

RTB

lndustrial Real - Time

BASIC

z
llt

o
ö
c{

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
13

- 14-
- 15-
-16-
17
- 18-
- 19-
-20-
-21-
-22-
_23-
-24-
-25-
-26-
-27_
-28-
-29-
-30-
-31-
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
-43-
-44-
45

-46-
47

-48-
49
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-
-58-

EWrCS TCz 81/8 Sepb 1981

IRTB

Industrial Real-time BASIC

Draft Sbandard

This report describes a draft standard for a Real-time nodule of
BASIC for use in applications such as cont,rol, automabion and
nonitoring. The standard takes accounb of curent inplementations
and practices, and nodern trends in language desi-gn.

The nodule was defined by the technical connittee on the
progranning language BASIC of the European l{orkshop on Industrial
Computer Sysbems (nWfCS l1z), in conjuncli-on with the European
conputer Manufacburers Association (ECMA Tc2l) and the American
National Standards Institute (ANSI X3JZ). It will evenbually becone
part of t'he ECIIA/ANSI BASIC Standard which will be subnitted to the
International Standards Organisation (tSO).

The j-ntention of fhis publication is to elicit conments and
criticisms from as wide an audience as possible prior to formal
standardisation. Comnents should be sent
to bhe TC2 chairnan or doeunent secretary, from whom further copies
of this docunenL nay be obtained.

J. Szlanko (tCZ ctrairnan)
KFKI
Central Research Inst. for Physics
POB 49
H-1525 Budapest
Hungary

TeI ++36 1 166540
Telex 224722 KFKI H

A. Lewis (TC2 docr:nent secretary)
r & AP 347.2
AERE Harwell
Didcot
Oxon. 0X11 ORA

England

TeI ++44 235 24141 Exb. 4220
Telex 83135 ATOMHAR

The developnent of this draft was supported by the Conmission of
the European Conmunities, Directorate General III. The views
expressed herein are not, however, necessarily those of t,he
Connission.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
- 15-
- 16-

This doetment was

G. BuIl
M. Bellardinelli
M. Dearlove
G. Ehret
A. Jolley
l{. Koblitz
J.P. Lamoitier
A. Lewis
R. Newton
J. Szlanko
lrl. Puczylowski
G. Trainito
G. tlindal
H. tJoda

-2-

prepared by the following members of TC2:

Hatfield Poly. Herts. AL1O 9AB
0livet,ti & C. S.p.A. I-100'15 Ivrea
Kent Process Control Ltd. Herts. SG4 OTG

KFK-IAK Postfach 3640, D-7500 Karlsruhe 1

Ferranti Ltd. I'lanchester M22 5LA
Techn. Uni-versitaet A-1040 ttien
(Consultant) Ave A. Dunas, F-78370 Plaisir
AERE Harwell Oxon 0X11 OnA
Teeside Poly. Middlesbrugh Cleveland
KFKI POB 49 H-1525 Budapest
Inst. of Mathenaüical Machi.nes, Wasaw
LADSEB - CNR, I-35100 Padova
I. R.I.S. F-59651 Villeneuve-dtAscq
Uniconp GnbH D-7500 Karlsruhe

UK

I
UK

D

UK

A
F

UK
UK

H

PL
I
F
D

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
-15-
- 16-
17
- 18-
- 19-
-20-
-21-
-22-
23
-24-
25
-26-
-11-
-28-
_29-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-

5.1
5.2
5.3
5.4
5.5
5.6
5.7

-l-

CONTENTS

1. Introduction .

PAGE

t. 4

2. I'dain Features of Standard BASIC

3. Functional Capabilities and Rationale for IRTB .

3.1 Concurrent activities .

3.2 DaEa Structures .
3.3 Process Input and 0utPub . . -.

3.4 Messages .

3.5 Shared Data
3.6 Events .
3.7 Exception Handling .
3.8 Distributed Systens and Independent Compilation

4. The Language Definition

4.1 Conventions
4.2 Assr.med Definitions
4.3 Confornance . .

5. Formal Definition of the Real-tine Module

4

6

6
7
8
8

9
10
10
11

12

12
13
14

Real-tine Prograns . .
Real-tine Declarations
Scheduling .

Process Input
Shared Data

and 0utput .

Message Passing
Bit Patterns and 0perations

16

16
19
22
25
27
28
30

6. Exception Handling . . 32

T. References . 36

Appendix 1. Distributed Systens and Independent conpilation
Appendix 2. Excepüion Codes
Appendix 3. Inplenentation-defined features

37
41
42

r
I
1

'
-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
- 13_
-1 4-
- 15-
- 16-
-17-
- 18-
19
-20-
-21-
-22-
-)?-
-24-
-25-
-26-
27
-28-
-)o-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
-47_
-48-
49

-50-
-51-
-52-
-53-
-54-
-55-
-55-
-57-

-4-

1. Introduction

A standard for BASIC is being defined Jointly by the Anerican
National Standafds Institute (ANSI), the European Conputer
l,tranufacturers Association (ECMA), and the European l{orkshop on

Indusbrial Conputer Systens (EIIICS). The standard will define the
core language BASIC together with a nrmber of enhaneement nodulest
one of which is Real-tine. The core will include the existing
standard for Minimal BASrC (1 r2r3) as a subset' Indusbrial Real-time
BASIC consists of the core plus the real-tine nodule and possibly
other enhancenent nodules. The rDrafü Sbandardf refemed bo in this
doctment is the ANSI draft for the new Sbandard.

This doctment describes Insustnial Real-time BASIC (IRTB).
Section 2 describes the naLn features of the core' and section 5

defines the syntax and senantics of ühe real-time module in a fornal
way using the convenüions of the ANSI/ECMA Draft Standard.

Sone features in the fornal definibion are specified as
tinplenentation-definedt (see Appendix 3). An exa.nple concerns bhe
details of plant interface equipnent accessed in process input and

ouüput statenents. Process input and output is defined rigorously
fron the point of view of the application progran, but the nethod of
accessing the hardware depends on the equipnent used. The

doctmentation for an inplenentation should define alI sections
specified as fimplementation-definedr in the standard.

The Drafü Sbandard does not address the problen of building a

distributed system. However, careful attention ltas paid to the
design to ensure that a conpatible extension could be made to
acconmodate systems incorporating functional distribution. Appendix
1 in this docrment describes a set of declarations that will enable a
real-tine program to run in a disüributed systen.

2. Main Feabures of Sbandard BASIC

Two simple data types are provided - nrmeric and stringr bogether
with one and two dfunensional arrays of these data types. Sbructures
can be declared, which are colleetions of the data types ntmeric and

string, simple values and amays, in any conbination.

Identifiers tnay be up bo 31 characters long (upper and lower case
Ietters, digits and underline). String identifiers are distinguished
by havlng a dollar sien ($) at the end.

The ntmeric data type is defined to be floating decinal (tit<e a
calculator). Powerful string handling is provided together with
operations on natrlces, conprehensive file input/outpub' exception
handling and debwging facllities.

-5-

Selection is provided through ühe if-then-else and
statenents. These Lake the following form:

case-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
_ 13_
- 14-
- 15-
- 16-
.tT

- 18-
-19-
-20-
-21-
-22-
23
-24-
25
-26-
27

-28-
-29-
-30-
-31-
-?2-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
-43-
-44-
-45-
-46-
47

-48-
-49_
-50-
-51 -
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

100 IF condition THEN 100 SELECT expression
110 statenent 110 CASE constant
120 statenent nA statenent
130 - 130 statenent
140 - 140
150 ELSE 150 cAsE rerationar-operator constant
160 statement 160 statenent
170 stalement 170
180 - 180 CASE constant T0 constant
190 END IF 190 statenent

200
210 CASE ELSE
220 statement
230
240 END SELECT

For conpaüibility with Minimal BASIC selection is also provided
by IF condibion THEN line-nrmber and other statements that reference
rine nrmbers. rt is for this reason and for edibing purposes that
Iine nrmbers are required as part of a BASIC program.

Repetition is provided by two constructs - the for-brock f,or
definite repetilion, and the do-block for indefinite repebition.
These take the forn:

100 FOn i = a T0 b STEP c 100 D0 I{HILE condition
1 10 statement 1 10 stabement
120 - 120
130 NEXT i 130 LOoP

200 D0
210
220
230
240 EXIT
254
260
270 L00P

sbatenent
statemenL

IF condition
statenent

200 D0
210
22A
230
240 LOOP

statenent
statement

UNTIL condition

Three kinds of ilrocedures are provided - subprograns, externar
funct'ions and inbernal functions. In addition the Graphics module
introduces picture subprograns. Subprograns and external funetions
conmunicate with bhe carring progran unit only through the parameter
list and the returned value of the function (ie. variables are local
to a program unit); internal functions share the same variable space
as the surroundi.ng program unil in addition to having paraneters.
subprograns and external functions are defined at the end of the
progran; internal functions are defined within a program unit.
Subprograms and functions are defined and cal1ed as follows:

100 SUB nane (fornal params) 100 DEF nane (fornal parans)
1 10 statement 1 10 statement
120 statenent 120 statenent
130 - 130
140 END SI]B 140 END DEF

400 CALL name (actual parans) 400 LET X = nane(actual parans)

-6-

- 1- The position of a function definition determines whether ib is
- 2- i.nternal or external.
-3-
- 4- A lower level of structuring is provided by fhe GOSUB and RETURN

- 5- statenents.
-6-
- 7- Comnents are inbroduced through the REM statenent or end of line
- 8- comments which start with an exclanation mark (!).
-9-
-10- A Real-lime BASIC program consists of a real-tine declaration
-11- section, a set of parallel activities, and a nmber of external
-12- procedure units.
-13-
- 14-
- 15-
-16- 3. Functional Capability and Rationale for IRTB
-17 -
-18- A Real-tine BASIC program is divided into a number of concurrent
-19- single-thread aetivibies which cooperate to achieve the overall
-20- objecbive of the application.
-z t-
-22- Statenents are provided to start concurrent acüivities, and to
-23- enable then to respond to internally or externally generated evenbs.
-24- Once started, concurrent activities exeeute in parallel (at least
-25- conceptualfy).
-26-
-27- Each activity is a progran module that conmunicates wibh its
-28- environment through three bypes of I portst :

-29_
-30- a. process I/0 ports that communicate with plant interface
-31- hardware,
-32-
-33- b. message ports for synchronisabion and communication between
-34- concurent activities, and
-35-
-36- c. shared-data ports for access to data structures outside the
-37- individual activities, for exanple data in a real-tine database
-38- system"
-39-
-40- The executable code for an activity is written in BASIC. Aetivities
-41- have the usual facilities to access sysben resources such as files,
-42- the computer console and subprograms.
-43_
-44-
-45- 3.1 Concurrent Activities
-46-
-47- IRTB is intended for real-time apptications that can be described
-48- in berns of a number of coneurrent acbivities which are largely
-49- independent and asynchronous, but whieh can eonnunicate and
-50- synchronise. The prograq for such an application does nof; have an
-51- overall thread of control. The program must be capabl-e of running
-52- indefinibely - it is not a problen-solving program that sbarts,
-53- operates on some data bo produce some output, and is then finished.
-54-
-55- A typical application program could be as follows: A nunber of
-56- input activities collect daba from external hardware, eheck the
-57- values against limiü conditions and store some of ühe values in
-58- shared data. Other activities read the shared data, perforn
-59- statistieal analysis and data reduction and store the results in
-50- anobher seetion of shared data. Further activities read these

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
- 13-
-14-
-15-
- 16-
-17-
- 18-
- 19-
-20-
-21-
-22-
23

-24-
-25-
-26-
-27-
-28-
-)o-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
-47_
-48-
-49-
-50-
-51 -
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
.60-

-7 -

results, produce data-Iogs on denand and archi.ve a sunnary of the
data. This is essentially a problem in concurrent progranming since
the data is I pipelinedr through t,he system - archiving activities
work on one set of data while the statisbical analysis activities are
processing the nexü set, concumently with the input aetivities
collecting nell data and nonitoring continuously the state of the
planb.

