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Type Inference on Wikipedia List Pages
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Abstract: The extraction of information from Wikipedia has led to a huge amount of knowledge
made widely available by projects like the DBpedia2. So far, most effort is put into extracting ex-
plicitly encoded information e.g. infoboxes. However, Wikipedia also contains a huge amount of
implicit knowledge. One example for an untouched source of implicit knowledge are Wikipedia’s
List of pages, in which multiple entities with a common type are collected. If this common type is
known, it can be added to all entities of the list. Moreover, entities which are part of this list but not
yet presented in the DBpedia can be added. This offers a huge potential for extending the DBpedia
by adding missing type information. This paper proposes an approach to extract the shared types of
a list using statistical methods and natural language processing. For a list entity, it was possible to
infer new types with a precision of 86%.
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1 Introduction

In the year 2006 Tim Berners-Lee coined the term linked data, which describes a set of best

practices on how to expose and connect data from different sources [BHBL09]. Since then

the linked data movement has experienced a remarkable growth. Over the years multiple

classical datasets have been integrated. One of the most important techniques for repre-

senting and linking entities is the Resource Description Framework (RDF) [GB14]. RDF

uses subject-predicate-object triples to describe relationships between entities and make

them available for automatic interpretation.

Maybe the most important source of information is Wikipedia3, one of the world’s most

visited websites. With around 5 million articles in the English version alone4, it is the

largest encyclopedia available. The DBpedia project5 is one approach to extract the infor-

mation from Wikipedia and make it accessible in an abstracted form. DBpedia is a com-

munity driven database, which aims at extracting structural information from Wikipedia

and making it publicly available using the RDF model. Structural information includes

”infobox templates, categorisation information, images, geo-coordinates, links to external

web pages and links across different language editions of Wikipedia” [Au07]. Currently

the English version of DBpedia contains around 3.6 million entities including around

763,000 persons, 572,000 places, and 192,000 organizations. On average an entity has

four types associated with it [DB16a].

1 Hasso-Plattner-Institute, 14482 Potsdam, Germany, {patrick.kuhn, sven.mischkewitz, nico.ring,
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2 http://dbpedia.org/
3 https://www.wikipedia.org/
4 https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia/, April 2016
5 http://wiki.dbpedia.org/
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The great majority of extraction has been focused on information, which is explicitly stated

in Wikipedia e.g. infoboxes. However there is also information, which can be concluded

by studying the relations and structures of resources (implicit knowledge). One example of

a currently untouched source of information are Wikipedia’s List of pages6. List of pages

are collections of multiple entities grouped together under a shared set of types.

After the types describing a list have been identi®ed they can be added to every member

of the list. As there are more than 350 thousand list of pages7 in the English Wikipedia

this approach offers a huge opportunity to enrich the DBpedia. This information is partic-

ularly important because ”proper classi®cation of entities into types is indispensable for

any Information Extraction (IE) system” [Po12].

Table 1 shows four entities from the list of German scientists8. The row parsed types

shows an excerpt of the associated DBpedia types. As Franz Aepik is not represented in

the DBpedia, he does not have any type information. Scientist, Person, Agent, and Thing

can be determined as the shared types for the list and added to every member. In this case

the type dbo:Scientist can be added to the entity Roland Benz. Additionally it is possible

to add missing entities such as Franz Aepik with all associated types to the DBpedia.

Leonhard Euler Carl Friedrich Gauss Roland Benz Franz Aepik

Parsed types

dbo:Scientist

dbo:Person

dbo:Agent

owl:Thing

dbo:Scientist

dbo:Person

dbo:Agent

owl:Thing

dbo:Person

dbo:Agent

owl:Thing

missing in

DBpedia

Missing types dbo:Scientist

dbo:Scientist

dbo:Person

dbo:Agent

owl:Thing

Tab. 1: List of German scientists

This paper proposes an approach to automatically extract type information using the in-

formation in Wikipedia’s list of pages combined with the information from DBpedia. This

type information can be used to extend the DBpedia by adding missing types and even

adding new entities.

