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Abstract: There are several reasons to specify UML modelsin aformal way The
most important are to avoid inconsistencies and ambiguities and to do verification
and forecasting of system properties. In this paper we propose a systematic
approach to transform UML static models into algebraic specifications. We define
the GSBL* algebraic language to cope with concepts of UML. Firstly, we give a
formal description for UML static models using GSBL . Then, we describe how
to translate UML constructs to GSBL* constructs. In particular, we show how to
transform UML relations into GSBL*. We propose a system of transformation
rulesto translate OCL constraints to GSBL .

1 Introduction

In recent years, the Unified Modeling Language has emerged as a prominent modeling
language in the object-oriented analysis and design world. It is a set of graphical and
textual notations for specifying, visualizing and documenting object-oriented systems
[Om9g].

There exists a great number of UML Case tools that facilitates code generation and
reverse engineering of existing software systems. Unfortunately, techniques currently
available in these tools provide little support for validating models in the design stages
and they are not sufficient for the complete automated code generation. Probably, thisis
mostly due to the lack of a precise semantics of UML and OCL. Another source of
problems in these processes is that, on the one hand, UML models contain information
that can not be expressed in object-oriented languages and on the other hand, the object-
oriented languages express implementation characteristics that have no counterpart in the
UML models. For example, languages like C++, Java and Eiffel do not allow us to
express associations, their cardinality and their OCL constraints. It is the designer's
responsibility to make good use of this information either selecting an appropriate
implementation from alimited repertoire or implementing the association by himself .

A variety of advantages have been attributed to the use of formal software specification
to solve these problems. It is commonly accepted that a formal specification can reveal
gaps, ambiguities and inconsistencies. Any verification of UML models could take place
on their corresponding specification using reasoning techniques provided for algebraic
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formalism before coding starts. Furthermore, a precise semantics provides the basis for
automated forward engineering.

In previous work we have proposed a rigorous process to forward engineering UML
static models using the algebraic language GSBL°([Fag8]; [FCO01]). Our contribution
was towards an embedding of the code generation within a rigorous process that
facilitates reuse. We have described the formal model SoRelm for defining structured
collections of reusable components that integrates algebraic specifications and object-
oriented code. The manipulation of SpRelm components by means of building operators
(Rename, Hide, Combine, Extend) is the basis for the reusability. Eiffel was chosen as
the language to demonstrate the feasibility of our approach.

The emphasis in this contribution is given to the first steps in the road from UML to
code. We describe how to transform UML static models that are specified in OCL, into
GSBL®. We design the GSBL®° language to cope with concepts of the UML models. In
particular, thislanguage is relation-centric, that is, it is possible to express different kinds
of relations (dependency, association, aggregation, composition, etc) as primitives to
develop specifications. We propose a system of transformation rules that allows us to
automatically translate OCL specifications (preconditions, postconditions, invariants and
general constraints) to GSBL®°.

The paper has the following structure. We start by looking at related work in Section 2.
In Section 3 we describe the GSBL® language. Section 4 outlines a rigorous process to
transform UML static models into GSBL®®. In Section 5 we describe how to integrate
OCL specifications and GSBL. Thisisfollowed by conclusions (Section 6).

2 Related Work

In the late 80s, new specification languages or extensions of formal languages to support
object-oriented concepts began to develop. Among them the different extensions of the Z
language, for example Z++ [La90], OBJECT-Z [Ca89] or OOZE [AG91] can be
mentioned. Another language with object-oriented characteristics and based on OBJ3
[GM99] is FOOPS [RS92]. Among the most recent ones the OBLOG language is being
developed as the basis for a commercial product. Within the academic world there exist
other developments associated with the OBLOG family: TROLL [Ju96], GNOME
[SR94], LCM [FW93] and ALBERT [WD98] whose common semantic basis is the
temporal logic. CASL [C099] wants to be the central member of alanguage family, that
includes simple languages obtained by restriction and more advanced ones obtained by
extension (for example to specify reactive systems). Reflexive languages based upon the
rewriting logic such asMAUDE [CI99] and CafeOBJ[DF98] are being already designed
and implemented.