The languag"
""qulrenents are different from those in other

parallel-processing environments in which cerbain aspects of a
problen can be processed in parallel, whilst other parts are stricüly
sequential. In this case tfork and joinr type constructs are
appropriate.

The environmenb is also different fron time-shared or nulti-user
systens where the main requirement is ninimun interaction between
tasks. In a nultl-user system any eoncurrency should be invisible
and is not the concern of an individual user, whereas in real-time
systens control of concurent activities is often ühe essence of the
problem.

The concept of rConnunicating Sequential Processesf (4) is
appropriate for I pipeliningr when each parallel sectj.on must execute
once each bine a set of data is available and a set of conditions is
true. However, in control and autonati.on applications the activities
are more independent. Most of the activiüies run continuously,
occasi.onally synchronising and communicating with other activities.

It is inappropriate to implement concurent aetivilies by
existing constructs such as subprograns or funcüions because
concurrent activities nust be able to call subprograms or functions
in the usual way, and ühe semantics are incompatible. Subprograns
are typically called with parameters and return to the calling
progran at a defined end-point, whereas concurrent activities
typically execube in an indefinite loop and have nowhere to return to
since they are not called.

In order to define concurrent activlties a new language structure
for BASIC, the tparallel sectionf, has been introduced. A paralle1
section is a program unit in which all variables, internal functions,
ehannel ntmbers, data-statenents etc. are local to the section.
Execution of a parallel section constitutes a eoncurrent activity.

3.2 Data Structures

The concept of a data slructure has been lntroduced lo define the
interface presented by the three types of ports. A data structure is
sinilar to a record in Pascal for example, in ühat it, is an ordered
list of the data types nuneric or string, scalar or array. A data
structure is an abstract structure in the sense that it does not
define data storage and is not associated with particular variables
or shared data sections - it is a ftemplatef that defines the
structure of data transferred through a port.

The use of data structures allows a language processor to check
the consistency of statenenüs transmitting data through message,
shared data and process-I/O porbs. It also allows the checking of
conpatibility between lnt,erfaces of connunicating activities,
parüieularly when they are in separately conpiled progran units. For

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
_ 13_
- 14-
- 15-
- 16-
-17 -
-18-
- 1g-
-20-
-21-
-22-

-24-

-26-
27

-28-
29
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37 -
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-
-46-
47

-48-
49
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-
-58-

-8-

targe systems, and especially in the distributed caser the
declarations for shared data, message paths and process-I/O paths
will be in a separate global secbion that becomes the I systen
definitionr. The concepb of a daba struclure will faeilitate
consistency checking by the language processor between bhe global
section and the code for the individual aetivities.

3.3 Process Input and Output

The keywords IN FROM and OUT TO are used for statenents that
perform I/O to plant interface equipment. New keywords are used to
distinguish process I/O from conventional I/0. It is important to
nake the distinction apparent in the progran text because process I/0
is semantically and functionally different from conventional I/O in
the following respects:

a. Process I/0 always refers to a unique, identifiable piece of
hardware in the process interface systen, such as a temperature
sensor or a sbepping-motor controller. In conventional I/0 the
nature of the source or desbination and the organisation of ibs
data are nob relevant to the application program. In obher words
process I/0 is device specific while conventional I/0 is device
independent.

b. Process declarations are used bo establish a static
connection between a named process port and a specific piece of
hardware. Conventional I/O requires executable open and close
statenenbs to establish a temporary association between a channel
and an unknown data source or destination.

Further, a system can include a large ntmber of process peripherals,
so the identification of process porbs by channel ntmber would be no
more acceptable than the identification of numeric or string
variables by a reference nrmber.

In order to renove the inplenentation dependent part of an
application fron the coding of bhe activities, process I/O sbatements
refer to process port nanes. Separate declaration statenents are
used üo specify the characteristics of a named port, the method of
access to bhe device connected to it, and the format of its data. The
parameters needed to define the access and data fornat depend on the
type sf hardware used, so bhis parb of the declaration is one of lhe
areas left as t inplenentation-definedr .

Declarations are provided to define arrays of process ports. Sets
of logica1ly related process peripherals can be grouped into arrays,
for example to allow nany input or output operations bo be specified
in a FOR - NEXT loop. The requirenent for process port arrays is
similar to the requirement for ntmeric and string arrays.

3.4 Messages

A message nechanism is provided for synchronising concurrent
activities, and for passing data at the point of synchronisation.
Message connunication is a subset of the Ada (5) trendez-vous!
mechanisn.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
-15_
- 16-
.t7

-18-
19
-20-
-21-
-22-
_23-
-24-
-)tr,-
-26-
27

-28-
29
-30-
-31-
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
-43-
-44-
-45-
-46-
-47-
-48-
_49-
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-

-9-

Nornally twq activities participate in a message transfer, the
message path being the logical connection beLween a I sendt porb in
one activity and a treceivef port in the other. When boüh aetivities
reach corresponding send-statenents and receive-statements, data are
noved fron the senäing activity to simple variables and/or amays in
the receiving activity. The bransmission of the data is an
indivisible operation.

A single receive port in one activity can be connected to many
send ports in oüher activities. Because of the synchronising
constraints and the indivisibilit,y of nessage data transfer, this
configuration can be used to implement a rMonitort (6) for resource
managenent. The sending activibies will be forced to queue, the data
being accepted fron each in turn, allowing that queued activiby bo
proceed. An exa.mple is a logging printer activity that accepts
data-Iog infornation from a nrmber of other activities, with the
requirenent that the printing of the data fron each activity must be
completed without interruption before the next set of data is
accepted.

Broadeastlng of nessages from one send port bo many receive ports
is not permitted. Such a configuration would lead to
non-deterministic behaviour of the program sinee it could not be
known how many receive ports were supposed to receive bhe data. If
bhe message lrere recej.ved only by lhose activities ühat had reached
receive statenents when the send statement is executed, timing
variations could cause some activities to niss the infornation.

3.5 Shared Data

Get-stabemenbs and put-statements are used to access data that
exists independently of the executing activities. The view of the
shared data fron the point of view of an activity is declared in
data-port deelarabions. A data-port declaration defines the na.me of
a dala port and the structure of the data accessible through if.

The nature of ühe physical data itself, and how it is stored and
managed is nob defined in BASIC. The purpose of shared data ports is
to provide a mechanism for accessi.ng data whose scope is wider than
that of an individual activity. In the sinplest, case the shared data
could be just some locations in conmon nenory. Alternatively,
according to t,he iequirenents of the application, the data could be
part of a database, with the visibilit,y fron the shared daüa ports in
the activities controlled by sone external napping, such as a
database managenent systen.

Sone typical requirenents fron current applications of IRTB are:

a. Generate periodic backups of the shared data to safeguard the
system in the event of a crash.

b. Generate baekups at specific points in the application
program to provide lmown recovery points.

c. Optionally use a rcleant database or use pre-Ioaded or
previous data on systen startup.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
13
- 14-
- 15-
- 16-
_17-
- 18-
-1 9-
-20-
-21-
-22-
_23-
-24-
25
-26-
27

-28-
-29-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
47

-48-
49

-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

-10-

d. Provide a hierarchical, disbributed database nanagenent
system with different compromises betreen security and speed of
access according to the requireuents of different sections.

e. Use the database as the interface to other, non-BASIC' parts
of the sysLen such as autononous analogue scanning sub-systems or
a higher level artificial intelligence control progran written in
Pascal.

3.6 Events

Interrupt servicing, with all the attendant problens of saving
and restoring conlext, is not provided in IRTB. Hardware attention
signals, which generabe program intemupts at levels of software
below BASIC, become teventsf that can be fwaibed forr by concurrent
activities.

The serviee routine for an event is an acbivity wibh a
wait-statement naming ühe event. After servicing the eventr the
routine returns to the wait-statenent bo await the next occurrence of
the evenb. In this way the concurrent aetivity is effectively Nhe

interrupt servi-ce routine, but it iS scheduled like any other
activity and all the details of saving and restoring conüext are
handled by the sysben"

An event can also be set by the software using a signal
statement. This facility provides an alternabive method of
synehronising concurent aetivities. A significant difference
between signal-stabenents and send-statements is that a signalling
acLiviby continues and does not wait for the recei.ving aetivity to
act upon the event, whereas an activity exeeuting a send-stalenent
waibs until the receiving activiby accepts the data.

The signal-statenent is also useful for üesting application
software without using the external hardware.

No fclear evenbt statenent is provided. An event is eleared
automatically when ib has caused an activi|y to proceed fron a

wait-statement. It follows -that there is a one-Lo-one coffespondence
between bhe setting of an event by the hardware or a

signal-statenent, and a waib-statement thab !consunesr the event.
This definition of events provides a facility Lhat encourages bhe
writ,ing of secure, deterninistj-c prograns bhat are easy to
understand.

Binary or nulti-valued semaphores for exanple have not been
provided because bhese uould need different statements from lhose
defined for handling hardware genei'ated evenbs, and bhe sbatenents
provided, togebher wibh the message mechanisn, are sufficient for the
synchronisabion requirenents.

3"7 Exception Han<iling

A lar.ge nunber of excepiion conditions are defined by the Draft
Standard. Most exceptions are fatal and the defar:Ib action in the
absence of a user-uritten excepüion handler is to report the
exception and stop exeeution of lhe concurrenL aetivity in shich it

-2-
-3-
-4-
-5-
-6-
-T-
-8-
-9-
- 10-
-11-
-12-
_1 3-
-1 4-
-15-
-16-
_17 -
- 18-
-19-
-20-
-z',t-
-22-
23

-24-
-25-
-26-
27
-28-
_29-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-
-46-
_47 _

-48-
-49-
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

- lt -

occurs. A few exceptions are non fatal; for each of these the Draft
Standard defines a specific recovery action. An example of a non
fatal exception is providing a non-valid nuneric string as the
nrmeric input-reply to an input statenent.