This paper is structured as follows: Section 2 discusses previous work. The approach to

extract common types is presented in Section 3. After the entities belonging to a list have

been extracted from Wikipedia as described in Section 3.1, candidate types are proposed.

These types are then ranked using statistical methods and natural language processing as

described in Section 3.3. To evaluate the accuracy of the proposed types a test set has been

created as described in Section 4. This test set is used to evaluate the approach as discussed

in Section 5.

6 https://en.wikipedia.org/wiki/List of lists of lists/
7 Titles starting with ”List of” in the title dump: http://wiki.dbpedia.org/Downloads2015-04#titles/
8 https://en.wikipedia.org/wiki/List of German scientists/
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2 Related Work

The goal of this work is to increase the type coverage of DBpedia entities. In linked data,

type information is represented by the rdf:type predicate. This predicate associates an en-

tity with an ontology. In the case of linked data the term ontology most often refers to

a set of classes, their properties, and relations between the class members. The ontology

provided by DBpedia is a ”shallow, cross-domain ontology” [DB16b], which covers 685

classes. The DBpedia ontology is pretty small and not all concepts can be expressed by

only using classes from it. Therefore multiple other ontologies such as YAGO [SKW07]

have been developed. In contrast to DBpedia, the YAGO ontology consists of more than

350,000 classes. These classes are derived from WordNet [Mi95] and Wikipedia cate-

gories. The problem with the YAGO ontology is that its ”granularity is often too high”

[Ga12]. A result of a larger ontology is that the overlap of types is smaller. Since our algo-

rithm uses this overlap to infer new types, better results can be achieved using the DBpedia

ontology.

In general, approaches can be divided into methods which work directly on the information

of the Wikipedia page and methods which work on the information provided by linked

data.

Tipalo [Nu13] falls into the former category and tries to extract de®ning statements (e.g.

”XX is a YY”) of an entity from the abstract of its corresponding Wikipedia page. The

type information of these statements are extracted and matched against WordNet types.

The approach reaches an overall recall of 74% with a precision of 76%. This proves that

the abstract can contain useful type information. Because generating information from

natural languages is always error prone, we only use the content of Wikipedia pages to

further con®rm already extracted types instead of generating new ones.

Giovanni et al. introduced a method [Nu12], which makes use of the links between Wikipedia

pages to infer type information. The authors report a recall of 86% and a precision of 52%.

However the approach is limited to only predict one of the nine top level classes, whereas

our approach can be used to infer types from the complete DBpedia ontology.

One of the ®rst paper which only uses linked data to extract new information is discussed

by Neville et al. [NJ00]. They train a model on already labeled data and iteratively apply

this model to ®nd new types for unlabeled entities. This yields an accuracy of 82%.

Another approach which makes use of the relations of existing linked data sources is pre-

sented in [PB13]. The underlying idea of this approach is that each relation is connected to

a speci®c type with a given probability. This can be used to infer new tyes using a weighted

voting approach. This leads to F-measure of 88.5%. In contrast to these approaches which

only rely on the linked data itself, our approach combines information from Wikipedia and

linked data.

This paper extends the approach of Paulheim et al. [PP13], which proposes a two staged

process to extract type information from Wikipedia’s list of pages. In the ®rst step candi-

date classes are identi®ed based on statistical methods. Second, these classes are ranked
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according to information gained by natural language processing frameworks. Paulheim et

al. presents this method from a theoretical point of view and list a set of problems, such

as fail-safe extraction and suitable scoring functions [PP13], which have to be solved in

order to actually implement this process.

3 Extracting Common Types

Given all entities belonging to a list of page the main goal is to ®nd a set of DBpedia

types which describes the entire list. Figure 1 shows the stages of the approach. In order

to achieve this, the ®rst step is to parse and translate the Wikipedia article into an abstract

representation. From this representation the actual list members and their types have to be

determined. Once this is done the types are ranked according to their relevance for the list.

From this ranking a set of ®tting types is extracted.

Fig. 1: The linear process from Wikipedia articles to mined data.

3.1 Parsing Wikipedia

Multiple solutions already exist for converting Wiki markup into abstract representations.