A lot of work has been carried out dealing with a semantics for object oriented models.
For example, [FBL97] describes the formalization of FUSION models in Z. [BC95]
introduces a method to derive LARCH algebraic specifications from class diagrams.

The UML formalization is an open problem yet and many research groups have already
achieved the formalization of parts of the language. It is difficult to compare the existing
results and to see how to integrate them in order to define a standard semantics since
they specify a different UML subset and they are based on different formalisms. The
Precise UML Group, pUML, is created in 1997 with the goal of giving precision to
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UML [Ev98]. [BF98] describes how to formalize UML models using Z, [La95] using
Z++, [Br97] does a similar job using stream oriented algebraic specifications, [GR97]
does this by transforming UML to TROLL, [Ov98] achieves it by using operational
semantics. [KC99] and [MAOO] integrate UML and OBJECT-Z. [FH98] describes
advanced metamodeling and notation techniques that allow the enhancement of UML.

Currently there are few development methods that include OCL. The most important is
Catalysis [DW99]. [Bi99] describes an approach for specifying UML interface
constraints and proving the correctness of implementation relations between interfaces
and classes. [MC99] examines the expressive power of OCL in terms of navigability and
computability. [V J99] proposes a tool, Alcoa, for analyzing object models that uses its
own language, Alloy, based on Z. [RGO00] proposes an approach for validation of UML
models and OCL constraints that is based on animation. [BoOO] describes a graph-based
semantics for OCL and a systematic translation of OCL constraints into expressions over
graph rules. [Hu99] analyzes the integration of UML models, OCL constraints and
CASL. [Pa00] proposes the first steps towards a translation of class diagrams, OCL
constraints and state machine into Swinging Types.

What the latter formalizations have in common is the fact that they give semantics to
UML and certainly this is also another goal in our work. However, it is not an end in
itself, we want to give semantics to UML static models in order to transform design
artifacts into code by means of a rigorous process that facilitates reuse, evolution and
maintenance of the software.

The following differences between our approach and some of the existing ones are worth
mentioning. In the first place, the GSBL®® language was defined taking into account the
structuring mechanisms of UML. The central innovation of this language as regards
other onesisthat it is relation- centric. GSBL® allows us to keep atrace of the structure
of UML models in the specification structure that will make easier to maintain
consistency between the various levels when the system evolve. On the other hand, a
different approach is introduced for the integration of static diagrams UML specified in
OCL with algebraic languages based on the transformational paradigm. Transformations
are supported by a library of reusable schemes and by a system of transformation rules
that allow translating OCL expressions into GSBL® step by step. All the proposed
transformations can be automated, they alow traceability and can be integrated to
rigorous processes of forward and reverse engineering extending the ones supported by
the existing CA SE tools.

3 The GSBL® Language

GSBL (Generic Specification Base Language) is a kernel language for the incremental
construction and organization of specifications [CO88]. GSBL® is an object-oriented
extension to GSBL designed specifically for facilitating specification of concepts of
UML static models. In particular, it provides an explicit syntax for expressing UML
relations. [BRJ99] distinguishes four kinds of UML relations: dependency,
generalization, association and realization. A detailed description of them can be found
in [Om99].

The treatment of associations in object-oriented languages as little more than pointer-
value attributes has confined them to a second-class status. But associations are semantic
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constructions of equal weight to the classes and generalizations in the UML models. In
fact, the associations allow abstracting the interaction between classes in the design of
large systems and they affect the partition of the systems into modules. For full benefit,
these relations should be made available in object oriented languages as primitives.
Extensions of algebraic languages to support object-oriented concepts follow the same
lines of thought, in general, algebraic specifications have much less structure than the
original object-oriented models.

GSBL® includes a library of constructor types that captures the semantics of
associations. The variety of associations may lead to the impression that it should have
several language mechanisms to express them. Recognizing only A few kinds is not
representative of the variety of associations. Then, we decide to provide flexible
mechanisms for defining a new association just like an existing one, but with its own
special properties. GSBL®® helps designers produce specifications made of autonomous
elements. This approach allows us to shape and grow the GSBL®° to our needs and to
define classes and associations as independent units, thus relieving the designer writing
the specification from the burden of replicating that generic semantics for each concrete
application. Following, we describe in more detail the GSBL® syntax.