The nain purpose of exception handling in a real-tine BASIC
program is to provide the possibility of recovering fron an exception
condiüion in a user-written handler, and then continuing progran
execution. This feature is inportant for the type of control and
nonitoring application envisaged for IRTB, in which the progran runs
indefinitely and must be resilient to hardware failures and
exceptions.

l,[any exception handlers can exist, but only one can be enabled in
each program unit (ie. in each parallel activity and each external
procedure). ff an exception handler is enabled then all excepüionst
fatal and non fatal, cause a branch to the firsb line of bhe handler.
l{ibhin the handler, two functions are available to deternine the
cause of the exception: EXTIPE that returns the exception code
nunber (see Appendix 2) and EXLINE that returns the line ntmtrer of
the statement causing the exception.

There are four ways to leave an exception handler. A CQNTINUE

statenent returns to the statenent following the one that caused bhe
exception, and is used when recovery action has been taken in the
trandler (eg. default values have been supplied after a RECEM
sbatement has timed out). A RETRY statenent returns to the beginning
of bhe statement that caused the exceplion, and is used when the
condition eausing the excepti-on has been corrected in the handler
(eg. by making the argunent of a square-root function call positive
or correcting a file-nane string for an OPEN statenent). If the END

HANDLER statenenb is reached, then the default sysben action is
invoked. Finally, a RESUME statement is provided that can return to
a line-ntmber specified in the enable-handler statement.

Exception handling in BASIC differs fron that in Ada where an
exeeption causes a branch to code at the end of the cument block,
and thence to the context of the surrounding ouber block. Il is not
possible to return directly to the code within the block that caused
the exeeption. This approactr is not appropriate for IRTB beeause a
parallel secti-on is not contained wibhin an outer block - it is an
independent program.nodule that must continue to run normally after
successful recovery fron an exception condition.

3.8 Distributed Systens and Independent Conpilation

In this doctmenb the term fdistributed systensr neans application
configurations conprislng nultiple processors without shared menory.
If a progran is written and eompiled as a slngle unitr ühe

distributed system requires no change to the language except for
declarations to speclfy where the acbiviüies are to be executed.

If the progran is segpented into independently conpiled sectionst
then there nust be a global section containing declarations for
nessage paths connecting nessage ports in the separately conpiled
secüi.ons. It ls convenient if the global secüion also contains the
eonfiguration description speeifying the distribution of activities
among the processors, and the deseription of the global shared data.

-2-
-3-
-4-
-5-
-6-
-8-
-9-
- 10-
-11-
-12-
- 13-
- 14-
- 15-
-16-
_17 _

- 18-
_ 19_
-20-
-21-
-22-
23
-24-
-25-
-26-
27

-28-
29

-30-
-31 -
-32-
-33-
-34-
-35-
-Jo-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
_47 _

-48-
-49_
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57 -
-58-
-59-
-60-

-t2-

Note thab the requiremenb for a global section comes fron the
need for independent compilation, regardless of whether bhe
activities run in a disfributed or a non-distributed configuration.
The global section does not contain executable code, it comprises a
set of static declaralions that are effectively a I system
descriptiont describing the interconmunication between the
activities.

Appendix 1 gives more details of the extension to distributed
applieations and independent compilation.

4. The Language Definition

4.1 Conventions

The conventions used in the formal definitions in section 5 are
those employed in the relevant ECMA and ANSI standards. The
conventions are explained fully in those documents, bub a brief
description of the method of syntax definibion is gi-ven below.

The syntactic mebalanguage used to define the syntax of IRTB is
derived from Backus-Naur porm (BNF). The IRTB syntax is defined by a
series of rproduction rulesr thab define syntactic elernents of the
Ianguage in terms of other syntactic elements in a hierarchical
manner, until a rterminal symbolr is reached. A terminal symbol is
typically a single character of the language being defined, i€. IRTB.
Certain special symbols are used whose neaning is defined below:

The symbol = is interprebed as meaning t is defined asr if only
one definition is given, or ris defined as eitherr if there is
more than one definition. In bhe latter case the symbol / is
interpreted as meaning rorr.

) is like r=r above, but it is used when the production rule
augments another production. It can be read as rincludesr.

? the preceding syntacbic elemenb is optionally present.

* the preceding syntactie element is optionally present an
arbitrary number of times (inetuding zero times).

(and) are used to group syntactic elements into a single unil"

/ separates alternatives.

Spaces and new lines are used to improve legibility of the
definitions; they have no syntactic significance.

The following exanple illustrates the use of some of these
synbols:

out-structure = out-structure-element
(eomma out-structure-element) *

out-structure-elemenb = expressLon / formal-array

This noeans thab an out-structure is a list of out-structure-elements.
If there is more than one item in the lisf, the items are separated

- t3 -

- 1- by comnas. Each ibem can be eibher an expression or a formal aruay.
- 2- An example of an out structure saüisfying lhis definition is:
-3-
- 4- A + 2, BO, C$

-5-
- 6- The'words toayt and fshall! have precise meanings in the formal
- 7- definitions. The word tmayt is used in a permissive sense to
- 8- indicate that a standard-conforming implenentation may or nay not
- 9- provide a partieular feature. The word rshallt is used in an
-10- imperative sense bo indicate that a program is required bo be
-1 1- constructed, or that, an implementation is required to act as
'12- specified in order to neet the consbraints of standard conformance.
_ 13_
- 14-
-15- 4.2 Assumed definitions
- 16-
-17' The fornal definibions in Seeti-on 5 eoncern only the Real-time
-18- module. It is assumed that it is an extension of BASIC as defined in
-19- the ECMA/ANSI Draft Slandard or at least that it uses a thostt with
-20- similar facilities. The following definitions are referred to
-21- directly or indirectly in section 5 and are some examples from a
-22- fypical BASIC host language definition.
23
-24- Iine = Iine-number stat,ement tail
-25- line-nunber = digit digit? digit? digit?
-26- disir =o/1/2/3t4/5/6/7/g/g
-27- statement = daba-statement / def-statement /
-28- dimension-sLatement / gosub-stafemenü /
-29- goto-statemenü / if-then-statement /
-30- input-stalement / tet-statemenb /
-31- on-goto-statement / print-statement /
-32- randomise-statemenl / read-statemenl /
-33- remark-statement / restore-statement /
-34- return-statement / sLop-statenent
-35- bail = tail-connent? end-of-Iine
-36- tail-connent =!renark-string
-37' end-of-line = implenentation-defined
-38- remark-line = line-ntmber
-39- (nulI-statement / remark-statement)
-40- end-of-line
-41- remark-statemenl = REM renark-string
-\2-
-43- subscript-part = index (comma index)?
-44- index = numeric-expression
-45-
-46- block = (line ,/ for-bloek)r
-47- for-block = for-line for-body
-48- for-body = block next-line
-49- for-Iine = line-nunber for-statement tail
-50- next-line = Iine-number next-statement tail
-51- for-statement = FOR control-variable equals-sign
-52- initial-value T0 limit
-53- (STEP increment)?
-54- control-variable = simple-numeric-variable
-55- initial-value = numeric-expression
-56- linit = numeric-expression
-57- increment = numeric-expression
-58- nexl-statement = NEXT control-variable
-59- procedure-parb = r€trärk-line* procedure

-2-
-3-
-4-
-5-
-6-
-8-
-9-
-10-
-11-
-12-
1 3
- 14-
- 15-
-1 6-
-17 -
-1 8-
- 19-
-24-
-21-
-22-
-23-
-24-
-25-
-26-
27

-28-
-29_
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-
-46-
47

-48-
49
-50-
-51 -
-52-
-53-
-54-
-55-
-56-
-57-

-14-

nrmeric-rep = significand exrad
significand = integer full-stop? / inbeger? fraction
inleger = digib digitr
fraetion = full-stop integer
exrad =Esign?integer
sign =+/-

A real-bime-program is a sequence of lines. Each line conbains a
unique line-ntmber whieh facilibat,es program editing and serves as a
labe1 for the statenent contained in thab line.

The values of the integers represented by the line ntmbers shall
be posibive and non-zero, leading zeroes shall have no effect. Lines
shall occur in ascending line ntmber order.

Ib is assuned that the funetion TIME$ defined in the Draft
Standard is available. This function returns a string of bhe form
rrhrs:mins:secsrr where hrs, mins and secs are each 2 eharacters long.
The range of values for hrs is n00il to il23il and for nins and secs is
trOOil to rtsgrt. An exannple of a value for TIME$ is rr17:59:01tt.

4.3 Conformance

The Draft Standard gives a set of conformance rules for prograns
and inplementations. The rules are intended to ensu!'e that a program
conforming to the program conformance rules will produce the sane
resulbs on any implenentation conforming to ühe implenentation
conformance rules. In Lhe case of IRTB this ideal nay not be
realisable because it is not possible to define the real-time
performance of an inplenentation and because a real-time-progran does
not usually produce rresultsr in the sense of a data processing
program. However, programs written in IRTB and inplementations of
IRTB should follow the conformance rules with respect to section 5 of
this doctrnenb. The confortsanee rules are as follows.

A program conforms to the Standard only when

contained bherein is syntactically valid aecording to the
syntactic rules specified by the Standard, and

- bhe program as a whole violates none of the global constraj-nts
inposed by the Standard on the application of bhe syntactic
rules.

An implenentation conformS to the standard only when

- it accepts and processes aLl prograns conforraing to the
Standard,

- it reports reasons for rejecting any program ühat does not
conform to the Standard,

- if interprets errors and exceptional circunstances aecording to
the specificalions of the Standard,

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
_ 13-
- 14-
- 15-
- 16-
-17-
-1 8-

- 15 -

- iü interprets bhe senantics of each statenent of a conforming
program according to the specifications in the Standard,

- it interprets the senantics of a conforning program as a whole
according to the specifications in the Standard,

- it accepts as input, nanipulates and can generate as output
ntmbers of aL least the precision and range specified in the
Standard,

- it is acconpanied by docrmenüation that describes the actions
taken in regard to features referred to as rrimplementation-
definedrr in the Standard, and

- it is acconpanied by doctmentation fhat describes and
identifies all enhancements to the language defined in the
Sbandard.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
- 10-
-11-
-12-
_ 13_
-14-
-15-
-1 6-
-17-
- 18-
-1 9-
-20-
-21-
-22-
23

-24-
-25-
-26-
27

-28-
-)o-
-30-
-31 -
-32'
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43

-44-
45

-46-
-47-
-48-
49
-50-
-51-
-52-
-53-
-54-
-55-
-56-

16

5. Formal Definition of the Real-time Module

The real-time module in this document is part of ühe proposed
joint ANSI/ECMA/EWICS Standard for BASIC. The language is intended
for use in applieations involving control, autonation, and
nonitoring. It enables a progran to be divided into a nrmber of
concument single-thread activibies which cooperate to achleve the
overall objective of the application.