A ¯exible solution is provided with the json-wikipedia parser9. The json-wikipedia parser

utilises the TU-Darmstadt parser10 to convert Wiki markup text from a XML dump [Wi16a]

into JSON11. To satisfy all needs for the extraction of list pages, adaptions12 have been

made to json-wikipedia and the TU-Darmstadt parser. To ®lter unimportant sections like

External Links, knowledge about the entity links in the respective section and paragraph

on the Wikipedia page has to be preserved. Besides that, there are constructs in the Wiki

markup syntax which are not recognized by the original TU-Darmstadt parser e.g. lists

composed of multiple columns.

The analysis of 2000 List of pages13 showed, that lists can be categorized into three major

groups:

9 https://github.com/Wikilist-Extraction/json-wikipedia/
10 http://mvnrepository.com/artifact/de.tudarmstadt.ukp.wikipedia/
11 http://json.org
12 https://github.com/Wikilist-Extraction/json-wikipedia/
13 http://windheuser.com/p/random2000.zip/
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• Bullet point lists: Lists that consist of a sequence of bullet points followed by the

entity.

• Table lists: Lists containing entities represented in one column of a table.

• Mixed lists: Lists without a clear structure or with multiple different representa-

tions.

We concentrate on the extraction of knowledge from bullet point and table lists, since they

exist more often in Wikipedia. Furthermore bullet point and table lists provide some kind

of structure which makes extraction less error prone.

When dealing with bullet point lists the greatest dif®culty in parsing arises from nested

lists. Furthermore other edge cases have to be considered like multiple entities behind a

bullet point.

When extracting table lists, it is often unclear which column is the main column and which

are only supportive columns describing the main column. There are several factors affect-

ing the probability of a column being the main one. Features for identifying the main

column are its index and the ratio of unique entities. Moreover the list entities in the main

column are often described by the other columns. Table 2 shows the list of NBA cham-

pions with the respective number of their titles and their division. The entities in the club

column are described by the other columns using the dbp:division and dbo:title predicate.

Many relations to another column is a clear indication, that this column contains the list

entities. These relations can be extracted using the DBpedia.

This feature is converted to a numerical value by calculating the average number of con-

nections from an entity to the other columns. Once all these features have been normalized

between zero and one, the column with the highest weighted sum of these features is cho-

sen as the main column. The weights have been determined using grid search.

Rank Club Division Title

1 Boston Celtics Atlantic 17

2 Los Angeles Lakers Paci®c 16

3 Chicago Bulls Central 6

4 San Antonio Spurs Southwest 5

Tab. 2: List of NBA-Champions14

3.2 Error detection

One central problem is, that not every concept, can be mapped to a DBpedia type. The list

of dance pop artists15 is an example for a list whithout a direct counterpart in the DBpedia

ontology. The types dbo:MusicalArtist and dbo:Band both describe the content of the list

14 https://de.wikipedia.org/wiki/National Basketball Association/
15 https://en.wikipedia.org/wiki/List of dance-pop artists
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pretty well, but are distinct on a very top level. Musical Artists is a subclass of Person,

whereas Band is a subclass of Organisation.

Another problem is that different writing styles in combination with the loose structured

syntax make it impossible to take all special cases into account. As a consequence of this

a criteria to detect errors is needed. One clear indicator that the wrong entities have been

extracted is a great variety of not closely related types in the result set. To detect this a

notion to quantify semantic relatedness between two types is needed. For this, an adapted

version of the Leacock and Chodorow similarity [LC98] is used. The original Leacock and

Chodorow similarity is de®ned by

Sim(T 1,T 2) =− log(
distance(T 1,T 2)

2∗depth
)

where distance is de®ned by the length of the shortest path between two types in the

ontology tree and depth being the maximum depth of the ontology.

owl:Thing

Activity

Game Sport

Boxing

BoxingCategory BoxingStyle

Athletics

Agent

Fig. 2: DBpedia ontology

Figure 2 shows an extract of the DBpedia ontology tree. From this diagram it can be seen

that the similarity between two terms is highly dependent on the level of a node. For ex-

ample dbo:BoxingCategory and dbo:BoxingStyle are much closer related then dbo:Activity

and dbo:Agent, even though the Leacock Chodorow similarity is the same. For this reason

we use the sum of the depths instead of the taxonomy depth for normalization.

