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Abstract: Haptic applications are difficult to debug due to their high update rate and
many factors influencing their execution.
In this paper, we describe a practical visual debugger for single-point-of-contact haptic
devices of impedance-type. The debugger can easily be incorporated into the running
haptic application. The visualization shows the position trajectory with timing infor-
mation and associated data like goal positions and computed feedback forces. Also,
there are several options for in detail analysis of the feedback force applied at each
time instance. We show with several use cases taken from practical experience that
the system is well suited for locating common and intricate problems of haptic appli-
cations.

1 Introduction

Haptic applications have two characteristics. They are interactive with a human user in
the loop, and they have realtime requirements as they operate at a 1kHz rate. Both make
these applications difficult to debug and difficult to compare. Problems of a specific haptic
rendering algorithm might occur only for certain input sequences and geometric configu-
rations.

Concerning the device type, we work with an impedance-type haptic device and a sin-
gle point of contact between the haptic probe and the rendered object. Impedance-type
haptic devices measure the endpoint motion (position or velocity) and output a force in
response. Using the opposite causality, admittance-type devices measure the applied force
and output a motion according to the virtual environment being rendered [HM07]. Ex-
amples of impedance-type are shown in Figure 1, the SensAble Phantom Omni and the
NOVINT Falcon. In our experiments, we have used the NOVINT Falcon parallel device.
It has a (4 inch)3 (approx. (10.16 cm)3) workspace with 2 lb-capable (approx. 8.9 N ) ac-
tuators and 400 dpi (approx. 157.48 dpcm resolution) sensors. The standard procedure for
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The haptic system’s software is commonly structured in layers as shown in Figure 2. The
abstraction increases from bottom to top. Basic functionality is available in the Device
Programming Layer, which consists of haptic thread functions, device state query, and
device state setting [Nov08, Sen05].

Most works cover the performance aspect of haptic applications. About comparing and
benchmarking haptic rendering algorithms, also some work is available. In [RBC05], a
common software framework is proposed which normalizes all factors, on which an haptic
application depends. They formalize the notion of one haptic algorithm being faster than
another. Ruffaldi et al [RME+06] add physical ground truth to this comparison. They
measure the geometry of a physical object, and measure an input sequence with force
responses to create a database of ground truth data. Haptic rendering algorithms are then
compared by their simulated forces on input sequences taken from this database. The
thesis [Cao06] also aims at benchmarking haptic applications. It describes the design of
a simulation module, which is able to generate reproducible position input sequences to
feed into the haptic algorithm under analysis. Several input models are presented that
vary in the required user inputs, like path-based model (recorded space curve), function-
based model (space curve defined by functional sections) and adaptive model (curves filled
inbetween penetration points). The author shortly mentions an analysis module, which is
intended for the visualization of the acquired data but details of the visualization are not
available.

3 Data Acquisition for Debugging

For debugging, we need to know all device variables in the workspace: position xd(i) (or
velocity), and the device output force fd(i). Additionally, it is helpful to know the force
semantics in the simulated environment. This force usually results from a distance to a
goal position g(i) or a penetration depth with respect to a surface contact point (SCP) g(i)
(Figure 3). All device variables occur as sequences over i ∈ N. In the following, we omit
the variable subscripts.

Depending on the computation time for the virtual environment simulation, the mea-
surement {x(i), f(i), g(i)} occurs at a certain point in time t(i). The sampling time
t(i) − t(i − 1), for i ∈ N, is about 1ms.

We store the measurements in a ring buffer of fixed size n, which contains all measure-
ments in a certain time interval [ts = t(j), te = t(j + n)]. This storage organization is
fixed size and fast enough so that a single measurement of size 10 doubles (3 for posi-
tion, goal, force each and 1 for the corresponding time value) can be stored away without
changing the simulation timings significantly. Furthermore, note that the time interval is
irregularly sampled, and the interval width te − ts can vary. This is the case because the
sample times are given by the force simulation in the virtual environment. The compu-
tation requires a varying time depending on query position and environment state. The
device then exerts the last force handed to the API at a rate of 1kHz in the feedback loop
(zero-order hold semantics).
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5 Conclusion

In this paper, we presented a visual debugger for single-point-of-contact haptic systems.
Our customized graphical debugging tool records the position trajectory and associated
data like goal positions and feedback forces inside the running haptic system. Several
options exist for the in-detail analysis of the data including the timing information. For a
better turnaround time and an improved convenience, we built it as an in-system tool that
can be integrated into the developed haptic application at the C/C++ source code level.
With minor additions to the API (i.e., goal position), it is also possible to integrate it into
the haptics programming environment below the application level. In our experiments, the
tool has shown to be especially useful for analysing haptic rendering problems. Timing
errors can be caused by position information acquired at a too low rate, or the haptic loop
being too slow. Such defects can be seen inside the debugger from the timing information
provided. When rendering a curve or surface with the haptics device, the desired behavior
is a fast approach to the goal position, and a stiff but passive (energy diminishing) reaction
to deviations from it. Sampling issues or stability problems can deteriorate the desired
sensation. They result from too large forces at the available sampling rate. The debugger
helps to spot this very common problem, and to resolve it by changing the spring and
damping constants. Force continuity problems are usually caused by principle problems
of the force-computing algorithm. They can be sensed at the device, and the debugger is
able to mark suspicious points in the data stream graphically.

As future work, we want to extend the debugger to multiple-point-of-contact devices, in
which case we have to additionally visualize orientation data and torques. Furtheron,
an accurate model of the haptic device’s dynamics could provide a detailed analysis by
model-based prediction.
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