Facilibies are provided to schedule execution of concurrent
activibies so that they may respond to both internally and externally
generated events. Communication between concurrent activities is
possible either through the use of shared data or by the transmission
of messages.

An activiby can coumunicate wifh i"oo""" objects whieh are a part
of the external environment, of a real-tine-program. Typical process
objecbs are measurenent or control points in a plant interface.
Connunication between a concurent activity and a process object is
accomplished by input and output operations aceessing the process
objeet t,hrough a process port.

An implementation-defined scheduler sha1l determine which of
those concurrent aetivities in progress shall actually be exeeuting.
Inpl-enentations may interrupt the execution of a eoncurrent acbivity
in order to prevent excessive delays in the execution of other
concurent activities.

Access to files and procedures (external functions, subprograns
and pictures) from different concurent activities is not
synchronised by the system. Since proeedures may be called from more
than one coneurrent activity bhey shall be reentrant.

5.1 Real-time programs

5.1.1 General Descripüion

A real-tine-program is conposed of real-time declarations (cf.
Section 5.2) lhaü describe a process environment, one or nore
parallel-sections, and sone nrmber of procedures which may be invoked
by these parallel-sections. Each parallel-section is named and is
delimifed by the keywords PARACT (plnattet ACTivity) and END PARACT.
Parallel-sections consbitute separate prograp-units and serve to
define concument activities.

Execution of a parallel-section is enabled by a
scheduling-statement (cf. Section 5.3) and starts at the first line
of the seetion.

Execution of each statenent is conpleted before execuLion of the
next statement in sequence in the sane parallel-section is started,
except ühat a stabement may be interrupted by the occurrence of a
non-fata1 exception which causes a user-defined exeeption handler to
be invoked which does not, however, handle the exception (see section
6).

-t] -

- 1- 5.1.2 Syntax
-2-
- 3- 1. real-time-program = real-time-declarations
- 4- parallel-section parallel-section*
- 5- procedure-part*
- 6- 2. program-unit) parallel-section
- 7- 3. parallel-section = rerhrk-Iine* paract-line
- 8- block* end-paract-line
- 9- 4. line) paract-line / end-paraet-line
-'10- 5. paraet-line = line-number paract-stabement tait
-11- 6. parael-statenent = PARACT routine-identifier
-12- (URGENCY urgency)?
-13- 7. routine-idenlifier = letter ident,ifier-character*
-14- 8. urgency = integer
-15- 9. end-paract-line = line-nunber end-paract-statemenb
-16- tail
-17- 10. end-paract-statement = END PARACT

-18- 1 1. statement) real-time-statement
-19- 12. real-time-statement = parstop-statement /
-20- scheduling-statement /
-21- process-io-statement /
-22- data-io-shabemenL /
-23- nessage-io-statement
-24- 13. parsbop-statement = PARSTOp
-25-
-26- A given routine-identifier sha1l not occur in more than one
-27- paract-slatement in a real--time-program.
-28-
-29- Control-statenenls shall refer only to llnes in the
-30- parallel-seclion in which they occur. Real-time-statements shall
-31- occur only in paralle}-sections.
-32-
-33-
-34-
-35- 5.1.3 Examples
-36'
-37- 2. 320 PAnACT RrGl
-38- 330 r{Arr rrME 1T*60*60
-39- 340 PRINT ''TIME TO GO HOME''

-40- 350 END PARAcT
-41-
-42-
-43- 5.1.4 semantics
-44-
-45- Execution of a parallel-section in a real-bime-program shall
-46- constitute a concurrent activity. At any point in the execution of a
-47. real-time-program, a eoncurrent activity nay be in one of the
-48- following states:
49

-50- - in progress, ie., in the init,ial state of the concurrent
-51- activity defined by the texieally first parallel-section, or in
-52- the state of a coneurrent activity following execution of a
-53- start-statement naming that activity; or
-54-
-55- - stopped, ie., not yet in progress, or formerly in progress but
-56- subsequently terminated by execution of a parst,op-stat,ement, äD
-57- end-paract-statement, or a statement generating a fatat exception
-58- which is not inhibited by the action of an exception handlerl or

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
-15-
- 16-
_17 _

- 18-
- 19-
-20-
-21-
-22-
23
-24-
-25-
-26-
-27_
-28-
_29-
-30-
-31-
-32-
-33-
-34-
-35-
-36-
-37 -
-38-
-39-
-40-
-41-
-42-
-43_
-44-
_45-
-46-
47

-48-
-49_
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-

- lt3 -

- hraibing, ie., formerly in progress but suspended by execution
of a wait-statement or message-io-statement, until the occurrence
of a specified event, the passing of a specified length of time'
the arrival of a specified time of day or the exchange of
messaSes.

Several concurrent actlvities may be in progress at any given time.
Inibially the only concurrenb activity in progress shall be that
defined by the Iexically firsb parallel-section in the
real-tine-program; other coneurrenb activities shall be placed in
progress onfy Uy the execulion of start-statements (cf. Section 5.3).

The urgeney of a parallel-section shall indicate to the scheduler
bhe relative importance of the eoncurrenl activity. A lower value
shall indicate a greater importance. 'The precise interpretation of
the urgency shall be implementation-defined.

At the initiation of the execution of a parallel-section the
values of aII variables shall be implementation-defined.

Lines in a parallel-section shal1 be executed in sequential
order, starting at the first line of the parallel-section, unti-l

- some other action is dictated by the
- an exception occurs' or
- a sLop-slatement, chain-sbatement'

end-paracb-sbabement 1s executed.

exeeution of a liner or

parstop-statement, or an

Execubion of a parstop-statement or of an end-paract-sbatement
shall terminate execution of bhe concurcent activity in which ib
occurs, -causing thaf activity to stop until placed in progress again
by another execution of a start-statement. Execution of a

stop-statement or a chain-statement shall terminate execution of the
entire real-time-program. The occurrence of a fatal exception that
is nob handted by an exception-handler shall stop the concurrent
aelivily in which j-t occurs.

Each parallel- section is a distinct entity in that identifiers
used lo name variables, amays, internal funetions and exception
handlers shall be local bo the section, ie. they sha1l name different
objects in different parallel seclions. Identifiers used to name

supplied functions, parallel sections, procedures defined as progran
units, proeess I/O ports, process-port-arraysr message ports and

shared dala ports shall be gtobat to the entire real-time program'
ie. they shall name the same object wherever they occur.

5.1.5 Exceptions

None.

5.1.6 Remarks

Execubion of a concurrent act,ivity may be interrupted at
inplemenLation-defined times in order Lo exeeute other concurrent
activities which are in Progress.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
- 10-
-11-
-12-
_1 3-
- 14-
- 15-
- 16-
-17 -
- 18-
-19-
-20-
-21-
-22-
23

-24-
-)q-
-26-
-27_
-28-
_29-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
45

-46-
_47 _

-48-
49

-50-
-51 -
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

- 19 -

Possible interpretations of lhe urgency of a paraIlel-section
nighü be the priority of that section or a deadline for execution of
bhe seetion.

5.2 Real-TineDeclarations

5.2.1 General DescriPtion

Concurent activities connunicate with the external environment
thror:gh process ports. Process port declarations define the nanes of
these ports and the attribules of process-objects in a real-tine
system attached to these ports. Proeess-obiects may be either active
or passive. Passive process-objects are typieally measuremenL and
control points in a plant interface, such as tenperature sensors or
stepping motor controllers (cf. section 5.4). Active
process-objecfsr oP process-events, are typically sources of progran
interrupts, such as timers and alarms (ef. secbion 5.3).

Data ports provide a means of accesslng data whose scope is wider
than an individual concurrent activity. A data port declaration
defines the name of a data port and the structure of the data
aceessible through it (cf. Section 5.5).

Message ports provide a means of transferring data between Lwo

coneurrent acbivities; the data transferred does not exist outside
the two activities. A nessage port declaration defines the name of a

nessage-port and the structure of the data transferred thror.rgh it. A

nessage is sent when the same message-porü-nane is used in lwo
concuryent activities, in a send-statement in one and a
receive-statement in the other (ef. Section 5.6).

Data structure declarations provide a means of specifying bhe
structure of data transfemed thror:gh process, data and message
ports. They enable a language processor to check the validity of
statenents sending and receiving data thror.rgh a port, and they
specify indivisible units of shared data.

5.2.2 Syntax

1. real-time-declarations = (remark-line / declaration-line)*
2. deelaration-line = line-nuober declaration-statement

3. declaration-sbatement
Lail

= data-structure-dec /
proeess-dimension- statement /
process-port-dec /
data-port-dec / nessage-port-dec

= S?RUCTURE structüre-näo€ colon
repeat-count? bype
(conna repeat-count? bype)*

= letter ident,ifier-characterl
= integer 0F

= (NUMERIC / STRING) dinensionlng?
= left-parenthesis bounds

right-parenthesis
= integer (comna integer)?

4. data-structure-dec

5. structure-nane
6. repeat-count
T. type
8. dinensioning

9. bounds

-2-
-3-
-5-
-6-

-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
-15-
- 16-
-17 _

- 18-
_ 1g-
-20-
-21-
-22-
_23-
-2t+-
_25-
-26-
-27-
-28-
29

-30-
-31-
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43

-44-
-45_
-46-
47
-48-
_49-
-50-
-51-
-52'
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

-20-

10. process-dimension-statement = PRODIM process-affay-dec
(conna process-arraY-dec) *

1 1. process-array-dec = process-porb-array dimensioning
12. process-port-array = Ietter identifier-character*
13. process-port-dec = PROCESS

(Process-clause / event-clause)
aecess-information?

14. process-clause

15. io-qualifier
16. process-port-name
17. event-clause
18. event-name
19. access-informabion
20. daba-port-dec

21. data-port-name
22. message-port-dec

23. message-Port-name
24. line

= io-qualifier (process-port-name /
process-port-array dimensioning)
(oF structure-name)?

= INPUT / OUTPUT / OUTIN

= Ietter identifier-characber*
= EVENT event-name
= Ietber identifier-characber*
= sbring-constant
= SHARED data-Porl-name

dimensioning? 0F structure-name
= letter identifier-characLer*
= MESSAGE message-port-name

OF sbructure-name
= letter identifier-eharacter*
) declaration-Iine

Any structure-name appearing in a process-elause, data-port-dec
or message-porb-dec shall be defined 1n a data-structure-dec in a

Iower-numbered line. The scope of proeess-port-names, process-porb-
arrays, data-port-names and message-port-names shall be all the
para1el sections in a real-time-program; any such identifier shall
be declared in at most one declaration-statement.

The value of the integer i-n a repeat-count shall be greaber than
zero.