Sim(T 1,T 2) =− log(
distance(T 1,T 2)

depth(T 1)+depth(T 2)
)

3.3 Ranking Types

The open question is how to select a set of type candidates relevant for the whole list.

Therefore identi®cation of types speci®c to the entire list is required. As proposed by

Paulheim this can be achieved by statistical means and textual evidence [PP13].
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Statistical means: Many resources are annotated with generic types like owl:Thing. If a

type occurs with a much higher frequency in a list than in the DBpedia, it is likely that

this type is signi®cant for this list. For example having multiple entities with the type

dbo:Scientist attached is far more expressive than the the type owl:Thing. This can be

expressed with the TF-IDF statistic. TF-IDF indicates how relevant a single term is to a

document in a corpus. In the scope of type properties of a DBpedia entity this means types

should occur frequently in the generated type set (term frequency) but should be speci®c

to the considered list as well (inverse document frequency) [PP13]. Term frequency in our

case denotes the relative frequency that a type occurs in all list members. Inverse term

frequency refers to how common the type is in the whole DBpedia. The TF-IDF weight is

computed as follows:

t f Id f (type) = t f (type)∗ id f (type)

t f (type) =
countInList(type)

#entitiesInList

id f (type) = log(
#entitiesInDBpedia

countInDBpedia(type)
)

countInList(type) is the number of entities in the list with the given type. entitiesInList

states how many entites where found in the list. Analogously, countInDBpedia(type) and

entitiesInDBpedia counts the entities and types in the entire DBpedia.

Textual evidence: The statistical measure is further supported by searching for textual

appearances of the type in the Wikipedia articles. The list page and the wikipages of the

respective entities are used to scan for type labels. Title, abstract, and categories are consid-

ered as they are the most accurate description of an entity. Abstracts in Wikipedia articles

tend to describe more than the reason why an entity is a member of a speci®c list. There-

fore matches in the title and categories are weighted stronger than matches in the abstract.

To improve matching for word variations in the article, the Porter Stemming algorithm

[Po80] is used. Each match contributes to the textual evidence score.

Statistical means and textual evidence produce two independent rankings of types. In order

to compare the two rankings, they have to be normalized to a scale between zero and

one. A combined ranking is obtained by multiplying both scores for each type in the list.

A weighting of 85:15 between statistical means and textual evidence is used, based on

empirical results.

3.4 Filtering Types

To produce a set of ®tting type candidates the ranked list of types has to be ®ltered accord-

ing to the computed score. Cutting off at a ®xed value does not always ®t the underlying

data. In the manual analysis of a test set of 2000 lists, we observed that quite often the

transition between ®tting and non-®tting types is marked by a signi®cant score drop. To
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take this into account, the last value before the score drop gets determined as a threshold.

This divides the ordered list of types into two cluster with the approved and declined types.

This approach adapts more ¯exible to the respective lists.

3.5 Architecture of the Implementation

The previously described approach has been implemented in Scala and Java and is pub-

licly available on Github16. Apache Jena, a Java framework17 for building Semantic Web

and Linked Data applications, is used to connect the application to RDF datasources. To

process massive data asynchronousy, Reactive Streams18 are used.

Querying the RDF datasets is the slowest task of the application. Jena TDB19 is used to

minimize the impact of data access to the overall performance. Jena TDB is a native high

performance triple store, which supports the full range of Jena APIs. It is possible to use

TDB with a multiple reader or single writer policy for concurrent access [Fo16]. This

enables parallel queries to the database. Thus slow queries can be compensated by concur-

rency. Additionally TDB is accessed asynchronously to avoid blocking database queries.

Therefor an asynchronous wrapper for Jena SPARQL queries based on Scala Futures20

was build. The wrapper can be used with SPARQL endpoints, Linked Data Fragments21

endpoints, and TDB. By preventing busy waiting the pipeline can process 2000 list pages

in about 85 seconds 22.