3.1 Representing Object Classes
In Fig. 1 we show the syntax of a GSBL®° object class specification:

OBJECT CLASS className [<parameterList>]
USES <usesList>

REFINES <refinestList>

RESTRICTS < restrictsList>

BASIC CONSTRUCTORS <constructorList>
DEFERRED

SORTS <sortList>

OPS <opsList>

EQS <varList> <equationList>
EFFECTIVE

SORTS <sortList>

OPS <opsList>

EQS <varlList> <equationList>
END-CLASS

Fig. 1: GSBL® Class Syntax

In GSBL® strictly generic components can be distinguished by means of explicit
parameterization. The elements of <parameterList> are pairs C1:C2, where C1 is the
formal generic parameter constrained by an existing class C2 (only subclasses of C2 will
be avalid actual parameter).

The USES clause expresses dependency relations. The specification of the new classis
based on the imported specifications declared in <usesList> and their visible
constituents may be used in the new specification.
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The power of the inheritance comes from the fusion of a type mechanism (the definition
of a new type as a special case of existing types) with module mechanisms (the
definition of a module as an extension of existing modules). GSBL®® distinguishes two
different mechanisms: REFINES and RESTRICTS. The first one relies on the module
viewpoint of classes while the second one relies on the type viewpoint. In the REFINES
clause the specification of the class is built from the union of the specifications of the
classes gpearing in the <refineList>. The components of each one of them become
components of the new class, and its own sorts and operations become the own sorts and
operations of the new class. The RESTRICTS clause builds the specification of the new
class by adding avalue-constraint in the specification of the old one.

GSBL° allows us to define local instances of a classin the USES and REFINES clauses
by the following syntax: ClassName[<bindingList>] where the elements of
<hindingList> can be pairs of class names C1:C2, being C2 a component of ClassName
pairs of sorts sl:s2, and/or pairs of operations ol: 02 with 02 and s2 belonging to the
own part of ClassName

The sort of interest of a class (if any) is also implicitly renamed each time the class is
substituted or renamed. Instances of parameterized classes can be defined with the usual
syntax ClassName[<actualParameterList>] when no additiona renaming or
substitution is needed.

The syntax of a complete class can include the BASIC CONSTRUCTORS clause that
refersto generator operations.

GSBL* distinguishes incomplete and complete parts. The DEFERRED clause declares
new sorts, operations or equations that are incompletely defined. The EFFECTIVE
clause either declares new sorts, operations or eguations, that are completely defined, or
completes the definition of some inherited sort or operation.

Sorts and operations are declared in the SORTS and OPS clauses. In GSBL it is
possible to specify any of the three levels of visibility for operations public, protected
and private. They are expressed by prefixing the symbols: +(public), #(protected) and -
(private). If we do not decorate an operation with a symbol of visibility it can be
assumed that it is public.

Asan example, in Fig. 2 we show a GSBL®° specification for an Object Class Collection.
It must be taken into account that some operations are second-order operations (forAll,
exists and iterate).

3.2 Representing Associations
Associations are defined as standard elementsin GSBL°. ASSOCIATION is a taxonomy
of constructor typesthat classifies associations according to:

Its kind (aggregation, composition, association, etc).

Its degree (unary, binary, ternary and in general as n-ary).

Its navigability, for example a binary association can be unidirectional or bi-
directional.

Its connectivity (one-to-one, one-to-many, many-to-many, €tc).
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OBJECT CLASS Caollection [Elem:ANY] iterate:
USES Boolean, Nat Collection x (Elem x Acc) x (->Acc) -> Acc
BASIC CONSTRUCTORS creste, add EQS{c,cl:Collection;e:Elem;
DEFERRED f: Elem->Boolean; base: ->Acc}
SORT Caollection isEmpty (create) = True
OPS isempty(add (c,e) ) = False
create: ® Collection includes(create,e)= False
add: Collection x Elem® Collection includes(add(c,€) e1)= if e=el then True
size: Collection ® Nat ) elseincludes (c,el)
count; Collection x Elem® Nat !”C|I U‘cjj:i'l'l-((cygd egt(e)f ')I')rue
EFFECTIVE inciu cad(c-Le)=
OPS includes(c,e) and includesAll (c,cl)
isEmpty: Collection ® Boolean forAll (create,f)=True
includes Collecion x Elem ® Booleen forll (add (c) )= (@) and forall (c/)
includesAll: exists &f;te'f)) 0 Faf(e) aseh