For each process-port-aray, there shall be a process-port-dee
for every elemenl of that aray. The elements shall all have the
same io-qualifier and the sane data-sbructure (if any) '

The value(s) of the integer(s) in bhe dimensioning in a

proeess-array-dec shatl be greater than ze?o. A process-port-array
äccurring in a process-port-dee must be declared in a

process-array-dec in a lower nunbered line. The dimensioning in a

process-elause shalt have the same number of dimensions and take
values between one and the value of the corresponding dimension in
the process-array-dec.

5.2.3 Examples

4. STnUCTUnE OPR: STRING, 2 OF NUMEnIC' NUMERIC(1o)

STRUCTURE A'l: 2 OF NUMERIC

STRUCTURE 81: NUMERIC

PRODTM RIG1 (3), RrG2(3)
PROCESS INPUT hIEIGHT OF A1 ''ADCCHAN 3II
PROCESS 0UTrN PANEL OF OPn ,Q' 177640r'
PROCESS INPUT A TIMEOUT 4 ''BCD 4I'
PROCESS OUTPUT 21 OF 81
PROCESS OUTrN nrcl(2) "U, 166000"
PROCESS EVENT

'U'1
II111T 36''

19. SHARED FLIGHT(1o) OF OPR

SHARED D OF 81
21. MESSAGE LINK OF OPR

10.
13.

-2-
-3-
-4-
-5-
-6-
-8-
-9-
- 10-
-11-
-12-
- 13_
- 14-
- 15-
- 16-
-17-
- 18-
- 19-
-20-
-21-
-22-
23
-24-
-2F'-
-26-
27

-28-
29

-30-
-31 -
-32-
-33-
-34*
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-
-46-
47

-48-
49

-50-
-5't-
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-50-

-21 -

5.2.4 Senanties

A data-structure-dec shall declare the name of a data strucbure
for use in process-port-dees, data-port-decs and message-port-decs. A
data structure is an abstract strueture (ie. one without any storage
allocated to it) eonsisting of an ordered list of types which nay be
either ntmerj.c or string, scalar or array. A repeat-count shall
specify the ntmber of oceurrences of the fype that follows it.

Each process-array-dec in a process-dimension-statement shall
Ideclare an aray of process-porls. The array shall be l

one-dimensional or two-dimensional according to whether one or two j
integers are specified in the bounds. In addition, the bounds
specify the maximum values of expressions used as subscripts for the
aray. The minimum value of an expression used as a subscripb for a
process port array shall be one.

A proeess-port-dec shall define the nane of a process porü and
bhe attributes of a process-object in a real-time systen attached bo
thel port. The bounds following a process-port-array shall be
interpreted as a subscript-part, and the process-port-dec shall
define the attributes of the process-object attached bo fhat element
of the process-port-array.

The presence of a process-clause shall indicate that the
process-objecb attached üo that process port is passive. The
io-qualifier in fhe process-clause shall indicate the permitüed
directions of data transfer bhrough the port: INPUT shall indicate
that lhe proeess-object provides inpub only, OUTPUT that it accepts
outpu only, and OUTIN that ib supports bolh input and output.

The validlty of in-structures and oub-structures in
process-io-stabenents shall be checked by the language processor by
reference to the structure-name in the corresponding process-clause.
In the absence of a structure-name in the proeess-clause, the default
data structure shall be a singLe ntmeric.

The presence of an event-elause in a process-port-dec shall
declare the naned process-objecb to be aetive, ie. to be a
process-event. I'lhen connected, a process-event shall be capable of
generating events which relurn concurrent activities waiting for them
to bhe state of being in progress (cf. Section 5.3).

Access-informabion for a process port speeifies a particular
process-object attaehed to that port and the fornat of its data.
Access infornation for an active process-object, typically specifies
the source of a hardware interrupt signalling the occurrence of an
event associaLed wibh that obJecü togeüher with infornation about how
üo eontrol 'r"he interrupt. The interpretation of the access
infornation shall be fuaplementation-defined

A data-port-dec shall define the nane of a data port and t'he
structure of the data accessible through it. If a dinensioning
appears in a data-pont-dec, then ib shall define an array of
lnstances of the given structure. The array so defined shall be
either one-dinensional or two-dimensional according to whether one or
two integers are specified in the bounds. If no dimensioning
appears, a single instance of the given structure shall be defined.
Shared dala shall be accessible by all eoncurrent activiüies (cf.
Section 5.5).

tl

t

I

-2-
-3-
-4-
-5-
-6-
-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
- 15-
- 16-
_.t7 _

- 18-
_ 19_
-20-
-21-
-22-
-23-
-24-
-25-
-26-
-27.
-28-
_29-
-30-
-31-
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
_47 _

-48-
49

-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

11

A message-port-dec shall define the name of a message porb and
the structure of the data transferred thror:gh it.

5.2"5 Exceptions

None.

5.2.6 Remarks

Process-port-arrays can only be arrays of passive process-
objecls, ie. arays of process-events are not permitted.

The format information in the access-informat,ion for a
process-port may allow the implementation Lo perform automatic data
transfornation, such as sealing or conversion between BCD in a
process-object and a floating-point internal representabion. An
implenentation may also allow names of routines in the
access-information so that special devices can be handled by standard
mechanisms invoked automatically each time a process-port is
accessed. These routines eould, for exanple, handle aeeess via a
nultiplexer with a long switching bine or handle special Gray code
devices.

5.3 Scheduling

5.3.1 General Description

The scheduling requirements for coneument acbivities are
specified by executi-on of start-statemenls and wait-statements. A

start-statenent places a concurrent acliviby in progress. The actual
execution of concuruent activlties which are in progress is scheduled
by the inplementation according to the urgency of these activities. A

wait-statemenl can be used Lo suspend execution of a concurrent
activity for a specified period of time, until a given time, or until
a specified event occurs. Events may be generated externally by
connected process-object,s or internally by execution of signal-
statenents.

Connect-statenenbs and diseonnect-statements referring to events
are used to enable and disable specific event signals fron the
external hardware.

5.3.2 Syntax

1. scheduling-stalement = start-stabement I wait-statement, /
signal-statenenl / connect-stabemenl /
disconneeb-statemenf

= START routine-identifier
= I{AIT.(wait-time / vaiL-interval /

wait-evenL)
= TIME lime-expression
= nuneric-time-expression /

string- time- expression

\

I

2. start-statement
3. wait-statement

4. wait-tine
5. time-expression

-2-
-3-
-4-
-5-
-6-
-8-
-9-
- 10-
-'11-
-12-
_ 13-
- 14-
- 15-
- 16-
-17 _

- 18-
- 19-
-24-
-21-
-22-
23
-24-
-25-
-26-
27

-28-
29

-30-
-31-
-32-
-33-
-34-
-35-
-36-
-37 -
-38-
-39-
-40-
-41-
-42-
43
:44-
-45-
-46-
47

-48-
-49-
-50-
-51 -
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

-23-.

6. nuneric-tine-expression = nrmeric-expression
7. string-Lime-expression = string-expression
8. wait-interval = DELAY nr:meric-time-expression
9. wait-event = EVENT event-name timeout-expression?

10. timeout-expression = TIMEOUT numeric-tine-expression
1 1. signal-statement = SIGNAL event-name
12. connect-statement = CONNECT EVENT event-list
13. event-list = event-name (comma event-name)*
14. disconnect-statement = DISCONNECT EVENT event-list

An evenb-name that does nob occur in a process-port-dec shall not
occur in a connect-statement or a disconnecb-st,atement.

An event-name that occurs in a process-port-dec shall not occur
in a signal-statement.

A routine-identifier thab occurs in a start-statement shall also
occut" in some paract-line in the program. An evenl-name thab occurs
in a wait-sbatement shall occur in a signal-statemenl or sha1l be
declared as a proeess-event in a process-port-dec.

5.3.3 Examples

2. STANT FILL
3. t{Arr DELAY i.5*60*60

I{AIT TIME rr09 : 15 :00rr
WAIT EVSNT READY TIMEOUT 4
WAIT TIME A$

12. SIGNAL READY

13. CONNECT EVENT FULL
15. DTSCoNNECT EVENT FULL, TooFUL

5.3.4 Semanbies

Exeeution of a start-sbatement shall plaee in progress the
eoncurrent activity defined by the naned parallel-section. Execubion
of a wait-statemenb shall cause the concurrent activity in which it
occurs to be suspended for a specified period of time, until a
specified time, or until a specified evenü occurs.

The value of a nrrmeric-time-expression shall be interprebed as
specifying a number of seeonds. If the value of the expression is
not an integer, then the accuracy of the tine expression is dependent
on the resolution of the timer. The value of a string-time-
expression shall conform to the format, range of values and
interprebabion of bhe TIME$ function (ef. section 4.2).

If a wait-statement specifies a wait-interval, then the
concurrent activity shall be suspended for the specified length of
time, being placed in progress again when that, time has elapsed. If
a wait-statement specifies a waiü-tine with a nuneric bime-
expression, then the concurrenb activity shall be suspended unbil the
speeified number of seeonds have elapsed since the previous midnight,
at whieh time ib shall be placed i-n progress again. If the nunber of
seconds since the previqus midnight have already elapsed, then the
eoncurrent activity shall wait, until ühal time the following day. If
a wait-statement specifies a wait-time with a string-time-expression,
bhen the concurcent activity shall be suspended until the specified

J

-2-
-3-
-4-
-5-
-6-
-8-
-9-
- 10-
-11-
-12-
_ 13_
- 14-
-15-
- 16-
_17 _

- 18-
19
-20-
-21-
-22-
-23-
-24-
-25-
-26-
27

-28-
_29-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37 -
-38-
-39-
-40-
-41-
-42-
43

-44-
-45-
-46-
-47 _

-48-
49

-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57"
-58-
-59-
-60-

-24-

time of day, at which time it shall be placed in progress again. If
bhe speeified bime of day has already passed then the concurrent
aclivity shall wait until thät time the following day.

If a wait-stabement specifies a wait-evenl, then the concurrent
activity shall be suspended until that event occurs, ab which time it
shall be placed in progress again (cf. sections 5.2 and 5.4). If a

bimeout expression is specified in a wait-event, fhen an exception
shall occur if the specified evenl has noL oecurred within the
specified length of time.

Execution of a signal-slatement shalt cause the speeified event
to occur. Following execution of a signal-statement the coneurrent
activity continues to be in progress.

-

Execution of a connect-stalement shall cause the specified
process-event to be connected. A connected process object ean cause
events to occur.

Execubion of a disconnect-sbatement shal1 cause the speeified
process-event to be not eonnected, and shall cause any previous
occurrence of the event not acted upon by a wait-statemenL to have
not occurred. A process object bhat is nof connected cannot cause
events to occur"

An event bhat has occurred shall place in progress again a
concurrenb aebivity waibing for the event. If no concurrenl activiLy
is waiting for bhe evenb, then Lhe firsl concurrent activity
subsequently bo execute a waiL-statemenl naming that event shall
renain in progress. In either ease, the event shall lhen be deemed

lo have not occurred.

