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Automotive Systems Modelling with Vitruvius

Manar Mazkatli1 Erik Burger1 Anne Koziolek1 Ralf H. Reussner1

Abstract: Model-driven technologies are widely used in the development of systems in the automotive
domain. Although modelling tools and code generation increase the development speed and the quality
of the developed system in general, the availability of several modelling languages for different stages
of the development process also introduces additional problems: Developers use several models to
describe the same system on different levels of abstraction, which serve as documentation, basis for
code generation, but also for model-based analyses of system properties such as security, performance,
or reliability. If models are modified independently, inconsistencies can arise, which lead to incorrect
results of these analyses, complicate the implementation of new features, and create errors at later
stages in development that are costly to fix.

In this paper, we apply the model-based Vitruvius approach, which preserves consistency in
heterogeneous modelling environments, to a scenario of automotive systems development. The
scenario includes the modelling standards SysML, AMALTHEA and ASCET. We show, at the
example of an onboard controlling unit, how the Vitruvius approach can be used to increase
consistency in automotive system development and reduce the accidental complexity that arises for
developers who have to work with heterogeneous modelling languages.

Keywords: Vitruvius, view-based development process, model-based development process, automo-
tive systems, declarative description of correspondence rules.

1 Introduction

The development of a technical system includes the modelling of the system from different
perspectives and at different levels of abstraction. The models that are created during
this process may be models of hardware, software, and additional information such as
non-functional properties. Program code in general-purpose languages such as C is then
often generated from these models.

In the automotive domain, for example, the SysML and AUTOSAR standards are widely
used in conjunction with specific platforms such as AMALTHEA or ASCET. Often, there is
no specified interface for the exchange of models between these standards. Thus, developers
exchange the needed information and documentation along the development process and
are often forced to manually check for consistency between the models. This process is,
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however, expensive because a great part of the exchanged files is written by hand, and the
reuse of information is done using error-prone techniques, e.g., copy and paste.

During the evolution of a system, developers may also alter these models independently
of each other. A modification in one of the models can lead to an inconsistent description
of the system if it is not manually propagated to all other models, which may in turn
lead to inaccurate simulations and analyses, for example security or performance analyses.
If inconsistencies affect the generated program code negatively, this problem is only be
detected in late stages of the development process, e.g., during the assembly phase. Since
compilation of program code can take up several hours in systems of common size, the
correction of these inconsistency errors is very time-consuming.

Vitruvius [KBL13; Bur14] is a model-based approach for the development of software
with heterogeneous modelling standards. It contains declarative languages for consistency
relations between heterogeneous models that describe the same system, which are used to
detect violations and to re-establish consistency in the system model. In this paper, we will
describe how we have applied the Vitruvius approach to automotive systems engineering
to improve the reliability of automotive systems. We have conducted a case study that
describes the development of an onboard control unit for automotive systems, using the
languages and standards SysML, AMALTHEA, and ASCET. To use these languages in the
Eclipse Modeling Framework, which is the technical space of the Vitruvius prototype,
we have selected appropriate metamodels and defined an import procedure for existing
models. To express the consistency relations between these types of models, we have defined
declarative mapping specifications in the Mappings language of Vitruvius.

After a description of the foundations of model-driven engineering and especially the
Vitruvius approach in section 2, we will introduce our case study of an automotive
software controller in section 3. In section 4, we describe the application of Vitruvius in
our case study. After related work (section 5) and future work (section 6), we conclude the
paper with section 7.

2 Foundations

2.1 Model-Driven Engineering

Model-Driven engineering is a development paradigm that puts models in the centre of
the development process and uses the following concepts [Sch06]: First, domain-specific
languages (DSL) express domain concepts, which reduce the complexity in the modelling
of systems. DSLs are defined using metamodels, which themselves are defined using a
standardised, fixed meta-metamodel. Second, transformations engines are used to transform
these models into instances of other DSLs or into textual representations, such as code.

1488 Manar Mazkatli, Erik Burger, Anne Koziolek, Ralf H. Reussner
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Automotive Systems Modelling with Vitruvius 13

The Eclipse Modeling Framework (EMF)2 is a development framework for model-driven
development that is implemented using the Java-based Eclipse platform.