: : exists ce),f)=f (e orexists(c,
f((:)?xclalct.lonx Collection® Boolean iterate(create, f. bese) = base .
Collection x (Elem->Boolean)® Boolesn iterate(add(c,€),g, base)= g (e, iterate (¢, g ,base))
exists: END-CLASS
Collection x (Elem->Boolean)® Boolean

Fig 2: OBJECT CLASS Collection

Generic relations can be used in the definition of concrete relations by the mechanism of
instantiation. New associations and whole-part relations (aggregation and composition)
can be defined by means of the following syntax:

ASSOCIATION <relationName>

IS <relationName>[...:Classl;..:Class2;...:Rolel;...:Rol€2;...: multl;....mult2;
....visibility1;...:visibility2]

CONSTRAINED BY <constraintList>

END

WHOLE-PART <relationName>

IS <relationName> [.... Whole;...: Part; ;...:Rolel;....Role2;...: multl;....mult2;
....visibility1;...:visibility2]

CONSTRAINED BY <constraintList>

END

The IS clause expresses the instantiation of <relationName> with classes, roles,
visibility and multiplicity. The CONSTRAINED-BY clause allows the specification of
static constraintsin first order logic.

Relations are defined in an Object Class by means of the following syntax:
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OBJECT CLASSC...

"<relationName>" ASSOCIATES <className>
"<relationName>" HAS-A SHARED <className>
"<relationName>" HAS-A NON-SHARED <className>

END-CLASS

The relation name is enclosed in quotation marks, before the keywords ASSOCIATES
or HAS-A. These keywords identify ordinary association or aggregation respectively.
The keywords SHARED and NON-SHARED refer to simple aggregation and
composition respectively. An association may be refined to have its own set of
operations and properties, i.e operations that do not belong to any of the associated
classes, but rather to the association itself. Such an association is called an
ASSOCIATION CLASS

The mechanism provided by GSBL®® for grouping classes and relations is the package.
It is possible to specify families of packages by generalization. A specialized package
can be used anywhere a more general package can be used. Elements made available to
another package by generalization have the same visibility in the heir as they havein the
owning package.

3.3 An Example

Fig. 3 shows a simple class diagram that introduces two classes (Person and Meeting)
and a bidirectional association between them. We have meetings in which persons may
participate. Participants know about the meetings they are involved with, and meetings
know their participants . This example was analyzed in [Hu99] and [Pa00]. We propose
a different approach based on GSBL®. This language helps us to built specifications
made of autonomous units (classes and relations) connected by a simple structure.

Person M eeting
name: String Participates title:String
* * start:Date
participants meetings end:Date

isConfirmed:Bool

numMeeting():Nat
numConfirmedMeeting():Na| duration() :Time
checkDate():Bool
cancel()
numConfirmedParticipants():Nat|

Fig 3: Class Diagram Person& Meeting

119



Fig. 4 shows the OCL constraints that describe the effect of some operations. Fig. 5
depicts the GSBL*® specification of the class diagram and Fig. 6 shows the GSBL®°
specification for the Participates Association.

context Person:: numMeeting (): Nat

post: result = self.meetings-> size

context Person :: numMeetingConfirmed () : Nat

post: result= self.meetings -> select (isConfirmed) -> size

context Meeting :: isConfirmed (): Bool

post: result= self.checkdate() and self.numConfirmedParticipants > min
context Meeting :: duration () : Time

post: result = timeDifference (self.end, self.start)

context Meeting:: checkDate():Bool

post: result = self.participants-> collect(meetings) -> forAll (m | m<> self and
m.isConfirmed implies (after(self.end,m.start) or after(m.end,self.start)))

