
Fully-automatic Translation of Open Workflow Net Models
into Simple Abstract BPEL Processes

Niels Lohmann1,2 Jens Kleine1

1 Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{nlohmann,jkleine}@informatik.hu-berlin.de
2 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany

Abstract: On the one hand, Petri net models have a successful history in the modeling,
simulation, and verification of workflows and business processes. On the other hand,
BPEL is the de facto standard for describing and implementing Web service-based
business processes. With abstract BPEL processes, BPEL can also be used as modeling
language. However, being a complicated language with many syntactic constraints,
abstract BPEL processes impede a straightforward modeling.

In this paper, we introduce a fully-automatic translation of Petri net models into ab-
stract BPEL processes which can be easily refined to executable BPEL processes. This
approach combines strengths of Petri nets in modeling and verification with the abil-
ity to execute and port BPEL processes. Furthermore, it completes the Tools4BPEL
framework to synthesize BPEL processes which are correct by design.

1 Introduction

The Web Services Business Process Execution Language (BPEL) [A+07] is emerging as
the de facto standard language to describe executable business processes based on Web
services. It allows the description of executable Web services in a virtually platform-
independent manner. Having the broad support of many companies like Microsoft or
IBM, BPEL becomes more and more interesting for both industry and academia. Be-
side executable Web services, BPEL also allows the description of abstract processes —
sometimes called business protocols — which can be used as a documentation or modeling
language for Web services. In abstract BPEL processes, trade secrets (e. g., price calcula-
tions), details close to implementation (e. g., variable ranges), or yet unknown details can
be hidden or left unspecified, respectively. While this may help the modeler to focus on
the modeling aim, abstract processes are still subject to many syntactic constraints which
might hamper a straight-forward modeling. However, Petri nets [Rei85] — in particular
workflow nets [Aal98] — are an accepted formalism to model business processes. Petri
nets combine a simple graphical formalism with a mathematical sound foundation. Due
to the absence of syntactical constraints, Petri net models may capture the intuition of
the modeler more faithfully. Furthermore, the formal foundation of Petri nets allows for
verification of a variety of properties (e. g., soundness [Aal98]). To this end, there exists a
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error-prone, the generated abstract BPEL code has to be simple; that is, human-readable.
We claim that BPEL code that avoids control links and uses block-structured elements
where possible is readable and easy to understand as it allows a straight-forward decom-
position of large processes. Therefore, a brute-force translation has to be avoided as it
would produce very lengthy and/or rather counter-intutive code. This makes the transla-
tion a non-trivial task as BPEL is a very rich language which frequently offers more than
one way to express the same aspect.

The rest of this paper is organized as follows. In Sect. 2, we give a short introduction to
abstract BPEL processes and introduce our formal model. The translation from an oWFN
to an abstract BPEL process is described in Sect. 3. Section 4 is devoted to validation and
related work. Finally, Sect. 5 concludes the paper and gives directions for future work.

2 Background

Abstract BPEL Processes The Web Services Business Process Execution Language
(BPEL) [A+07], is a language for describing the behavior of business processes based
on Web services. For the specification of a business process, BPEL provides activities and
distinguishes between basic activities and structured activities. The basic activities include
�receive� to provide web service operations and �invoke� to invoke web service opera-
tions. A structured activity defines a causal order on the basic activities and can be nested
in another structured activity itself. The structured activities include �sequence� to pro-
cess activities sequentially, �if� to process activities conditionally, �while� to repetitively
execute activities, �pick� to process events selectively, and �flow� to process activities in
parallel. Activities embedded to a �flow� activity can additionally be ordered by the usage
of control links.

The specification of abstract BPEL processes further allows to introduce placeholders for
details that are either not known yet or are subject of trade secrets and are thus not to be
exposed. Such unspecified details are called opaque. For example, a condition of an �if�
activity can be replaced by an opaque condition. In addition, whole activities can be left
unspecified. This is done by using the placeholder activity �opaqueActivity�. To imple-
ment an abstract BPEL process, the placeholders have to be replaced by actual conditions,
values, and activities, respectively. Furthermore, there are a number of activities to ma-
nipulate data, handle faults, or organize compensation. As these activities are very close
to the implementation and very “BPEL-specific” and this paper focuses on the interaction
behavior of a BPEL process only, we refrain from a presentation. The translation approach
presented in this paper will, according to the structure of the input model, decide whether
a Petri net node is translated into a interacting activity, an ordering structured activity, or a
non-interacting opaque activity.

