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Development of neural network based rules for confusion set
disambiguation in LanguageTool

Markus Brenneis!

Abstract: Confusion set disambiguation is a typical task for grammar checkers like LanguageTool.
In this paper we present a neural network based approach which has low memory requirements, high
precision with decent recall, and can easily be integrated into LanguageTool. Furthermore, adding
support for new confusion pairs does not need any knowledge of the target language. We examine
different sampling techniques and neural network architectures and compare our approaches with an
existing memory-based algorithm.
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1 Introduction

Grammar checkers are used to detect errors which cannot be detected by a simple spell-
checker, e.g., confusion of words and agreement errors. For instance, the sentence *Then
lecture is great. contains no spelling mistake, but the words “then” and “the” have been
confused. We have developed rules for confusion set disambiguation based upon neural
networks and integrated them into the existing grammar checker LanguageTool.

Existing approaches for grammatical error correction have several problems: If rule based
correction algorithms are used, the rules must typically be written by hand, which is
time-consuming and prone to errors. Moreover, the creator of the rule must be familiar with
the language the rule is written for.

On the other hand, when using an approach based on machine learning, extensive knowledge
of the target language is not needed. But machine learning based grammatical error correction
often suffers from creating too many false positives, which is annoying for a user of a
grammar checker. Furthermore, many machine learning models require several hundreds
of megabyte storage space (e.g. deep neural networks) and are slow at classification time,
which both limit the usefulness of such models for end users, who often do not want a
grammar checker to take up much storage space or take a long time to check a text.
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Therefore, we focused on creating a classifier which has high precision to minimize false
alarms, low memory requirements and little evaluation time.

We will now explain what LanguageTool is and how it works, what the task of confusion set
disambiguation is, and state the goals of our work.

1.1 LanguageTool

LanguageTool is a free, open-source and rule-based grammar and style checker originally
developed by Naber [Na03] and written in Java. The majority of rules are manually written
in either XML or Java, hence rule development is a time-consuming task which requires
knowledge of the target language.

When a text is checked, LanguageTool uses its own language-specific sentence splitter,
tokenizer and part-of-speech tagger to assign part-of-speech (POS) tags to every token in
the input. After POS tagging, each sentence is checked against the style and grammar rules.

1.2 Confusion Set Disambiguation

A typical type of mistake which is not detectable by a spell checker are confused words.
Confusion set disambiguation is the task of choosing the right word from a finite set of words
(e.g. {to, too, two}). In this paper, we will focus on confusion sets with exactly two tokens
t and ¢’. LanguageTool already supports detecting commonly confused words. Currently,
there are basically two types of rules: Pattern rules written in XML or Java, which are
usually created by hand; therefore, creating new rules is time-consuming and prone to errors.

As an alternative, there are 3-gram based rules in LanguageTool, which require a copy
of a large 3-gram corpus (e.g. 10 trillion tokens for English, stored in a 11 GB database)
which bases upon the Google n-gram corpus [Lil2]. The error detection algorithm is
memory-based and works as follows: Let 7 be a token in a confusion pair (¢,1’) and 7., the
nth token after ¢ in the text being checked. When 7 is encountered in the text, the number
of occurrences m of the 3-grams (f_p,t_1,1), (t-1,t,t41), and (¢, t,1,t.2) are counted and
compared with the number of occurrences m’ of the same 3-grams containing ¢’ instead
of t. If m’ is x times greater than m (where a suitable x with good precision and recall is
determined beforehand), ¢ is considered incorrect.

The 3-gram based rules have the advantage that rules have not to be written manually. On
the other hand, there are several disadvantages: First, the rules fail to detect errors if the
exact 3-gram is not part of the corpus. For instance, the mistake in We go *foo Gimli’s
birthday party. is not detected, because the 3-grams (go to Gimli) and (to Gimli ’s) are not
part of the corpus, although the individual tokens are.
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Furthermore, the user of LanguageTool needs to download a big corpus in order to use the
rules and must have a sufficiently fast hard drive and enough memory, in order not to slow
down the process of text checking too much.