2.2 Vitruvius

ASCET

AMALTHEA

SysML

VT1

VT2
VT3

VT4
 

instance-of
SysML view

instance-of

ASCET view

. . .
. . .

. . .
. . .

Legend:

VT View Type

V View

MM Metamodel
Consistency
Descriptions

ModelJoin

Fig. 1: The modular SUM Metamodel concept of Vitruvius at the example of automotive systems
engineering

Vitruvius [KBL13] is a view-based, model-driven framework for the management of
heterogeneous models, i.e., models that are instances of different metamodels. It is based
on the concept of a single underlying model (SUM) [ASB10], which represents all the
information that is available about the system under development, and implements this
concept into a virtual SUM (VSUM) that encapsulates existing metamodels and enriches
them with correspondence information and custom views, which are specialized models,
following the definition of Goldschmidt et al. [GBB12]. The VSUM conforms to a customized
metamodel that is specific to the domain in which the Vitruvius approach is used; for
example, in the automotive domain, it may contain the metamodels of SysML, AMALTHEA
and other standards, which are combined to form a modular SUM metamodel (see Figure 1).
The metamodels are included non-intrusively and do not have to be adapted. To express the
semantic relations between the elements of the metamodels, Vitruvius defines a language
framework for consistency description and restoration that consists of three languages
for reactions, mappings and invariants. Since Vitruvius is a view-based approach, all
information in the SUM can only be retrieved or manipulated via specialized views. For the
definition of view types and views, Vitruvius uses the ModelJoin language [Bur+14].
The consistency preservation mechanism is triggered by changes to one or several views.
The preservation mechanism of Vitruvius then reacts on a list of changes to propagate
them to the SUM.

Vitruvius has been implemented as a prototype3 in the Eclipse Modeling Framework
and can thus be used with any Ecore-conforming metamodel. So far, it has been applied to
software architecture models and model-based representations of programming languages

2http://www.eclipse.org/modeling/emf/, retrieved 2016-12-13
3https://sdqweb.ipd.kit.edu/wiki/Vitruvius, retrieved 2017-02-13
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[LK15]. It has been also applied to component-based software development [Kra+15] and
systems modelling of energy networks [BMK16].

Leonhardt et al. [Leo+15] have introduced two strategies to integrate one legacy model
into Vitruvius. Moreover, we have extended Vitruvius concept in [Maz16] to check
the consistency between several legacy models automatically, resolve the conflicts semi-
automatically (if founded) and integrate these models in Vitruvius platform.

3 Case Study of PID Controller Software Development

This case study describes the development of a controller software using a traditional PID
(Proportional, Integral, and Derivative) control algorithm. This algorithm is commonly used
in the automotive field (e.g., for controlling throttle positions). It depends on a control loop
feedback mechanism to calculate an error value as the difference between a desired set point
(target_position in our case study) and a measured process variable (actual_position in
our case study). Then it attempts to minimize this error over time by adjustment of a control
variable (new_position in our case study). Figure 2 shows the layout of the Electronics
Control Unit (ECU) that will later execute the control algorithm. In this development
scenario, the developers describe the structure of the controller software using SysML.
Then they describe the software architecture in AMALTHEA platform to generate glue-code
describing tasks, operating system configuration and the scheduling. They implement the
defined architecture using ASCET and generate the implementation code. The integration
of both codes on circuit provides the final executable code. The following subsections give
an overview of the modelling tools and the problem that arises during the development
process.

new_position
target_pos

actual_position

out normal

Fig. 2: Layout of the control algorithm ECU

3.1 Languages and Models

SysML (Systems Modelling Language) is a graphical modelling language developed
for systems engineering [OMG12]. SysML can depict a system’s structure using Block
Definition Diagrams (BDD) and Internal Block Diagrams (IBD). BDDs provide a black
box representation of a system’s blocks and the interconnections between them in term of
flow ports, whereas IBDs instantiate them to represent the final assembly of the system.

In our case study, we describe the controller software structure using an IBD. Figure 3 shows
ControlAlgorithm Block with its internal blocks (PID Tuning Block and Limiter Block) in
addition to its in-/out-ports (actual_position, target_position and new_position).