Fig. 4 : OCL Constraints

PACKAGE Person& Meeting isConfirmed: Meeting -> Boolean

OBJECT CLASSPerson duration: Meeting->Time

USES String, Nat checkDate: Meeting -> Boolean

<<Participates>> ASSOCIATES Meeting consistent: Meeting x Meeting -> Boolean .|

BASIC CONSTRUCTOR create_Person EQS{m,m1:Meeting; t:Time; s:String;

EFFECTIVE d,d1:Date; b:Boolean; p: Person}

SORT Person title (create_Meeting(s,d,d1,b)) =s

OPS create_Person: String -> Person start (create_Meeting(s,d,d1,b)) =d

name: Person -> String end (create_Meeting(s,d,d1,b)) =d1

numMeetings: Person -> Nat duration (m)=

numM eetingsConfirmed: Person -> Nat timeDifference (end(m),start(m))

EQS{ p:Person; m:Meeting; s: String} isConfirmed (cancel(m))= False

name(create_Person(s))=s isConfirmed (m) = checkDate(m) and

numM eetingsConfirmed (p) = NumParticipantsConfirmed(m) > min

size(selecty, (getMeetings(Participates,p), checkDate(m) = forAll g (collectp
isConfirmed (m)) (getParticipants(Parti cipates,m),

numM eetings (p)= getM eetings(Participates, p)),

size (getM eetings(Participates, p)) consistent (m,m1) )

END-CLASS consistent(m,m1)= not (isConfirmed(m1))

OBJECT CLASSMeeting or (end(m) < start(m1) or end(m1) <

USES String, Date, Boolean, Time start(my)...

<<Participates>> ASSOCIATES Person END-CLASS

BASIC CONSTRUCTORS ASSOCIATION Participates

create_Meeting | S Bidirectional -Set [ Person: Classl;

EFFECTIVE Meeting: Class2; participants:rolel;

SORT Meeting meetings: role2; *:multl; *: mult2; +:

OPS create_Mesting: String x Date x visibilityl; +: visibility2]

Datex Boolean-> Meeting END

title: Meeting -> String END-PACKAGE

start: Meeting -> Date

end : Meeting -> Date

Fig. 5: PACKAGE Person&Meeting
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RELATION CLASS Bidirectional-Set

-- Bidirectiona /* to */ as Set
REFINES BinaryAssociation [Person:Classl;
Meeting:Class2]
USES Set_Person: Set [Person],
Set_Mesting: Set[Mesting]
BASIC CONSTRUCTORS create, addLink
EFFECTIVE
name, frozen , changeable , addOnly ,
getRolel, getRole2, getMultl,getMult2,
getVisibilityl, getVisibility2, isRelated,
isEmpty, rightCardinality, leftCardnality
create: Typename® Bidirectional-Set
addLink:
Bidirectional-Set(b) x Person(p) x Meeting(m)®
Bidirectional-Set
pre: not isRelated(a,p,m)
isRightLinked:
Bidirectional-Set x Person® Boolean
isLeftLinked:
Bidirectional-Set x Meeting® Boolean
getMestings: Bidirectional-Set(a) x Person(p) ®
Set_Mesting
pre: isRightLinked(a,p)
getParticipants:
Bidirectional-Set(a) x Megting(m) ®
Set_Person
pre: isLeftLinked(am)
remove:
Bidirectional-Set (a) x Person (p) x Meeting(m)
® Bidirectional-Set
pre: isRelated(a,p,m)
EQS{ a:Bidirectional-Set; p,pl: Person;
c2,m1:Meseting; t: TypeName}
name(create(t))=t
name(add(a,p,m)) = name(a)
isEmpty( create(t))= True
isEmpty(addLink(a,p,m))= Fase

frozen (a) = False changeable (a)= True
addOnly (a) = Fase

getRolel(a) = participants’

getRole2 (a) = “meetings’

getMultl(a) =* getMult2(a) =*
getVishilityl(a) = +

getVisihility2(a) = +

isRelated (create(t),p,m) = False
isRelated (addLink (a,p,m),pl,ml) =
(p=p1 and m=m1) or isRelated (apl,ml)
isRightLinked (create(t),p) = False
isRightLinked (addLink (a,p,m),pl)=

if p=p1then True

elseisRightLinked (a,pl)

