between
C and C �:

C = SC20006.5(P, K1)
C � = SC20007.5(P, Ki) = I ◦B ◦ I ◦ (R×R) ◦ SC20006.5(P, Ki)

= I ◦B ◦ I ◦ (R×R) ◦ SC20006.5(P, K1)
= I ◦B ◦ I ◦ (R×R)(C)
= I ◦B ◦ I(D)

where i is 2 or 3 and D = (R×R)(C).
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Figure 2: Attack on related ciphers between the 6.5- and 7.5-round SC2000

Using the technique of the differential related-cipher attack described in the previous Sec-
tion we can find the 128-bit round keys RK and RK � (See Fig. 2). Let (C1, C �

1) and
(C2, C �

2) be two ciphertext pairs of related-cipher corresponding to plaintexts P1 and P2,
respectively. Then we can get the values D1 = (R × R)(C1), D2 = (R × R)(C2), and
the input/output differences of the B function, Δ = D1 ⊕ D2, ∇ = C �

1 ⊕ C �
2. Thus we

can find the round key RK by using the difference table of the 4 bit S-box, S4. For one
pair of related-cipher, the difference table suggests on average two candidates of each 4-bit
right key. So we exploit two related-cipher pairs to find the round key RK. Once we find
RK, we can easily find another round key RK �. This attack requires about 26(= 2 · 32)
difference table of S4 look up operations.

5 Related-Cipher Attacks on SAFER++, CAST-128 and DEAL

In this section we devise related-cipher attacks on SAFER++ [18] and CAST-128 [1] using
the techniques in linear cryptanalysis and higher-order differential cryptanalysis, respec-
tively.

SAFER++ is a 128-bit block cipher and it has the number of 7/10 rounds for 128-/256-bit
keys, respectively. The key schedule of SAFER++ does not depend on the key size. So we
can construct semi-equivalent keys as follows; If the 128-bit key is K and the 256-bit key
is of the form K � = (K, K) where K is a arbitrary 128-bit key string, then these two keys
generate the same round keys for the first 7 rounds of SAFER++.

Let us consider the case that 128-bit and 256-bit keys are semi-equivalent, i.e., (K, K �).
Assume that P is a plaintext and C and C � are the corresponding ciphertexts with respect
to the key size. Then we have the following relation between C and C �;
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C = SAFER + +7(P, K) = σ(k15) ◦ E(k14, k13) ◦ · · · ◦ E(k2, k1)

C = SAFER + +10(P, K �) = σ(k21) ◦ E(k20, k19) ◦ · · · ◦ E(k2, k1)

= σ(k21) ◦ E(k20, k19) ◦ E(k18, k17)

◦A ◦ σ(k16) ◦ XL(C),

where E(k2i, k2i−1)(=A◦σ(k2i)◦XL◦σ(k2i−1)) is the i-th round encryption. The σ is a
function of the key addition and the XL is a nonlinear function and A is a linear function.
For details, see the paper [18].

From the above equation we obtain a relation of the incomplete 3 round SAFER++ be-
tween C and C � and apply it to the technique of the linear cryptanalysis on 3-round
SAFER++ presented in [22], which requires about 281 known plaintexts and 2101 encryp-
tions. Therefore we can succeed in attacking the incomplete 3 round SAFER++ with the
complexity which is not larger than the complexity presented in [22].

We now describe a related-cipher attack on CAST-128. CAST-128 is a 128-bit block
cipher and it has the number of 12/16 rounds for the keys between 40 and 80 bits/the keys
between 80 and 128 bits, respectively. If the key between 40 and 80 bits is K and the key
between 81 and 128 bits is of the form K � = K||0 · · · 0, then these two keys generate the
same round keys for the first 12 rounds of CAST-128. Similarly, we obtain a relation of
4-round CAST-128 by using the above semi-equivalent key and apply it to the higher order
differential cryptanalysis on 5-round CAST-128 presented in [20], which needs about 217

texts and 240 encryptions and thus we can succeed in attacking 4-round CAST-128 with
the complexity which is not larger than the complexity presented in [20]. Note that this
attack is a chosen ciphertext and adaptive chosen plaintext attack for the related ciphers.

Furthermore, we can perform a related cipher attack on DEAL [13], which complexity
requires less than it presented in [13]. But, since the attack method is almost same as the
previous case, we omit a detail description for this attack.

6 Conclusion

It is difficult to apply related-cipher attack as the difference of numbers of rounds be-
tween related ciphers grows bigger. In order to overcome this problem we have combined
related-cipher attack with differential cryptanalysis, linear cryptanalysis, and higher order
differential cryptanalysis. With these combined attacks we have analyzed the block ci-
phers, ARIA, SC2000, SAFER++, CAST-128, and DEAL. Table 1 summarizes our results
of related-cipher attacks.

Finally, we summarize what kinds of block ciphers may be vulnerable to the combined
related-cipher attacks, and we suggest a simple design method for avoiding these kinds of
attacks. The combined related-cipher attacks can be applied to a block cipher that has the
following three properties:
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Table 1: Summary of Related-Cipher Attacks

Related-Cipher1 Combined # Rounds2 # Semi- Complexity3 Type4

(Cipher(a)/Cipher(b)) Attack (c/d) Equi. Keys (Data/Time) (Cipher(a)/Cipher(b))

ARIA(128)/ARIA(192) Differential 10/12 264 9RC/264T KP/CP

ARIA(192)/ARIA(256) Differential 12/14 264 9RC/264T KP/CP

SC2000(128)/SC2000(192) Differential 6.5/7.5 264 2RC/233T KP/CP

SC2000(128)/SC2000(256) Differential 6.5/7.5 2128 2RC/233T KP/CP

DEAL(128)/DEAL(256) Differential 6/8 2128 ≤ 270RC/≤ 2121E KP/CP

DEAL(192)/DEAL(256) Differential 6/8 264 ≤ 270RC/≤ 2121E KP/CP

SAFER++(128)/SAFER++(256) Linear 7/10 2128 ≤ 281RC/≤ 2101E KP/CP

CAST-128(m)/CAST-128(n) Higher-Order 12/16 2m ≤ 217RC/≤ 240E CC/ACP

1
a,b : The size of key , m, n : 40 ≤ m < 80, 80 ≤ n ≤ 128.

2 c,d : Each number of rounds for Cipher(a) and Cipher(b)

3 RC : Related Cipher pairs, T : Table look-up operations, E : Encryption units

4 KP : Known Plaintext, (A)CP : (Adaptive) Chosen Plaintext, CC : Chosen Ciphertext

• The block cipher supports different key lengths (e.g., key sizes S(short) and L(large),
S < L).

• For large keys, the block cipher runs through more rounds than for short keys (e.g.,
X rounds for key size S and Y rounds for key size L, and X < Y ).

• Semi-equivalent keys exist (e.g., an S-bit key KS and an L-bit key KL are semi-
equivalent, if the round keys used in the first X rounds of an encryption under KL
are the same as the round keys of an encryption under KS (which runs through X
rounds).

If the difference Y − X is small, it may be feasible to attack the cipher, i.e., to find the
round keys used in these Y − X rounds. Therefore, if one would design a block cipher
with flexible number of rounds, in order to avoid these kinds of attacks one should avoid a
key schedule that create semi-equivalent keys. The simple way to achieve this is to design
a key schedule to depend on the total number of rounds.
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