1490 Manar Mazkatli, Erik Burger, Anne Koziolek, Ralf H. Reussner
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Fig. 3: Modelling the structures of control algorithm case study using IBD

AMALTHEA is an open and expandable tool platform for embedded multicore systems.
It combines the developing tools of the automotive ECUs in a single platform [BJ13].
Our case study describes the PID controller software architecture using AMALTHEA
component models and software models. Component models define the components (e.g.,
ControlAlgorithm) and the connection between them, whereas the software model defines
software units. Runnables are executable software units that can be run in parallel (e.g.,
ControlAlgorithm_normal and ControlAlgorithm_out). Labels are data elements that are
located in memory and that are read/written by runnables (e.g., new_position, target_pos,
and actual_position). Processes are a generalization of tasks that define execution paths
calling runnables/other processes (e.g., _10MS task). From these models, the developers
generate the C code (glue-code) including the OSEK Implementation Language (OIL) files4
that describe OSEK real time systems (multitasking and communication configuration).

ASCET (The Advanced Simulation and Control Engineering Tool) is a tool suite from
ETAS GmbH for model-based development of embedded automotive software. ASCET
Modeling and Design (ASCET-MD)5 is a part of the ASCET product family and offers
executable specification of ECU functions using graphical tools (e.g., block diagrams
and state machines) or by textual tools (e.g., Embedded Software Description Language
(ESDL) editors, and C code editors). For example, the block diagram editor shown in
Figure 4 describes the functionality of the ControlAlgorithm software component in terms
of an AscetModule. The diagram shows its internal components: a pre-defined component
Limiter provided from the ASCET database, and the PIDT1 component described in
another block diagram. Furthermore, it shows imported data from other blocks, such as
messages (target_pos and actual_position), the output message exported to other blocks
(new_position), and the flow of the data/control signal through different arithmetical/logical
operations. This model generates the C code that will be then integrated with AMALTHEA
glue-code.

4http://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf, retrieved 2016-12-13
5http://www.etas.com/de/products/ascet_md_modeling_design-details.php, retrieved 2016-12-13
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Fig. 4: Modelling of control algorithm in ASCET using block diagram editor

3.2 Consistency Preservation

To keep the consistency between the models in automotive systems domain, the developers
usually exchange documents including the needed information and documentation along the
development process. Developers may, for example, apply technology based on Manufacturer
Supplier Relationship (MSR)6 [SLG05] and XML [WH04]. This technology stores the
information in a uniform format once in a shared database. As explained in section 1, this
approach suffers from manual production and synchronisation of documents, which can
lead to inconsistencies. This may result in high costs for resolving potential conflicts that
are first detected at the assembly stage. Further problems are drift and erosion between
models and code, if potential inconsistencies are resolved only by correcting code errors.

4 Preserving Consistency with Vitruvius Approach

This section describes the consistency preservation of our case study based on Vitruvius.
First, we explain how we prepare Vitruvius platform to be used for consistent view-based
development. Then, we illustrate how we have evaluated the declarative mappings between
the metamodels of our case study. Finally, we show the result of the evaluation.

Initializing Vitruvius Platform: In the first step of applying Vitruvius, we create
the modular SUM metamodel, which includes an Ecore-based metamodel for each of the
three modelling languages SysML, AMALTHEA and ASCET. Since the metamodels of
both SysML and AMALTHEA are Ecore-based, we have imported and reused them directly.
For ASCET, we have used the ASCET Data Object Model (ADOM) metamodel, which is
defined in conjunction with the ASCET XML Model Description (AMD) metamodel.