1.3 Goals of our Work

The main goal of our work was to create confusion set disambiguation rules using neural
networks for LanguageTool which are at least as good as the existing 3-gram based rules.
Storing the new rules should not require much memory, preferable less than 100 MB, and
the rules should cause as few false alarms as possible to be suitable for everyday use. What is
more, the rules must be able to deal with unseen contexts and may not have a negative impact
on the performance of LanguageTool. Furthermore, we wanted to examine the influence of
different sampling methods and model sized on the performance of the classifier.

In the following section we will introduce our neural network architectures and the training
process. Afterwards we compare our classifiers and the existing memory-based 3-gram rules
with regard to precision, memory usage and speed. Finally, we have a look at alternative
approaches and related work.

2 Model Architecture and Training Process

We will now describe how our classifier works and how it has been trained. In particular,
we introduce our data set, discuss different approaches to sampling, our input representation
and the architecture of our neural network.

2.1 Data Set

Our neural network has been trained on a large, unannotated corpus which can be considered
to have no or at least very few mistakes. As shown by Banko; Brill [BBO1], using larger data
sets can improve the performance of a classifier significantly. Furthermore, some words
like second person verb forms can only seldom be found in some corpora, for example
newspaper articles. Thus, a corpus with sentences randomly chosen from newspaper articles
from Project Deutscher Wortschatz [GEQ12] and sentences from Tatoeba [Ho] has been
created. The final corpus for English contains more than 30,000,000 words and has been
divided in a training (90 %) and testing set (10 %). This unusual split ratio has been used
because we think that the data set is large enough to get decent test results with only 10 %
of the data, and the model has a chance to learn more using 90 % of the data.

The corpus has been tokenized using the tokenizer of LanguageTool. For each confusion
pair, we trained a separate classifier on a subset of the training set which only contains those
sentences which contain the tokens of the confusion set, which typically are between 1.000
and 100.000 sentences per token, depending on how common it is in the corpus.
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2.2 Sampling

It is often the case that one word of a confusion set occurs several times more often in the
training corpus than the other word. Considering the German confusion set {wider, wieder},
there are around 40.000 sentences containing ‘“wieder” in the training corpus, but only 471
sentences with “wider”. Our experiments discussed in section 3.3 have shown that this class
imbalance leads to heavy overfitting, since the classifier is biased towards the majority class.

Sampling Technique occurences of wider  occurences of wieder
in training set in training set
None 471 44.751
Undersampling 471 471
Oversampling 44.751 44.751
Combination Over-/Undersampling 942 942

Tab. 1: Overview of sampling techniques using the confusion set {wider, wieder} as example

To overcome the issue of class imbalance, we compared three different approaches which
can commonly be found in research [Ch09]: Random undersampling, random oversampling,
and a combination of over- and undersampling. In the latter case, the oversampling has been
limited to a factor of 2, and the majority class has been undersampled such that the class
label ratio is 1. This approached seemed to be feasible because we did not want to throw
away too many training samples as would be done in undersampling, but we also wanted to
prevent the classifier to overfit on the few samples of the minority class. Table 1 summarizes
the sampling techniques we studied.

2.3 Word Representation

As neural networks can only be applied to numeric input, the input token must be mapped
to numerical values. One possibility would be a simple one-hot encoding, i.e., given a
vocabulary of size n, the ith word is represented by the vector [xi, . .., x, ] with x; = 1 and
x; = 0 for j # i. This encoding has two crucial disadvantages: The size of the representation
is very big, and any linguistic information about the relations of different tokens is lost,
which is why we are using a word embedding to map tokens into a vector space.

Tokens are represented using a 64 dimensional word embedding created using the word2vec
approach by [Mil3]. We used the continuous skip-gram model for creating the word2vec
model, i.e., the model has learned to predict tokens which are likely to appear in the same
context as another token. In the final vector representation, words with similar meaning are
mapped to vectors which are close to each other, which enables the neural network to detect
errors in contexts it has not seen before.
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All tokens which appeared at least five times in the training corpus are part of the word2vec
model’s dictionary. This way, the model is kept small by ignoring less frequently used
tokens, and possible typos in the training corpus, which probably do not occur very often.
Tokens which are not part of the dictionary are replaced by the special token “UNKNOWN™.
To minimize storage space, the same embedding is used for each confusion pair.