isLeftLinked (create(t),m)= False
isLeftLinked (addLink(a,p,m),m1)=

if m=m1then True

elseisLeftLinked (aml)
rightCardinality (create(t),p)= 0
rightCardinality (addLink(a,p,m),pl)=
if p=plthen 1+ rightCardinality (a,pl)
eserightCardindity (apl)
leftCardinality (create(t),m) =0
leftCardinality (addLink(a,p,m),m1)=

if m=m1 then 1+ leftCardindity (am1)
ese |eftCardinality (am1)
getMeetings(addLink(a,p,m),pl)=

if p=plthen

including (getM eetings(a,p1), m)

else getMeetings(a,pl)

getParticipants (addLink (a,p,m),m1) =
if m=m1then

including (getParticipants(aml) , m) else
getParticipants(a,ml)
remove(addLink(a,p,m),pl,ml) =

if (p=p1 and m=m1) thena

else remove(a,pl,ml)
END-RELATION

Fig. 6: RELATION CLASS Bidirectional-Set

4  From UML Class Diagram to GSBL” Specifications

Starting from UML static diagrams, an incomplete algebraic specification can be
automatically built. It contains the highest information that can be extracted from the
UML class diagram and is obtained by translating the UML constructions and OCL
constraints to GSBL®°.

4.1 Mapping Classes and Associations

Given a basic UML diagram with OCL annotations a PACKAGE, whose components
will be OBJECT CLASS, ASSOCIATION CLASS and relation definitions, is
automatically generated. For each class iré(iwn in the diagram an OBJECT CLASS is



built and for each association (ordinary, qualified or class-association) a new association
isdefined

These specifications are obtained by instantiating reusable schemes and classes already
existing in a GSBL®” s predefined library. Some of them are shown in Figure 7. Box
specifies the class interface (attributes and methods). It is a refinement of Cartes-Prod
that allows usto specify cartesian product of adifferent arity.

OBJECT CLASSBox OBJECT CLASS Cartes-Prod
USESTPLANY,..,TPMm:ANY [TLANY,.., Tn:ANY]

REFINES Cartes-Prod [T-attr;:T1; EFFECTIVE

T- attr;:T2;..; get-1: select-1 get-2: create: T1x ... X Tn® Cartes-Prod
select-2,...,set-1: modif-1,..., modif-i: Cartes-Prod x Ti ® Cartes-Prod
set-n: modif-n] select-i:Cartes-Prod® Ti  1£i£n
DEFERRED EQS{cp:Cartes-Prod;t1: T1;ti,
OPS ti":Ti..tn:Tn}

meth;:Box x TPi; X TPixX.....TPi® TPj select-i (Create(t1,t2,... ti,...,tn)) = ti
modif-i(create(t1,t2,...,ti,...,tn),ti") =
meth,: Box X TPry XTPr,....x TPry -> TPry create(t1,t2,..ti",..tn)

END-CLASS END-CLASS

Fig. 7 : Box and Cartes-Prod Schemes

Each OBJECT CLASS s obtained by instantiating the scheme of Fig. 8.

OBJECT CLASSA

USES U1,U2,...

REFINES Box [....TP1;....TFi;...:T-attr1;...:T-attri;....meth1;...methi,..]
<<Aggregation-i>>HAS-A SHARED Si

<<Composition-j>> HAS-A NON-SHARED N;j

<<Association-k>> ASSOCIATES Mk

END-CLASS

Fig. 8: Constructing an OBJECT CLASS

Generalization/specialization relations are expressed by means of the REFINES clause.
Aggreggation-i, Composition-i and Association-i are new relations defined by
instantiating constructor types. Fig. 9 shows an instantiation for Person class and the
resulting class.

Preconditions, postconditions and invariants in OCL will be translated to preconditions
and axiomsin GSBL®. Inthe next section we describe in detail how to transform OCL
constraintsto GSBL®.