If nore than one concurrenl activity is reaiting for the same

event, then whieh one of those act,ivities thab shall be placed in
progress upon occuyrence of that event shall be determined by the
underlying systen. Only one coneurrent aeliviby shall be placed in
progress upon eaeh occurrenee of an evenf.

If a new evenb is caused by a signal-statemenl before a previous
oceurrence of bhe same event has been acted upon by a wait-statement,
bhen that signal-statement shall cause an excepbion. The events
shall then be deened to have not occurred.

If a new event is generated by a connected process-object before
a previous evenl generated by that object has been acted upon by a

waiL-statement, then the next wait-staLement to be execubed lhat
names bhat event shall eause an exception. The events shall then be

deemed to have not occurred.

At lhe iniüiation of execution of a real-time-program' all events
shall have not oceurred, and all process-events shall be not
eonnecbed.

5.3.5 ExcePtions

A start-statemenb is executed thab specifies a coneurrent
activity thab is not stopped (fatal)

"

A signal-statenent is executed that specifies an event thaL has

-25_

- 1- already occurred, but which has not yet caused a waiting concurrenf
- 2- activity to be placed in progress again (falal).
-3-
- 4- The value of a numeric-expression used as a time-expression
- 5- exceeds 86400, the number of seconds in a day, or is less than zero
- 6- (fatat).

- 8- The value of a string-expression used as a time-expression does
- 9- not conform to the format of the TIME$ function (fatal).
- 10-
-11- The event specified in a wait-statement does not occur within the
-12- period of time specified in a timeout-clause (fatat).
- 13-
-14- A new evenb i.s generated by a connected process-object before a
-15- previous event generated by the object has resulted in a waiting
-16- eoncurent activity being placed in progress again (fatat).
17

-1 8-
-19- 5.3.6 Remarks
-20-
-21- When the system clock requires adjustment, such as for seasonal
-22- time changes or bo correct for eruors, problems can arise with
-23- wait-stalements specifying wait-times. In parbicular, if the clock
-24- is moved back, any activities that were released from a wait-time
-25- during the previous occurrence of that time should not be pub in
-26- progress again until the following day. Similarly, if the clock is
-27- advanced, activities waiting for a time that is rpassed overr should
-28- be put in progress as if that time had occurued.
-29_
-30-
-31- 5.4 Process Input and Output
-32-
-33-
-34- 5.4.1 General Description
-35-
-36- In-statements and out-statements are used to move data over
-37- conmunication paths between passive proeess-objects and a
-38- real-time-program. An in-stabement pernits external values to be
-39- transferued to program variables, and an out-statement permits the
-40- transfer of values bo external process-objects.
-41-
-42-
-43- 5.\.2 Syntax
-44-
-45- 1. process-io-statenent = in-statement / out-statement
-46- 2. in-slatenent = IN FROM (process-port-name /
-47- process-port-aray subscript-parb)
-48- T0 in-strucbure timeoul-expression?
-49- 3. in-struclure = in-structure-element
-50- (comma in-structure-element)*
-51- 4. in-struclure-element = variable / formal-array
-52- 5. out-statemenb = OUT TO (process-port-name /
-53- process-porl-amay subseript-part)
-54- FROM out-structure timeout-expresson?
-55- 6. out-structure = out-structure-elenent
-56- (comna out-sbructure-element)*
-57- T. out-slruclure-elemenl = expression / fornal-aray

)

I

-2-
-3-
-4-
-5-
-6-
-8-
-9-
-10-
-11-
-12-
-13_
-14-
-15-
- 16-
17
- 18-
19

-20-
-21-
-22-
23
-24-
-25-
-26-
-27-
-28-
29

-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
47

-48-
_49-
-50-
-51 -
-52-
-53-
-54-
-55-

-26-

Any process-port-nane or process-porb-aruay occurring in an
in-statement or out-statement shall be declared in a
process-port-dec.

The nrmber and types of elenents within an in-structure or
out-structure shall conforn to the data-structure-dec for the
strucbure specified in the declaration for the comesponding process
port, or to the default if no structure-nane occured in bhe
process-porb-dec.

5.4.3 Exanples

2. IN Fnot{ I{ETGHT T0 X, Y

IN FRoM PANEL T0 A$, B, C, Fo
IN FROM NIGI(NEXT) tO RI,PTTI TIMEOUT 2.5

5. OUT T0 21 FR0M BIC+X
ouT T0 PANEL FRoM A$&B$, JrM, FnED, Co

5.4.4 Senantics

Execution of an in-süatenent shall cause values to be obtained
fron the specified process-port and to be assigned to the
comesponding variables and arays in the in-strucbure. No
assignment of values from the process-objeci shall take place until
the values supplied have been validated with respect to t,he allowable
range for each value and the ntmber of values. If a nrmeric value
causes an underflow, then its value shall be replaced by ze?o.
Subscripts in an in-structure shall be evaluated after values have
been assigned to the variables and arays preceding bhen (ie. to the
left of then) in the in-structure.

Execution of an in-statenent shall be regarded as conplete only
when all values have been assigned to bhe variables and arays in the
in-structure or when a fatal exception oceurs, such as one caused by
incorecb data or a hardware failure, or the nunber of seconds
specified by bhe timeout-expression has expired.

Execution of an out-statenent shall cause the expressions in the
out-structure to be evaluated and their values, together with the
values of all elements in the specified formal-arrays, to be
transmitted to the specified process-port.

Execution of an out-statenent shall be regarded as complete only
when aII values fron t,he out-structure have been validated and
aceepted by the process environment or when a fatal exception occurs,
such as one caused by ineorrect data or a hardware failure, or the
nunber of seconds specified by the bineout-expression has expired.

The occurence of a fornal-aray in an in-structure or an
out-structure shall cause the content,s of the entire array with that
name to be input or output.

-2-
-3-
-4-
-5-
-6-
-8-
-9-
- 10-

-12-
- 13-
-1 4-
- 15-
- 16-

- 18-
- 19-
-20-

-22-
23
-24-
-25-
-26-
-27-
-28-
29
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
-43_
-44-
-45-
-46-
47
-48-
-49-
-50-
-51-

-53-
-54-
-55-
-56-
-5V-
-58-
-59-
-60-

-27 -

5.4.5 Exceptions

The assignnenL of a value to a numeric-variabtre or nrmeric-amay
in an in-süructure causes a nuneric overflow (fatat).

The assignnent of a value to a string-variable or string-array in
an in-structure causes a string overflow (fatat).

The eurrent sizes of the dimensions of a formal-array used in an
in-structure or an out-structure do not eonform to Lhe data-
structure-dec for the structure specified in the declaration for bhe
indicated process-porf (fabal) .

Execulion of an in-statenent or an out-statenent has not been
complebed before Lhe timeout given by the timeout-expression has
expired (fatat).

A subscript for a process porb is noü within the range specified
by the process-aray-dec (fatal).

5.4.6 Remarks

Inplenentation-defined exception conditions may exist. These are
nainly concerned with the characteristies of particular
process-obj ects.

Validation of data obtained from process-objects as required by
section 5.4.4 nay be subject to implenentation-defined limitations.
For exanple, corruption of a string daLun nay be inherently
undetectable.

5.5 Shared Dala

5.5. 1 General Deseription

Get-statements and put-statements are used to transmit data
between concurrent activit,ies and collections of shared data" The
data are üransmitted through data ports.

5.5.2 Syntax

1. data-io-statenent
2. put-statement

3. get-statenent

= put-statenent / gef-statement
= PUT T0 data-port-nane subscript-part?

FROM out-structure
= GET FROM dafa-port-name subscript-part?

T0 in-structure

Any data-port-name oceuring in a pub-statement or get-statenent
shall be declared in a data-port-dec. A subscript-part shall follow
ühe data-port-name if and only if a dimensioning occurs in the
data-port-dec for that data-port-nane; in that case, the ntmber of
subscripüs in the subscript-part shall equal the ntmber of dimensions
specified by the dinensioning. The ntmber and types of elements
within an in-structure or out-structure shall conforn bo the
data-structure-dec for the structure specified in the data-port-dec
for the data-port-nane.

28

- 1- 5.5.3 Exanples
-2-
- 3- 2. PUT T0 FLIGHT(N+]) FRoM I$, N, 2, po
- 4- 3. GET FROM D TO E

-5-
-6-
- 7- 5.5.4 Semantics
-8-
- 9- Execution of a put-statement shal'I cause the expressions in the
-10- out-structure to be evaluated and bheir values, together with the
-11- values of all elenents in the specified formal-arrays, bo be
-12- transnitted to the appropriate collection of the shared data.
-1 3-
-14- Execution of a get-statenent shall cause the variables and amays
-15- in lhe in-structure to be assigned values from the appropriate
-16- collection of shared data. No assignnent of values shall take place
-17- until all values have been validated wibh respect to the allowable
-18- range of each vaIue, and the ntmber of values. Subscripts in an
-19- in-structure shall be evaluated after values have been assigned to
-20- the variables and arcays preeeding them (ie. to the lefü of lhen) in
-21- the in-structure.
-22-
-23- Execution of a put-sbatenent or a get-statement shall be regarded
-24- as conpleüe when all values have been verified and transmitted, or
-25- when a fatal exception has occured. No other concument, aetiviby
-26- shall access the specified cottection of shared data until execution
-27- of a get-statement or put-statement is compleLe.
-28-
_29-
-30- 5.5.5 Exceptions
-31 -
-32- The assignment of a value to a ntmeric-variable or ntmeric-aryay
-33- in an in-structure causes a nrmeric overflow (fatal).
-34-
-35- The assignnent of a value to a string-variable or süring-array in
-36- an in-structure causes a string overflow (fataf).
-37-
-38- The curuenü sizes of the dinensions of a formal-array used in an
-39- i-n-structure or an out-structure do not conform to the data-
-40- sbructure-dec for the sbructure specified ln ühe declaration for the
-41- indicated process-port (fatal).
-42-
-43- A subscript for a data-port is not within the range specified by
-44- the data-port-dec (fatat).
-45-
-46-
-47- 5.5.6 Renarks
-48-
-49- None.
-50-
-51-
-52-
-53- 5.6 Message Passing
-54-
-55-
-56- 5.6.1 General Description
-57-
-58- Send-statenenüs and receive-statenents are used to transnit data
-59- between concurent activities. The data are conveyed over message
-60- paths whieh connect a message output port in a send-statenent in one

-3-
-4-
-5-
-6-
-8-
-9-
-10-
-11-
-12-
_ 13_
-14-
-15-
- 16-
-17 -
- 18-
_19-
-20-
-21-
-22-
23
-24-
-)q-
-26-
27

-28-
-29_
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-
-46-
47
-48-
-49-
-50-
-51-
-52-
-53-
-54-
-55-
-56-
-57-

-29-

concuffent activity to a message input port in a recej-ve-statenent in
another.

A message path is esüablished at run-time inplicitly by the use
of the sane nessage port na.me in two concurrent activities, in a
send-statement in one and in a receive-statenent, in the other.