2.4 Neural Network Architecture

The artificial neural network gets the two tokens before and after a confusion word candidate
as input. It outputs a number y; for each token in the confusion set, which can be interpreted

as the logits, i.e., the logarithm of the odd log (%), where p is the probability for the
corresponding token to be correct in the given context.
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Fig. 1: An illustration of our “NN” architecture, which uses a separately trained word2vec embedding
and no further hidden layers, for the confusion set {to, too}.

Our main architecture is a single layer network without any hidden layers and activation
function, i.e., a linear model (called “NN”, depicted in figure 1). For comparison, we also
trained a network with one hidden layer with 8 neurons and ReL.U activation function
(“NNH”) and variants which get only two tokens from the context as input (“NN2” and
“NNH2”, respectively). We did not train any deep models or models with large hidden layers
because our goal was to create a classifier which does not require much storage memory.

All architectures are trained for 1.000 epochs using the Adam Optimizer by Kingma; Ba
[KB14] to minimize the softmax cross entropy loss

L= —log(E—Yi) (1)

eYi + eYi

where y; is the output for the correct label and y; the output for the wrong label.
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2.5 Output Interpretation

The output (y, y”) of the neural network is used as follows: Given a threshold § € R*, the
token ¢ of the confusion set is considered incorrect and #” is considered correct, if and only if
y < —6 and y’ > 0 (i.e., the network thinks #” is much more likely than ¢ and ¢’ seems to fit).

The reasonableness of this approach can be explained like this: Assuming that in a given
context the probabilities for # and ¢’ are independent, i.e., it is possible that both tokens are
correct, the output (y, y’) can be transformed into probabilities using the sigmoid function.
So we assume that

1 1
Treo T ey

Pt = 2

are the probabilities that the first or second token are correct, respectively. Then the
aforementioned approach is equivalent to saying that p; < 0.5 + o and p; > 0.5 — o, with

1
= -0.5€[0,0.5 3
T et el ) G)

i.e., t’ is considered at least 20- more probable to be correct than ¢ and p; < 0.5 and
pr > 0.5.

The practical advantage of the first criterion is that it requires fewer calculations, and is
therefore used in our implementation.

3 Rule Quality and Comparison

In this section we will have a look at the quality of the rules with regard to precision and
recall, comparing our different architectures and the existing 3-gram-based rules.

3.1 Precision and Recall

In order to be useful for a grammar checking application, the neural network based rules
must not cause any or at least very few false alarms. In the context of the error detection task,
we define true positives (¢p), true negatives (¢n), false positives (fp) and false negatives
(fn) as depicted in table 2.

Note that a true positive is an incorrect usage of a token which is marked as error, and not
solely the case where the neural network would choose the right token (which is tp + tn).
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marked as error  not marked as error

correct usage fp tn
incorrect usage tp fn

Tab. 2: Definition of true positives, true negatives, false positives, false negatives. Note that a true

positive is a wrong token correctly detected as wrong, and not the case where the neural network
would insert the correct token.

For each confusion pair (¢, ) we evaluated, we created a grammar checker rule and checked
it against 5,000 sentences containing ¢ and 5,000 sentences containing ¢’ from the test set,
and another 10,000 wrong sentences which were created by swapping ¢ and ¢’ in the correct
sentences. We calculated precision P and recall R for different thresholds 6.

tp tp
P:— R:— 4
ip+fp tp+ fn @

A rule is considered good if P > 0.99 (i.e., the probability for false alarms is less than 1 %)
and R > 0.5 (i.e., more than 50 % of incorrect usages are detected as error). For comparison:

The average recall of the existing 3-gram rules for English in LanguageTool is 0.56 with
P > 0.99.