The three metamodels share a high semantic overlap. Therefore, we have identified the
semantic correspondences between them. Table 1 lists the most important correspondences

6http://www.msr-wg.de, retrieved 2016-12-13
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SysML AMALTHEA ASCET Examples from the case study

Block Component AscetModule ControlAlgorithm
FlowPort Label Message target_pos, actual_position, new_position
– Runnable Method normal, out
– Task Task, InitTask, etc _10MS

Tab. 1: Main correspondences between SysML, AMALTHEA and ASCET

with examples from the PID controller case study. To control this redundancy of information
according to Vitruvius, we had to define the mapping between the artefacts sharing
the same semantic, the invariants that violate the consistency, and the reactions that can
restore the consistency when the invariants are violated. In this work, we concentrate on
defining the mapping between the metamodels of our case study with declarative mappings
language of Vitruvius. List. 1 illustrates an example of the declarative mapping using
the Vitruvius mapping language. This example defines the correspondence between the
Component metaclass of the AMALTHEA metamodel and the AscetModule metaclass of the
ASCET metamodel, which describes the behaviour of this component. The example shows
also the sub-mapping and correspondence between Runnable (AMALTHEA) and Method
(ASCET) on one hand (lines 6–9) and the AMALTHEA Label and ASCET Message data
types on the other hand (lines 10–13). The mapping conditions are written between square
brackets. After this, the Vitruvius framework generates the bidirectional model-based
transformations that are used for re-instating the consistency.

1 import package "http://amalthea.itea2.org/model/1.0/components" as comp

2 import package "http://com.bosch.swan.ascet.adom/1.0" as adom

3 mapping ascetModule_component:

4 map {adom.AscetModule as ascetModule} and {comp.Component as component}

5 { [equal (ascetModule.(name),component.(name))]

6 map {ascetModule.methods as method} and {component.runnables as runn}

7 {[ equal(Method.name, runn.name)

8 empty(method.arguments)

9 equal(method.ret,null) ]}

10 map {ascetModule.elements as messag} with {messag.type==adom::Message}

11 and component.(labels as label)

12 {[ equal(label. constant,false)

13 equal(label.name,messag.name) ]} }

List. 1: Correspondence rule between AscetModule and Component

Evaluation: To evaluate the defined mappings and their implementation (the bidirectional
model-based transformation), we wrote a set of test cases that define different scenarios to
rebuild the models of the PID controller case study in the Vitruvius platform. According to

Automotive Systems Modelling with Vitruvius 1493
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each scenario, the test case instantiates the modular SUM metamodel, makes some changes
to the models (create, update or delete some objects), and then triggers the synchronisation
to propagate them to the related models. Finally, the test case asserts that the changes
are correctly propagated. One of the test cases scenario can be the following: creating an
AMALTHEA Component object named ControlAlgorithm, creating two Runnable objects
(out, normal), and three Label objects (actual_position, target_position, new_position)
and assigning them to the ControlAlgorithm component. The expected changes after the
synchronisation are: creating the related AscetModule object ControlAlgorithm that consists
of two Method objects without arguments or return type (out, normal), and three Message
objects (actual_position, target_position, new_position). Moreover, the synchronisation
should create a SysML Block instance named ControlAlgorithm and containing three
FlowPort objects (actual_position, target_position, new_position).

Results: The evaluation of the Vitruvius synchronisation based on the defined mapping
showed the following issues: First, the Vitruvius synchronisation can often re-instate the
consistency fully automatically. For example, the test case example defined in the previous
section is performed correctly, i.e., the synchronisation automatically creates the related
objects (AscetModule and SysML Block objects) with the shared information. Similarly,
altering the name of an AMALTHEA Component object will automatically update the name
of its related objects. Second, the synchronisation was not able to restore the consistency
fully automatically in some cases. For instance, if the developer creates an AMALTHEA
Task object named _10MS, the synchronisation will ask him then to select the type of ASCET
Task object that should be created to restore the consistency. This is due to the one-to-many
mapping between the AMALTHEA Task type on one hand and the ASCET Task type
and its subtypes on the other hand (see the last row of Table 1). Third, the automatically
created related objects may need further development to provide them with the non-shared
information. For example, the AscetModule objects that are automatically created by the
synchronisation should be further developed to describe the functionality in details. Thus,
Vitruvius informs the developers with automatically generated elements that may need
further development. Finally, the found results show that Vitruvius can be used to keep
the consistency in a real-life development scenario of automotive heterogeneous models.
The main advantages are that the automated synchronisation will save manual effort, avoid
potential inconsistency that may occur during the manual process, resolve the conflicts with
lower cost in the design stage, and keep the models consistent with their implementation.