Thus, an algebraic specification can be semi-automatically built. We could use this
specification to detect inconsistencies in the class diagrams. We could simulate the
behavior of a system. We could start with an empty system where no objects and
association links exist. As a next step, we could create objects and links for rigorous

semantic analysis of the UML models.
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OBJECT CLASSPerson

REFINES Box [String:TP1; Nat:TP2;
name:get-1; setName: Set-1; String: T-attril;
numM eeting:methl;

numM eetingConfirmed : meth2]
<<Participates>> ASSOCIATES Mesting
END-CLASS

OBJECT CLASSPerson

USES String, Nat

<<Participates>> ASSOCIATES

Meeting

BASIC CONSTRUCTOR create Person

SORT Person

OPS create_Person: String -> Person
name: Person -> String

setName: Person x String -> Person
numM eetings: Person -> Nat

numM eetingsConfirmed: Person -> Nat
EQS{ p:Person; m:Meseting;

s,s: String}
name(create_Person(s))=s
setName(create Person(s), )=
create_Person (S) ...

END-CLASS

EFFECTIVE

Fig. 9: Constructing the OBJECT CLASS Person

5 From OCL to GSBL’° Specifications

Analyzing OCL constraints we can derive axioms that will be included in the GSBL®°
specifications. Preconditions written in OCL are used to generate preconditions in
GSBL°. Postconditions and invariants allow us to generate axiomsin GSBL.

An operation can be specified in OCL by means of pre- and post-conditions:

Typename:: Operation name ( parameterl: Typel,...):Return Type
pre: _some expression of self and parameter1
post:Result= _ some function of self and parameter1

Self can be used in the expression to refer to the object on which the operation was
called, and the name Result is the name of the returned object, if there is any. The names
of the parameter (parameterl,...) can also be used in the expression.

The value of aproperty in a postcondition is the value upon completion of the operation.
To refer to the value of a property at the start of the operation, one has to postfix the
property name with "@", followed by the keyword "pre".

The transformation process of OCL constraints to GSBL® is supported by a system of
transformation rules. Some of them are partially shownin Fig. 10.

Let Translate be functions that translate logical expressions of OCL into first-order
formulae in GSBL®C. The translation of expressions of the form e.op, where e is a
complex expression of the form el.opl, is recursively defined by
Translate(e.op)=op(Translate(e)).

It is worth clarifying for the axioms generation that a basic functionality
Typename::Operation name ( parameterl: Typel,..):Return Type, is translated into
GSBL®° syntax as Operation name: Typename x Typel X...® ReturnType . In the same
way the axioms terms must be translated respecting the GSBL®® syntax, for example,
collection->size=0 is translated to size(collection ) = 0. For each type T in a class
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diagram we associate with it a sort that conforms to the type. We define a mapping
r:OCLType ->GSBLSort For example, in the context of the Participates association
and a Person p, r(meetings)=getMeeting (Participates, p) . Fig. 11 exemplifies the
transformation of OCL constraints for numMeetingsConfirmed and numMeetings
operations (see Fig. 4, Fig. 5 and Fig. 9).

1. T® Op(t1:TLt2:T2,.): OPS

ReturnType OpTXxTLIxT2X... ® ReturnType
post: result =T ® iterate (elem: Type; EQS{t:T; e Typetl.T1;t2:T2;... }
acc: Return Type = <exp> % Op (emptyr, t1,t2,..) = Trandate(exp)

<boolean-expression-with-elem-and-acc>) | Op (constr(t,e), t1,t2,.....)=
Transl ate(bool ean-expression-with-elem-and

acc)

with [elem |® e; acc: Op(t,t1,t2,...)]
2. T® Op (<list_param>) : Boolean OPS
post: result =T ® for All (elem: TypeYz Op:T x (Elem->Boolean) x... ® Boolean
<boolean-expression-with-elem>) EQS{t:T; e Type; f: Elem->Boolean... }

Op (empty, <list_param>)= TRUE

Op (const(t,e), <list_param>)=

Op(t, <list_param>) AND f(€)

f(e) istrue if <boolean-expression-with-

elem>
3. T® Op (<list_param>) : Boolean OPS
Post: Result =T® exists (e Type¥z Op:T x (Elem->Boolean) x... ® Boolean
<bool ean-expression-with-e>) EQS{t.T; e Typef:Elem->Boolean... }

Op (empty T, <list_param>)= FALSE
Op (const(t,€), <list_param>)=
Op(t, <list param>) OR f(€)

4. T® Op (<list_param>) : ReturnType | OPS

Post: <exp> =<exp,> Op:T X ... ® Return Type
EQS{...}

Trandate(exp;) = Trandate(exp,)
5. T® Op (<list_param>) : Return Type | OPS

post: result = <exp> Op:T X ... ® Return Type

EQS{tT; ...}

Op (t, <list paran™>) = Trandate(exp)
6. T->select|existsfor All (v: Type| select, |exigts,[forAll, (r (T),
<boolean-expression-with-e>) Trand ate(bool ean-expression-with-e)

Fig. 10: From OCL to GSBL®: Transformation Rules

OBJECT CLASSPerson...