Open Workflow Nets Open workflow nets (oWFNs) [MRS05] are a special class of
Petri nets. They generalize classical workflow nets [Aal98] by introducing an interface for
asynchronous message passing. Intuitively, an oWFN is a Petri net together with (i) an
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interface, consisting of input and output places, (ii) an initial marking, and (iii) a set of
distinguished final markings. Final markings represent desired final states of the net and
help to distinguish desired final states from unwanted deadlocks. Compared to workflow
nets, oWFNs underly no syntactic constraints. In particular, we allow multiple initially
marked places as well as multiple final markings. The interplay of two oWFNs N and M
is represented by their composition, denoted by N ⊕M . Thereby, we demand that the nets
only share input and output places such that for some input places of N exist corresponding
output places of M , and vice versa. The oWFN N⊕M can then be constructed by merging
joint places and merging the initial and final markings.

oWFNs provide a simple but formal foundation to model services and their interaction.
They allow — like common Petri nets — for diverse analysis methods of computer-aided
verification. The explicit modeling of the interface further allows to analyze the interaction
behavior of a service [LMSW06]. An important property of an oWFN is whether it is
possible to interact deadlock-freely with it. An oWFN N is called controllable, if there
exists an oWFN M such that N ⊕ M is deadlock free (i. e., N and M are compliant).
Like the soundness property for workflow nets, controllability [Sch05] can be regarded as
a minimal correctness criterion for interacting services.

First Example: A Paper Reviewing Process As an example for the translation of an
oWFN into an abstract BPEL process, consider the oWFN depicted in Fig. 3(a). Upon
receiving a paper (cf. the input place paper on the dashed frame), two reviewers are invited.
Then, for each reviewer either a review is received or a timeout occurs. Based on the
received reviews, a decision is made and communicated to the author.

invitation 1

review 1

acception

invitation 2

review 2

rejection

paper

decide

timeout 1

timeout 2

(a) oWFN modeling a reviewing process

<process>
<sequence>
<receive operation="paper" />
<flow>
<sequence>
<invoke operation="invitation 1" />
<pick>
<onMessage operation="review 1" />
<empty />

</onMessage>
<onAlarm>
<opqaueActivity name="timeout 1" />

</onAlarm>
</pick>

</sequence>
<sequence>
<invoke operation="invitation 2" />
<pick>
<onMessage operation="review 2" />
<empty />

</onMessage>
<onAlarm>
<opaqueActivity name="timeout 2" />

</onAlarm>
</pick>

</sequence>
</flow>
<opaqueActivity name="decide" />
<if>
<condition opaque="yes" />
<invoke operation="acception" />
<else>
<invoke operation="rejection" />

</else>
</if>

</sequence>
</process>

(b) generated abstract BPEL code

Figure 3: An open workflow net (a) and the abstract BPEL code generated by oWFN2BPEL (b).
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The oWFN was derived from a workflow net taken from [LA06]. While the original
workflow net was annotated with details on the decisions (e. g., expressions or the activity
type), our approach solely bases on the structure of the net. Please note that, for instance,
“decide” or “timeout 1” are transition names and not labels. These names are only used
to name generated activities rather than to choose their type. The output of the compiler
oWFN2BPEL implementing the translation rule presented in the next section is depicted
in Fig. 3(b).

3 Translation Approach

Our translation approach automatically transforms an oWFN step by step into a single an-
notated node. From this annotation, BPEL code is generated. As opposed to other transla-
tions (cf. [LA06]), we do not annotate the nodes of the net with final BPEL code. During
our transformation, the code annotations will reflect a number of BPEL activities that we
deem suitable for representing the reduced parts of the net. This enables us to modify,
replace, or even remove the code annotations during later reduction steps allowing a more
compact and tidy code. While most rules aim at reducing the number of nodes in the inter-
mediate net, some rules will actually increase the size of the intermediate net. However,
these rules aim at simplifying the structure of the net to enable subsequent transformation
rules.

Throughout this paper, we require for an oWFN to be translated that its inner (the net with-
out the interface places and their adjacent arcs) is (i) deadlock free, and (ii) it has no dead
transitions. These restrictions rule out an incorrect translation result as BPEL processes
are (i) deadlock free and (ii) should not contain unreachable code, and are similar to the
soundness property [Aal98] of classical workflow nets. For cyclic nets, we further (iii)
require that the subnets between the entry or exit places of the cycle are free of deadlocks
and livelocks (cf. [Kle07] for more details). The restrictions can be easily checked using a
Petri net model checker such as LoLA [Sch00].

The overall translation consists of 17 rules and 8 additional adjustment rules to overwork
and simplify the generated code. Admittedly, we can only present a few aspects of the
translation and refer to [Kle07] for the complete set of rules. The first rules we present in
the next subsection aim at automatically transforming any safe acyclic oWFN into a BPEL
process. These rules range from simple substitutions to more complex replacements. To
cover non-save and cyclic nets, additional rules will be introduced later in Sect. 3.2.