3.2 Comparison of network architectures
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&
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Fig. 2: Precision and recall for different network architectures for the confusion pair {to, too}

The neural network architectures show different recalls at the same level of precision on
the test corpus. In general, looking at different confusion pairs, the architectures having 2

tokens as input have for a fixed precision lower recall than the corresponding architecture
with 4 input tokens.
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Moreover, the architectures with hidden layer perform better than those without hidden
layer. Whether “NN” or “NNH2” performed better depended on the confusion set. The
distance between the smaller “NN” architecture and the larger “NNH” within the interesting
precision interval [0.99, 0.995] has, in general, been rather small.

3.3 Comparison of Sampling Techniques

1 1
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< <
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Fig. 3: Precision and recall for the confusion pair {wieder, wider}

We also had a look on how different sampling methods during the training process influenced
the performance on the test set. Figure 3 shows precision and recall for the {wider, wieder}
confusion pair using the “NN” architecture. For the diagram for wieder, only sentences
where wieder is correct has been used, i.e., sentences with correct usage of wieder and
sentences with incorrect usage of wider.

While there are decent results for detecting the right use of the more common word wieder
when oversampling is used, the recall for the around 100 times less common wider is
much worse, with a maximum precision of around 0.5, probably due to overfitting. If no
resampling is used, the network is very good at dealing with contexts where wieder is
correct, but has very low precision in contexts where wider must be used. Using a mixture
of over- and undersampling produces relatively close results, where undersampling is worse
for the recall of the more common wieder case and better for the less common wider.

For other imbalanced confusion pairs like {to, too} (factor 10), the differences have not been
that big, such that undersampling has been used in the other experiments.

3.4 Comparison with 3-gram Rules

As our goal was to be at least as good as the existing 3-gram rules, we also compared the
performance of our system with the existing rules. Note, however, that the comparison is not
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confusion pair ~ R3_gram  RNN confusion pair ~ R3_gram  RNN
and/end 0.81 0.84 da/dar 0.82 0.74
five/give 0.97 0.94 das/dass 0.43 0.81
it/its 0.95 0.92 den/denn 0.70 0.90
our/out 0.98 0.93 fielen/vielen 0.85 0.94
then/the 0.45 0.57 ihm/im 0.96 0.94
to/too 0.82 0.95 schon/schon 0.73 0.44
some/same 0.99 0.98 seid/seit 0.98 0.93

Tab. 3: Comparison of recall at P = 0.99 for some English and German confusion pairs.

completely accurate, since the 3-gram rules use a different tokenization algorithm, which is
compatible with Google’s n-gram database. For instance, the 3-gram rules can detect the
error in *give-year-old, because this expression consists of 5 tokens according to the Google
style tokenizer, whereas our rules fail to detect the error, since the expression is one token
for the LanguageTool tokenizer. In order not to end up with a lot of “false” false negatives
for our rules, we changed the existing testing algorithm in LanguageTool to exclude those
cases.

The results depicted in table 3 show that our rules have, on average, a performance
comparable to those using the memory-based 3-gram rules. In around half of the cases, our
simple one-layer architecture outperforms the 3-gram rules.

3.5 Memory Usage and Runtime Performance

The files for the word2vec embedding for English have a size of around 65 MB (uncompressed,
stored as plain text data). The files containing the neural network weights for the “NN”
architecture have a size of 13 KB for each confusion pair. Thus, around 800,000 neural
network based rules would need the same amount of storage memory as the 3-gram corpus,
which is stored as 11 GB Lucene database index.

The start-up wall-clock time of the LanguageTool standalone GUI without 3-gram and
neural network rules, from the start till an English example sentence has been checked
against the intergrated pattern rules, is about 4.8 seconds on our test system with SSD. If
only the 3-gram rules (and the pattern rules) are enabled, the start-up time is 1.2 seconds
longer, with only neural network rules (and pattern rules) enabled, the time is 1.5 seconds
longer.

The memory usage of the GUI 10 seconds after start-up and a garbage collection call is
around 80 MB without 3-gram and neural network rules, 130 MB with 3-gram rules enabled
and 100 MB with neural network rules loaded.
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Checking a German text with around 3,000 words using the command line version of
LanguageTool takes around 2.9 seconds with both rule types disabled and only pattern rules
enabled, 4.5 seconds with 76 3-gram rules enabled and 3.0 seconds with 29 neural network
rules of the “NN” architecture enabled. Hence we can see that our approach has a much
lower impact on the time of the grammar checking process.