EQS{ p:Person; m:Meeting; s: String}

-- Rule 5/Rule 6

numM eetingsConfirmed (p) = size(sel ect,, (getMeetings(Participates,p), isConfirmed(m))
--Rule5 numMeetings (p)= size (getM eetings(Participates, p))

END-CLASS

Fig. 11 : Constructing axioms for Person
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Asaspecia case, we have applied it to obtain GSBL® specifications of OCL types. Fig.
12 partially shows a translation of Collection specification in OCL to GSBL®
specifications. For transforming preconditions and postconditions we take into account
the distinction between constructor and observer operations. The programmer has to
choose the adequate constructor operations. For example, in Rule 1, if T is instantiated
with Collection then constr is instantiated with add and emptyr with create.

Collection -> size:I nteger

post: result= collection->iterate(elem; acc:Boolean=False | acc +1)

Callection -> count (object:OclAny) :Integer

post: result=collection -> iterate(elem; acc:Boolean =Falsg| if elem=e then True else acc)
Collection® includes(eT ) : Boolean

post: result= Collection® iterate (elem; acc:Boolean=False %if elem=ethen Trueelseacc)
Collection® forAll (expr:OclExpression) :Boolean

post: result= collection® iterate (€lem; acc:Boolean=True¥acc and exp)

Coallection® exists (expr:OclExpression) :Boolean

post: result= Collection® iterate (elem; acc: Boolean=False ¥acc or exp)

Collection® isEmpty : Boolean

post: result= (collection->size=0) ...

OBJECT CLASS Callection[Elem:ANY]
USES Boolean, Nat
BASIC CONSTRUCTORS crezate, add

-- See Figure 2

EQS{c,cl:Collection;e:Elem;f: Elem->Boolean; base: ->Acc}

size( creste)= 0 size(append(s,e))= 1 + size(s) Rulel
count(create,e) =0  count (append (s,€),el) = if e=el then count (s) +1 else count (s,el) Rulel
isEmpty( ¢) =((size(c)=0) Rule 4
includes(create,e)=False includes(add(c,e),el)= if e=el then True elseincludes(c,el) Rule]
forAll (create,f)=True  forAll (add(c,e),f)=f(e) and forAll(c,f) Rule?
exists (createf)= False  exists (add(c,e),f)=f(€) or exists (c,f) Rule3

END-CLASS

Fig. 12: Constructing axioms for Collection

6 Conclusions

In previous work we outline a rigorous process to forward engineering UML static
models [FCO1]. In this paper we have presented the first steps of this process. A formal
mapping between UML models and GSBL® is described. Our approach is directly
connected with the goal of reusability. The aim is to construct specifications by
combining standard prefabricated elements. We describe a system of transformation
rules to transform OCL to GSBL®°. A semantics for OCL expressions together with the
semantics for class diagrams has been defined in terms of GSBL°.

We believe that our approach provides several advantages. All the information contained
in the UML models (associations, their cardinality, OCL constraints, etc) is translated to
specifications and will have implementation implications. The transitions between the
UML diagrams and algebraic specifications can be done exclusively by applying
automated transformations that preserve the integrity between UML and GSBL®°..
Although atool that assists the proposed method does not exist, key phases of this one
have been prototyped. To allow the automatic generation of algebraic specifications
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from UML models that are specified in OCL, we developed a transformation system
prototype. It was built in Mathematica which allows one to use rewrite rules and to
prove properties [FMPO0O0]. The obtained results show the feasibility of our approach,
however we can not make an analysis of the pragmatic implications of it. In the future
we foresee the integration of our approach in the existing Case-tools environments.
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