3.1 Translation of Simple Models

For the rules presented in this subsection, we require the oWFN to be translated to be
acyclic (i. e., the structureof the net contains no cycles) and safe (i. e., there is no reachable
marking with more than one token on a place). For example, the oWFN modeling the
paper reviewing process (cf. Fig. 3(a)) fulfills these requirements.
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3.3 Code Adjustment Rules

After the transformation rules reduced the intermediate net to a single node, adjustment
rules are applied to the code annotation of this node. We already mentioned an adjustment
rule to refine an �if� activity or change it to a �pick� activity, and another a rule to simplify
the control link structure. Further adjustment rules that are not shown in the paper remove
(syntactically) unnecessary �empty� activities, add and improve �sequence� activities,
merge nested �flow� activities, and enclose the remaining annotation into a �process�
activity as root element of the generated BPEL code.

As described earlier, this two-tier approach of firstly generating code annotations which
are later possibly changed by adjustment rules, allows for a more flexible translation. As
the application of the transformation is local (i. e., the rules are only applied to a subnet),
the code annotations only represent a local optimum. Only with a subsequent adjustment,
these local optima can be further optimized. For instance, after collecting the largest pos-
sible �sequence� activities during the translation, these locally best translations can be
further improved by combining �sequence� activities.

3.4 Algorithm and Implementation in oWFN2BPEL

With the presented rules, we are able to translate any oWFN fulfilling the restrictions de-
scribed earlier this section into an abstract BPEL process. We thereby proceed as follows:

1. The INTERFACE rule is once applied to annotate interacting transitions with
�receive� and �invoke� activities, respectively.

2. Whenever applicable, parts of the intermediate net are translated using rules
SEQUENCE, CONDITIONAL, CONCURRENT, MULTIPLE, and CYCLE. In addition,
the structural reorganization rules are applied whenever possible.

3. Finally, after the intermediate net has been collapsed to a single node, the adjustment
rules are applied to optimize and complete the generated code annotation.

In this paper, we only presented a few examples for each rule. In general, there are many
different variants for each rule, each tailored for a specific context. These different “sub-
rules” are usually ordered: for the best translation result, the most specific rule is applied
rather than a more general version. The interested reader is referred to [Kle07] for the
complete set of rules and the detailed translation algorithm. Each rule either reduces the
net to be translated, or simplifies its structure to allow further rules to be applied. Thus,
the algorithm will terminate for any net that fulfills the restrictions; that is, reduces it to a
single annotated node. If the net, however, violate the restrictions, the translation will stop
leaving a partly annotated net for further diagnosis.
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4 Validation and Related Work

4.1 Validation

In contrast to oWFNs, BPEL is only described informally and has no formal semantics.
Therefore, it is impossible to prove the correctness of the translation rules presented. In-
stead, we validated the translation approach using several case studies. On the one hand,
we used the compiler BPEL2oWFN [Loh07] to translate real-world BPEL processes into
oWFNs and re-translated these nets using oWFN2BPEL. In most cases, the generated
BPEL process had the same structure as the original BPEL process. In fact, the processes
generated by oWFN2BPEL were sometimes “optimized” with respect to the number of
used control links. On the other hand, we translated oWFNs using oWFN2BPEL into
BPEL processes and these processes back to oWFNs using BPEL2oWFN. Then, we com-
pared the interaction behavior of the original oWFN and the twice translated oWFN by
comparing their operating guidelines [LMW07] (a characterization of all deadlock-freely
interacting partners). In all tested cases, the operating guidelines of the respective pairs of
oWFN were equal, showing that the interaction behavior of both nets is equivalent.

4.2 Related Work

There exist two areas related to the translation approach presented in this paper: (i) using
BPEL as modeling language, and (ii) modeling another formalisms (e. g., BPMN, UML
activity diagrams) and translating these models into BPEL.

Several vendors offer tools to directly “model” or “design” BPEL processes (e. g., Oracle
BPEL Process Manager or IBM WebSphere Integration Developer). They introduce a
more or less standardized graphical representation of BPEL’s activities which can be used
to graphically model a BPEL process. These graphical modeling notations are, however,
very close to the respective BPEL constructs and underly the same syntactic constraints.
Therefore, the user of such BPEL design tools is — knowingly or unknowingly — forced
to adapt the model to the BPEL language.6 We therefore suggest our translation approach
to generate BPEL code that can be read by such graphical BPEL design tools to refine the
code towards executable BPEL processes.