5.6.2 Syntax

1. nessage-io-stabenent
2. send-staüement

3. receive-statement

= send-statenent / receive-statement,
= SEND T0 message-port-name

FROM out-structure timeout-expression?
: RECEIVE FR0M message-port-nane

T0 in-structure timeout-expression?

The number and bypes of elements in the out-structure in a
send-statenenl shari match t,he ntmber and types of erenents in the
in-sfructure in any receive-statement specifying the same
nessage-port-name; in addition, they shall conform to fhe
data-structure-dee for the structure specified in the
nesssage-porü-dec for that nessage-port-name.

A parallel-seetion shall not contain both a send-statenent and a
reeeive-sbatement specifying the sane message-port-nane.

5.6.3 Exanples

2. SEND T0 LrNK FRoM ilFrRSTn, X/2, 17.35, nESULTSO
3. nECETVE FnoM LrNK TO A$, p(1), p(2), ro TrMEouT 30

5.6.4 Semantics

A message porb in one eoncurent activity shall be connected to a
message port in another concurcent activity by t,he execution of a
send-statemenl or a receive-statement in the one concurrent activity
using the given nessage-port-name and the subsequent execution in the
oüher concurrent activity of a reeeive-statenent or a send-stat,enent
using the same message-port-nane.

Execution of a send-statement or a receive-statement shall not be
eonplete untir the specified message port has been connected as a
result of exeeuting a corresponding receive-statement or
send-statement in another concurrent activity, or an exception
oecurs.

l{hen sueh a conneetion has been made, the expressions in the
out-structure in the send-statenent shall be evaluated, and their
values, together wilh the values of all arcays in bhe out-struclure,
shall be assigned to the variables and arrays in the in-sbructure in
the coresponding receive-süatement.

Subscripts in an in-structure shall be evaluated after values
have been assigned to the variables and arays preceding then (ie. to
bhe left, of them) in bhe in-strucLure.

-30-

- 1- If a bineout is specified in a send-statenent or a receive-
- Z- statenent, then an exc"eption shall occur if no connection is made

- 3- within the specified length of tirae.
-4-
- 5- If a send-statenent tines out then its nessage is no longer
- 6- available for a recelve-statenent.
-7-
- 8- If a send-statenent is executed and nore than one other
- 9- concurrent-actlvity is ualting to receive a message through a tnessage

-10- port with the sane name, then which one of those aetivities that
-11- receives the nessage shall be deternined by the underlying systen.
-12-
-1 3-
-1 4-
-1 5-
-16- 5.6.5 Exceptions
-17-
-18- The current sizes of the dinensions of an array used in an

-19- in-structure in a receive-statenent do nob natch those of the
-2O- coresponding array in the out-structure in a send-statement (fatat).
-21-
-22- Execution of a send-statement or receive-statement has not been

-23- conpleted before the tine specified in a tineoub has expired (fataf).
-24-
-25-
-26- 5.6.6 Remarks
_27-
-28- None.
-)o-
-30-
-31 -
-32- 5.T Bit Patüerns and 0perations
-33-
-34-
-35- 5.7.1 General DescriPtion
-36-
-37- Bit patterns are a conmon neans of coding information in process
-38- control systems. ttithin a program, they are represented by strings of
-39- characters. OperatLons on bib patterns may be performed by the
-40- string operations of concatenation and substring extraction.
-41 -
-IlZ- Functions are provided for conversion between strings and nrmeri.c
-43- values.
-44-
-45-
-46- 5.7.2 Syntax
47
-48- 1. string-supptied-function > BSTR$

-49- 2. nuneric-supplied-function > BVAL

-50-
-51-
-52- 5.7.3 Exa.nples
-53-
-54- None
-55-

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-1 0-
-11-
-12-
-1 3-
-14-
- 15-
-1 6-
_17 _

- 18-
-19-
-20-
-21-
-22-
23

-24-
-25-
-26-
_27-
-28-
29
-30-
-31-
'32'
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43

-44-
-45-
-46-
-47-
-48-
49
-50-
-51-

- 3t -

5.7.4 Senantics

The values of the supplied functions, as well as the nrmber and
types of their argtments, shal1 be as described below. B$ represents
a string expression, V represents an index and R represents an
integer constant whose value Ls 2, 8 or 16.

BSTR$(V, R)

The permissible characters thal nay appear in the string B$
depends on the value of R. If R is 2 the valid set is bhe digits 0
and 1. If R is 8 the vatid set is the digits 0 to 7. If R is 16 the
valid set is the digits 0 to 9 and lhe upper-case letters A bo F.

5.7 .5 Exceptions

The value of bhe string argrment of BVAL is not a vatia
representation of a ntmber in radix R (fatal).

FUNCTION

BVAL(B$, R)

The nrmeric interpretation
BVAL cannot be represented
nrmeric variables (fatat).

5.7 .6 Renarks

Typical uses for bit pat,terns are the
regLsüersr or of data fron process obJects
represent specific obJects such as swltches

VALUE

The non-negaüive integer whose string represent-
ation is given by ühe string B$. R is the radix
of the string representation of the valuer €B!

BVAL(tr101tr, 2) = 5
BVAL(|'2F'', 16) = 47

The string representation of the value of V,
using radix R. Unless a fatal exception occurs,
BSTR$ shall always return aü least one character.
In particular, the value of BSTR$ when V is zero
is nOtrr €83

BSTR$(3.14, 2) - nl1r
BSTR$(15, 8) = il17n

of the value of bhe string argunent
wibhin the linits of the precision

of
of

The nrmeric interpretation of tbe value of the string argunent of
BVAL exceeds the largest number representable (fatal).

The value of the first argrment of BSTR$ is negative (fatal).

The value of the second argument of BVAL or BSTR$ is not 2, 8 or
t6 (raar).

nanipulation of status
ln whlch individual bits

or indicators.

-32-

-2-
-3-
-4-
-5-
-6-
-T-
-8-
-9-
- 10-
-11-
-12-
_ 13_
-14-
-15-
- 16-
-17-
- 18-
-19-
-20-
-21-
-22-
23
-24-
25
-26-
-27_
-28-
29
-30-
-31 -
-32'
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
-45-
-46-
47

-48-
-49_
-50-
-51'
-52-
-53-
-54-
-55-

6.

6.1

Exception handling facitities provide a means of regaining
control of a progran after an exception has occurred.

6.2 Syntax

Exception Handling

General Description

1. exception-handler

2. handler-line

3. handler-name
4. end-handler-line
5. exit-handler-statenent
6. enable-handler-statenent

: handler-Iine blockr
end-handler-Iine

= line-ntmber HANDLER

handler-nane tail
= routine-identifier
= line-nr.mber END HANDLER tail
= RES{IME / RETRY / C0NTINUE

= ENABLE HANDLER handler-nane
(conna RESUME AT line-nunber)?

T. disable-handler-statenent = DISABLE HANDLER

8. cause-statenent = CAUSE exception-type
9. exception-type = index

10. nweric-supplied-funcbion > EXLINE / EXTYPE

A handler-name thab occurs in an enable-handler-statement shall
occur in some handler-line in ühe sane program-unit. A given
handler-name shall occur in at nost one handler-Iine in a

progran-unit
"

Exeeption-handlers shall not be nested wiühin other
exception-handlers or within def-blocks that do not constitute a
progran-unit.

Exit-handler-stabenents sha}l occur only wilhin exception-
handlers. The supplied-functions EXLINE and EXTIPE shall be invoked
only within exception-handlers.

A eontrol-statenent shall not transfer control to a line wibhin
an exception-handler fron outside the exception handler (other than
to the first as the result of an exception), nor to a line outside an
exeeption handler fron a line within lt.

6.3 Exanples

Exanple 1: handling errors in input-replies by allowing the
input-reply to be resupplied afber issuing a suitable message

110 ENABLE HANDLER HKP1

120 PRINT rrEnter your age and weightfrl
130 INPUT AGE, }IEIGHT
140 IF AOE > 10 THEN
150 PRINT rttthat is your height in netersfr;
160 INPUT HEIGHT
170 END IF

-33-

- 1- 3OO HANDLER EKP1

- 2- 31C PRINT fPlease enter nrmbers onlylrf
- 3- 320 RETRY

- 4- 330 END HANDLER

-5-
- 6- Exanple 2: handling ntmeric overflows in a subprogran by setting
- 7- a sta|us return and exiting fron the subprogran (obher exceptions are
- 8- handled by the default procedures)
-9-
-10- 100 suB srATs (Ao, M, s)
-11- 110 ENABLE HANDLER 0FL0, RESUME AT 900
-12- 120 LET S = 0

-13-
-14- 8OO HANDLEN OFLO

-15- 810 IF EXTIPE = 1001 THEN

-16- 820 LET s = 1

-17- 830 RESTTME

-18- 840 END IF
-19- 850 END HANDLER

-20- 9oo END suB
-21-
-22- Exarnple l: handling a variety of exceptlons arising in a single
-23- computation
-24-
-25-
-26-
27
-28-
-)o-
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43
-44-
-45-
-46-
-47-
-48- 6.4 Semantics
-49-
-50- Execution of an enable-handler-statenent shall enable the naned t

-51- exeeption-handler to process exceptions that subsequently arise
-52- during execution of the progran-unit. At most one excepüion-handler
-53- sha1l be enabled at a time in a program-unit. If an
-54- enable-handler-stalenent is execut,ed while an exception-handler is
-55- enabled, the curuenüIy enabled exception-handler shall be disabled
-56- and the naned exception-handler enabled.

1OO ENABLE HANDLER OOPS

110LETX=LOG(VAL(A$))
120 DISABLE HANDLER

BOO HANDLER OOPS

810 SELECT EXTIPE
820 CASE 4OO: ! A$ not ntmeric
830 CALL Frx(A$)
840 RETRY
850 CASE 3004 t Bad argr.ment for LOG
860 LET x1 = VAL(A$)
870 IF X1 = O THEN
880 LETX=-INF
890 ELSE

900 LETx=L0G(-X1)
910 END IF
920 CONTINUE
930 CASE ELSE
940 REM Allow systen to handle the exception
950 END SELECT
960 END HANDLER

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
-t5-
-1 4-
-15-
- 16-
-17-
-18-
_ 1g_
-20-
-21-
-22-
_23-
-24-
25
-26-
27

-28-
-29_
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
43
-44-
45

-46-
47
-48-
-49_
-50-
-51-
-52-
-53-
-54-
-55-

-34-

Execution of a disable-handler-statenent shall disable the
currently enabled exeeption-handler, if any such excepti-on-handler
exisfs.