5 Related work

This section describes related approaches that are used to keep consistency between
automotive heterogeneous models. The document-centric approach (mentioned in section 1
and subsection 3.2) suffers from manual preservation of consistency. Born et al. [BFK10]
suggest representing exchanged information as models – even if it is a document – to

1494 Manar Mazkatli, Erik Burger, Anne Koziolek, Ralf H. Reussner
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ease tracing and to perform semi-automatic checks of consistency. Our approach also
offers semi-automatic conflict resolution. Other works specify the relations between the
models and use them to perform automatic consistency preservation. For example, Giese
et. al. suggest using Triple Graph Grammars (TGGs) [Sch95] to describe the relationship
between SysML and AUTOSAR [GHN10], and to generate the bidirectional model-based
transformations needed to synchronise these two models with each other. If there are more
than two models, additional chains of transformations should be built to connect them. The
Vitruvius approach, however, offers the development and management of more than two
heterogeneous models. Moreover, any change that violates the consistency constrains will
be not processed but rather ignored according to Giese’s concept, which is not the case in
Vitruvius approach, where changes that violate consistency constraints can be handled by
predefined response actions.

Other concepts keep consistency by generating a consistent model from another one
using model-based transformations. For example, Selim et al. [Sel+15] apply model
transformations to migrate from legacy models of General Motors, which are built using
custom-built and domain-specific modelling language, to standardized AUTOSAR models.
Model-to-model transformations have been also used by Sindico et al. [SNP11] to generate
Simulink models from SysML models and vice versa. Similar work by Sjöstedt et al.
[Sjö+08] transforms Simulink models to UML composite structure and activity models
based on Atlas Transformation Language ATL. Macher et al. [MAK15] depend on seamless
combination of heterogeneous tools approach [Bro+10] to exchange the models between
SysML and Matlab/Simulink tools. Other work of Macher [Mac+15] based on the same
approach generates the configuration of RTOS from control system information in SysML
and vice versa. The approaches mentioned in this paragraph are limited to a specific
combination of two models or languages. The Vitruvius approach, in contrast, can be
used to combine arbitrary modelling languages, as long as they can be expressed as an
Ecore-conforming metamodel. Vierhauser et al. [Vie+12] present a framework for checking
and maintaining consistency between the Product Line (PL) model and some parts of
underlying code. However, their approach is limited to PL models and their underlying code
and does not support other models needed in software product line engineering.

6 Future Work
Currently, editors for the modelling languages used in our case study are not directly
usable with Vitruvius. Therefore, we suggest connecting the modelling tools with the
Vitruvius platform through implementing bidirectional transmitters. These transmitters
should detect the changes made in the modelling tools and transform them to Vitruvius
for the synchronisation on one hand. On the other hand, they should record the changes
resulting by Vitruvius synchronisation and transform them to the modelling tools in order
to update the models under development. If recording the changes in the modelling tool is
not feasible, as it is the case of closed-source ETAS ASCET tool, then the transmitter should
calculate them by comparing two recent versions of the model in a way similar to [BT14].

Automotive Systems Modelling with Vitruvius 1495
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7 Conclusion

In this paper, we have demonstrated how the model-driven Vitruvius approach can be
used in the development of automotive systems. Following the Vitruvius process, we
have described how the existing standards SysML, AMALTHEA and ASCET can be used
with the Eclipse-based Vitruvius framework. The case study of an onboard control
unit demonstrated that the steps for preserving and re-instating consistency, which are
usually carried out manually, can be automated with the Vitruvius framework. We have
formulated change-based consistency rules with the declarative Reactions language of
Vitruvius to automate steps of consistency preservation that would normally have to be
carried out manually and were for this reason often omitted.

It is an important factor for reliable and secure systems that all the artefacts in the development
process share consistency, so that they can provide an up-to-date description of the system
under development at all stages. Model-driven technologies, which are used widely in
automotive development processes, form the basis for the advanced consistency preservation
methods of the Vitruvius approach. Thus, the accidental complexity of developing a
system with multiple metamodels, languages, or development tools, can be reduced.
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