To overcome BPEL’s shortcomings in the area of modeling, many approaches exists to
translate formalisms such as BPMN, UML activity diagrams [ODBH06], or workflow
nets [LA06] into BPEL processes. These formalisms are very similar to oWFNs, and
therefore we can compare the approach presented in this paper with these works. Table 1
summarizes the comparison with related approaches.

6For instance, the choice of whether to use a �sequence� or a series of control links to express sequential
execution has to be explicitly made by the modeler.
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Table 1: Comparison of related approaches to translate business process models to BPEL.

this approach Lassen and van der Aalst [LA06] Ouyang et al. [ODBH06]
A (low-level) oWFN (annotated) workflow net BPMN/UML-AD
B weak termination WF-structure, soundness, safeness none
C structure structure and annotation structure and annotation
D provisonal, later adjusted definitive definitive
E full-automatic semi-automatic (user-feedback) fully-automatic
F 17 rules + adjustment 4 rules + user library (arbitrary) 7 rules + event handlers
A: model – B: constraints – C: activity choice – D: code generation – E: translation – F: transformation rules

Lassen and van der Aaalst The translation approach of [LA06] also uses transforma-
tion rules to translate a workflow net into a BPEL process. There are, however, a number
of differences:

Firstly, the input model is an annotated workflow net. This workflow net does not explic-
itly model the interaction of the workflow by the help of an interface (as we do). Instead,
each transition is annotated with the type of the BPEL activity to be translated to. More
importantly, the translation is semi-automatic: It only consists of four translation rules,
and for each subnet that cannot be translated, the user is prompted to enter suitable BPEL
code. Furthermore, cycles are not supported in a systematically: Instead of having general
rules to translate arbitrary cycles, only simplest constructs can be translated automatically.
For all other cycles, the user has to provide BPEL code. While prompting the user might
help to generate very compact and (naturally) intuitive BPEL code, this semi-automatic
approach cannot be used in the Tools4BPEL framework (cf. Fig. 2) where the user should
be unaware of the formal model and the Petri net models are generated and therefore po-
tentially less understandable.

Finally, the code annotated by the implemented rules (built-in or user-defined) to the nodes
is final; that is, once annotated it is not changed by subsequent rules. For example, the tool
WorkflowNet2BPEL4WS translates the paper reviewing process (cf. Fig. 3) into a BPEL
process with six control links, because it only groups sequences once.

Ouyang et al. The work of [ODBH06] present a translation of standard process models
(BPMN and UML-AD) into BPEL. The translation is very general and hardly restricts the
input model. This rather simple approach, however, differs greatly from our approach:

Several transformation rules are used to identify structures like �sequence� or �flow� ac-
tivities. The rest of the model is then treated like a state machine and translated into event
handlers. These event handlers mimic the pre- and post conditions of each activity by
sending messages to themselves that encode the next state. While allowing any construct
to be translated, this design decision makes the generated code very lengthy and — due to
the mixture of control and message flow — counter-intuitive and hard to maintain. There-
fore, this approach is not suitable for the Tools4BPEL framework. Furthermore, an event
handler is a very complex construct as it implicitly creates a scope instance on each in-
coming call and saves a complete scope snapshot for compensation handling. Finally,
such processes are not guaranteed to correctly run in any environment as those messages
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sent from the service to it self might also be received (or sent) by (from) services in the
environment. Again, code annotations are final and not changed by subsequent steps.

5 Conclusion

We presented a fully-automatic approach translating an oWFN model into an abstract
BPEL process. This approach helps to combine the theoretical foundation and verification
techniques of Petri net-based formalisms with the platform independence and executabil-
ity of BPEL processes. Compared to an existing translation [LA06] from workflow nets
into BPEL, we generalized and automated the translation. The translation has been imple-
mented in the compiler oWFN2BPEL which completes the Tools4BPEL framework. This
framework allows the fully-automatic partner process synthesis for a given BPEL process.
Because the user of the framework does not have to be aware of the underlying formal
model, we claim the framework can be easily integrated into industrial BPEL design tools.

In future work, we try to integrate oWFN2BPEL more closely into the Tools4BPEL frame-
work. For example, information about the partner links, operations or variables of the
input BPEL process (the provider service) can be stored and later annotated to the synthe-
sized partner BPEL process (the requester service). These information would refine the
generated abstract BPEL process and ease the subsequent manual implementation to an
executable BPEL process. Furthermore, extensions such as the WS-BPEL 2.0 Extensions
for Sub-Processes7 may help to further structure the generated BPEL code. Finally, ex-
isting transformations from BPMN and UML-AD to Petri net-based formalisms make the
presented approach also applicable to process models other than oWFNs.
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