4 Evaluation

The quality of the results is normally evaluated using existing type information by check-

ing whether this information can be reproduced by the system. This was not suitable for

this approach, because the aim of this work is to infer new type information and in most

cases only top level types are present in DBpedia. As a result a ground truth dataset had to

be developed. A total of of 400 randomly chosen lists have been annotated by four differ-

ent persons. For each list all types of the parsed entities have been annotated as approved

or declined. In addition lists could be tagged as incorrectly parsed. The evaluation set is

publicly available [Wi16b].

There are multiple cases in which it is hard to decide if a type is appropriate for a certain

list. For example one could argue that it would be correct to label Shakespeare as an artist,

although in the DBpedia class hierarchy dbo:Writer is not a subclass of dbo:Artist. In this

cases agreements have been made between the annotators.

16 https://github.com/Wikilist-Extraction/wikipedia-list-extraction
17 https://jena.apache.org/index.html
18 http://doc.akka.io/docs/akka-stream-and-http-experimental/current/scala.html
19 https://jena.apache.org/documentation/tdb
20 http://docs.scala-lang.org/overviews/core/futures.html
21 http://linkeddatafragments.org/
22 Run on a 2 GHz Intel Core i7 Processor and 8 GB 1600 MHz DDR3 Memory
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5 Results and Discussion

As a result of the evaluation a precision of 86.19% with a recall of 33.13% has been

achieved (F1 score of 0.48). A total number of 60,786 new RDF triples were produced

based on the 400 annotated list pages.

Since our approach concentrates on ®nding the most speci®c types for a list, more generic

types are left out. The recall decreases since these generic types are still correct for most

lists. Since DBpedia types are arranged in a hierarchy one could also propose all types of

a higher level. This can be done in a post-processing step by also adding all super types

and would increase the recall.

The main limitation of the algorithm is still fail safe parsing. When regarding the perfor-

mance of the algorithm on correctly parsed lists, the precision of our algorithm increases

to 94.97%.

Dif®culties occur, when the list entities do not contain the shared types. One example for

such a list is the list of German expressions in English23. In this case the common type for

the list is German expressions. The list entities however have a wide variety of types such

as dbo:Food, dbo:MusicalGenre or dbo:Weapon. Since the type German or expression

does not occur it can not be proposed. This reduces the recall, since these lists are ®ltered

out using the error detection mechanism as described in section 3.2.

6 Conclusion and Outlook

In this paper we proposed an approach to extract new type information by combining

linked data and natural language processing techniques. On a randomly chosen sample of

2000 randomly chosen lists a total number of 303,934 new type triples have been computed

in 85.56 seconds computation time24.

As solutions to the problems discussed in [PP13] this paper described a reliable method

to extract the correct entities from wikipedia list pages by improving the parsing of Wiki

markup and introducing a quality measure for the parsed entities. For specifying the cor-

rect types, the weighted TF-IDF and textual evidence scores are combined. Moreover,

a method for determining the shared types from the obtained results was developed. As

the evaluation has shown, this method is able to produce high quality type information

(86.19% precision), while still having a feasible run time.

While the focus of this paper is adding DBpedia types to entities, there are a lot of cases

where the common type of a list is not contained in DBpedia. For example, there is a list

of hills in the Scottish lowlands over 2000 feet, which are called Donalds25. To get more

speci®c types for these lists, it would be possible to generate a new type. In this case the

type dbo:Donald could be proposed. This could be achieved using the list name and an

23 https://en.wikipedia.org/wiki/List of German expressions in English/
24 Run on a 2 GHz Intel Core i7 Processor and 8 GB 1600 MHz DDR3 Memory
25 https://en.wikipedia.org/wiki/List of Donalds/
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advanced textual evidence approach with entity recognition based on the abstracts of the

entities.

Another way to extend our approach is to not only extract the type of a list but to also

extract its describing axioms. At the moment only the type scientist is extracted for the

list of german scientist. The describing property German is not inferred. This could be

achieved by extending the statistical ranking proposed in this paper to also include the

properties of the entities.
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