To sum up, the calculation done by the neural network code have a lower impact on the
performance than the 3-gram lookup, and storing as well as loading the 3-gram index
requires more memory than the word2vec model and the neural network data. Only the
start-up time of LanguageTool is slightly negatively affected.

4 Alternative Approaches

During development of the architectures discussed in the previous section, we also had
a look at other architectures and classifiers. In this section, we summarize which other
approaches for the confusion pair disambiguation task have also been tested, and why we
think that those approaches are inferior.

4.1 Classical Machine Learning

We also did experiments with classical machine learning classifiers which also got word2vec
encoded context words as input.

Random forest are fast to train, had a precision of over 85% for most confusion pairs, but
were unable to reach our target of 99% without further optimization. Another drawback is
their model size of around 1.5 MB for a random forest with 20 decision trees, which is 100
more than needed by the “NN” architecture. Furthermore, random forests were considerably
slower at evaluation time.

On the other hand, Support Vector Machines (SVMs) required more time at training time,
were fast at test time, and reached results comparable with those for the “NN” architecture.
But like random forests, the model sizes were larger than 1.5 MB, which was the main
reason why we did not further evaluate SVMs.

4.2 Recurrent and Convolutional Neural Networks

As recurrent and convolutional neural networks are able to handle inputs of different
lengths, they can easily be used to analyze sentences of different lengths. Although it seems
promising to use these architectures, there are several drawbacks. First, the model size is
much bigger because the model must be able to deal with larger inputs. It also takes more
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time to check a sentence, because more computations have to be done, which can slow
down the performance of the grammar checker considerably, especially if no GPU can be
used. Furthermore, especially the training of recurrent neural networks takes a considerable
amount of time, which would make rule creation a very time-consuming task.

5 Related Work

Mitkowski [Mil2] has studied automatic and semi-automatic creation of symbolic rules
using transformation-based learning. The created rules have very good recall, but often
suffer from a low precision, i.e., cause many false alarms, unless there is human intervention.

Support vector machines, convolution neural networks with fixed context size and recurrent
neural networks for detecting grammar errors at the word level using unlabeled data have
been compared by Liu; Liu [LL17]. A bidirectional LSTM-based classifier performed
best, but still has an F-measure below 20% which makes it unsuitable for application in a
grammar checker because it would cause too many false alarms. Because of that, we focused
on the simpler task of confusion set disambiguation.

Banko; Brill [BBO1] have compared different classifiers for the confusion set task with
regard to their performance if the training corpus is increased from 1 million words to 1
billion words. They have shown that a memory based algorithm is outperformed by a more
complex perceptron algorithm when the training corpus has more than 1 million words.

6 Conclusion and Future Work

In this paper we have presented a new kind of rule for the free style and grammar checker
LanguageTool which uses neural networks, and tested them successfully on a confusion set
disambiguation task. The rule quality is similar to the memory based rules which are already
part of LanguageTool, but our rules require less memory and are faster. Hence, our rule can
be used instead or in addition to the existing 3-gram rules. It has to be noted, though, that
creating new neural network based rules requires several minutes of computation time for
the training process, which is not needed for a new 3-gram rule.

Possible next steps include using information from the part-of-speech tagger to handle
words which are not part of the training vocabulary more appropriately than projecting
all out-of-vocabulary tokens to a single “UNKNOWN” token. Furthermore, the current
neural network architecture can easily be extended to support bigger confusion sets, such
that rules for {to, too}, {to,two} and {two, too} can be merged in one {to, too, two} rule.
Adding support for confusion sets containing larger expressions instead of single tokens
(e.g. {das, dass,} or {in dem, indem}) is also planned. In addition, training on even larger
corpora might further improve the performance. It is also possible to reduce the storage
space for the neural network rules by using a binary format for storing weight matrices.
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Moreover, adding support of new confusion pairs could be simplified by creating a neural
network which is not specialized on a confusion pair, but can calculate probabilities for any
target tokens.
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