I{hen an exception occurs during the execution of a progran-unitt
the action taken shall depend upon whether an exeeption-handler is
currently enabled in that program-unit. If no exception-handler is
enabled, then bhe default exception-handling procedures specified in
this Standard shall be applied. If an exeeption-handler is enabled'
then the default exception-handling procedures, lthich require that
the exception be reported, shall not be applied; instead, the enabled
exception-handler sha1l be executed.

llithin an exception-handler, ühe bype of fhe exception that
caused that handler to be executed shall be obtainable as bhe value
of bhe parameterless funcbion EXTYPE. The values of EXTYPE for all
exceptiäns defined in this Standard are specified in Appendix 2. The

line-nr.mber of the line whose execution caused the exception shall be

obtainable as bhe value of ühe paraneterless function EXLINE.

There are four neans of exiting fron an exception-handler.
Execution of the exit-handler-statenent CONTINUE shall cause
execution to resune with the statement foltowing the one bhat caused

the exception. Execution of the exit-handler-statenent RETRY shall
resull in lhe re-execution of the statenent t,hat caused the
exception; if that sbatement $tas an input-statementr then the
previous input-reply shall be discarded and a nell one requested.
Execubion of the exit-handler-statement, RESIJME shall cause execution
to resune at bhe line whose line-ntmber vlas specified in ühe

last-executed enable-handler-statenent; if no Iine-ntmber was

specified in that statenent, then execution shall resume at the line
following the one that caused the exception. Execution of the
end-handler-statement shall cause the exception to be handled by the
default exception-handling procedures.

Execution of a cause-statenent shall result in the occurrence of
an exception of the specified type.

If an exception occurs during the execution of an
exception-handler then that excepti-on shall be handled by the default
exception-handling procedures.

If a fabat exception occurs in a procedure that is a separate
program-unit and no exception-handler is enabled therer or if the
end-handler-statenent is executed in the exception-handler invoked by

that exception, then a fatal exception shall occur aü the line that
invoked the procedure. Such exceptions shall continue to occur until
an invocabion of a progran-unit with an enabled exception-handler or
the main-program is reached. If an exception-handler is invoked in
this process, then the value returned by the EXTIPE funcbion shall be

10OOO0 plus the value that would have been supplied for EXTYPE in the
progran-unit in which the exception occurred. If bhe nain-program is
reached and no exception-handler is enabled there, then the exception
shall be handled by ühe defaull exception-handling procedures
specified in this Standard.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
1 3
-1 4-
- 15-
-1 6-
17
- 18-
19

-20-
-21-
-22-
-23-
-24-
-25_
-26-
27

-28-
29
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41 -
-42-
43

-44-
-45-

-35-

Lines Ln an exception-handler shalf noi be executed unless ühat
handler is enabled and an exception occurs. If execution reaches the
first line of an exception-handrer in some other fashon, then it
shall proceed to the line forlowing the end-handler-rine with no
other effect.

6.5 Exceptions

An exception occurs during execution of an except,ion handler(fatal).

6.6 Renarks

The function EXLINE should be used with caution, as the use of
editing facilit,ies that rentmber lines in a program may invalidate
conputations involving EXLINE. For example, the progran fragnent

1OOO SELECT CASE INT(EXLINE/1OO)
1010 CASE 1, 2

1100 cAsE 3 T0 7

would probably behave differentry if lines 100 to 800 lrere
rentmbered.

AII positive values of EXTYPE are reserved for future versions of
this standard. Exceptions defined by local enhancements to this
sbandard should be identified by negative values for ExrypE,
folrowing the categories established in Appendix z. The value
returned by EXTYPE for an exception defined in a local enhancenent
and occurcing in a subprograrn should be -100000 plus the negative
value ident,ifying the exception. For exampre, if an inplementation
chose an EXTYPE value of -4029 for an invalid parameter in a new
buirf-in function, and if, ühat exception occurred in a subprogram,
but was noü handled there, then the va1ue. of EXTypE in an
excepbion-handler in a calling progran should be -'104029.

rt is reconmended that i-nprementations use the rtzeroethrt value in
a class of EXTYPE values to represent nother exceptions of this
typett. For example an EXTYPE value of 1000 mighf represent a1I
overflows not defined in this Standard;

-36-

- 1- T. References
-2-
- 3- 1. American National Standard for Minimal BASIC (1978) ANSI x3.60
-4-
- 5- 2. rS0 Mininal BASrC 1980 DrS 6376
-6-
- 7- 3. ECMA-55 Minlmal BASIC 1978
-8-
- 9- 4. Hoare CAR Conmuni.cating Sequential Processes
-10- CACM 1978 Vol. 21 No. I pp. 666-677
-11-
-12- 5. Reference l{anual for the Ada progranrning Language
-13- United States Departnent of Defense JuIy 1!80
-14-
-15- 6. Hoare CAR Monitors: an Operatlng Systens Structurlng
-'16- Concept. Conn. ACM VoI. 17 llo. 10 Oct. 1974, pp 549-557

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-1 0-
-11-
-12-
-1 3-
- 14-
- 15-
-1 6-
-17-
- 18-
-19-
-20-
-21-
-22-
23
-24-
-25-
-26-
27

-28-
-29_
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
-43-
-44-
-45_
-46-
47
-48-
_49-
-50-
-51 -
-52-
-53-
-54-
-55-
-56-
-57-
-58-
-59-
-60-

-37 -

Appendix 1. Distributed Sysüems and Independent Conpilation

This Appendix is extracted fron a EWICS TC2 working paper. Il
describes the curcent ideas on how to irnplenent large or distributed
systems. This Appendix does nob form part of the proposed Standard.
However, ib is intended eventually fo publish a supplenent to the
Standard defining an extension of IRTB for use in distributed
applications.

INTRODUCTION

The Draft Standard for IRTB is oriented towards application
configurations with connon nemory accessed by one or more processors,
and for which the program is compiled as a unib. This Appendix
describes an extension for use wibh application configurations
comprising nultiple processors without shared memory, or for large
application programs for which it is desirable to divide the progran
into a ntmber of separately conpiled segmenüs.

For independent compilation the problem is to define paths
between ports that are used in different program units. The solution
is to introduce a global declaration unit whose scope is all the
programs relating to a particular application.

For distribubed systems a facility must be provided for
allocating activities and shared data sections bo the various
processors. tthen a program is divided into independently conpiled
units, it is conveni-ent for these allocations bo be defined in the
globa1 declaration unit.

The global declaration unit does not contain executable
statenentsl ibs purpose is to define the structure of the
applieation. The global unib has two parts: An interconnunication
part, that deelares nessage paths between message ports and the
visibility of shared data secbions to shared-data ports, and a
configuration part t,hat declares the allocation of activities to
proeessors and the association of physical process objects to
specific process I/0 ports.

Since nessage paths and shared-data access paths are deelared
outside the coding of the parallel sections, it is no longer
necessary for connecting ports to have the sane name. The nodularity
of bhe program is inproved by allowing a paralle1 section to use
locaI nanes for all its ports. An activily can then be reused or
redistribut,ed without changing its code.

The following paragraphs describe the global declaration unit and
its relation to nessage ports, data ports and process ports in
independently compiled prograns. An inplenentation could use this
lnformation for conpiler direeti-ves, as a connand input to a
preprocessor, or as a sort of JCL (.loU Control Language) for the
language processor. An alternative inplenentation would be to
conpile the declarations into tables that reside in computer menory
and are used to resolve the linkages at program execution ti"me,
thereby allowing dynanic reconfiguration of the systen while the
prograrn is running.

-2-
-3-
-4-
-5-
-6-
-8-
-9-
-10-
-11-
-12-
13
-14-
-1 5-
-1 6-
17
-18-
- 1g-
-20-
-21-
-22-
-23_
-24-
-25-
-26-
27
-28-
29
-30-
-31 -
-32-
-33-
-34-
-35-
-36-
-37-
-38-
-39-
-40-
-41-
-42-
-43-
-44-
45

-46-
47

-48-
49
-50-
-51-
-52-
-53-

-38-

DATA STRUCTURES

Data structure declarations are necessary to allow the language
processor to check the consistency of connected nessage ports, and to
define the shared data. The declarations are as defined in section
5.3.

MESSAGE PATHS

The attributes of a message path are bhe nanes of
connunicating activities, the local message-port nanes in each,
direction of data lransfer, and the structure of the data.
syntax of a nessage path declaration is as follows:

1. nessage-path-dec = MESSAGE FR0M section-name
nessage-port-nane T0 section-nane
message-port-name

eg:

STRUCTUNE REALS: 2 OF NT,MERIC
MESSAGE FROM ALPHA MIX TO BETA NEXT OF NEALS

The processor in which each acbivity runs is determined by
configuration declarations (see below).

SHARED DATA

The declaration of data that is accessible to nore than one
concurrent activity is syntactically identical bo the declaration of
a data port defined in section 5.3. In addibion the capability of
napping data ports onto the systen shared-data is defined:

the
the
The

1. data-mapping-dec

2. linits

3. Iower-bound
4. upper-bound

= ASSIGN section-nane data-port-nane
li.nits? T0 shared-data-nane limits?

= Ieft-parenthesis lower-bound colon
upper-bound (comna lower-bound colon
upper-bound)? righb parenthesis

= integer-constant
= integer-constant

The integer-constant representing the lower-bound and upper-bound
shall be unsigned. The upper-bound shall be larger than bhe
Iower-bound.

As an exanple of t,his feature consider a nrmber of sinilar input
processors with essentially the sane progran, which are collecting
status information that nust be available to a supervisor activity.
The code for each input processor should not depend on which section
of the systen data it ls supplying. Suppose ALPHA, BETA and GAMMA

each supply 10 structures to a section of shared data 50 strucbures

-39-

- 1- long called CHAN. Appropriate statenents could be:
-2-
- 3- STRUCTURE BLOCK: 2 OF STRING, 4 0F N{JI{ERIC

- 4- SHARED CHAN(49) OF BLOCK
. 5- ASSIGN ALPHA MON(O:9) tO CHAN(O:9)
- 6- ASSICN BETA MON(O:9) TO CHAN(10:19)
- 7- ASSTGN GAMMA M0N(0:9) TO CITAN(20:29)
- 8- ASSIGN sUP M0N(0:49) T0 CHAN(0:49)
-9-
-10- where MON is the nane of a shared-data port in each of the
-1 1- activities.
-12-
-13- slnple data items nay be napped onto simple daüa items or amay
-14- elenents, and vectors nay be napped onto sections of vectors or
-15- natrices. An alternative to the above'exanple could be:
- 16-
-17- SHARED CHAN (9,4)
-18- ASSTGN ALPHA M0N(0:9) T0 CHAN(0:t, 0:0)
-19- ASSTGN BETA M0N(0:9) tO CHAN(o:9, 1:1)
-20- ASSTGN GAMMA M0N(0:9) tO CHAN(o3), 222)
-21- ASSTGN SUP M0N(0:49) T0 CHAN (0:9, 0:4)
-22-
-23_
-24- ALLOCATION OF ACTIVITIES TO PROCESSORS

-25-
-26- Process peripherals are associated with a processor rather than
-27- with the activities currently running in it. To pernit a real-time
-28- program to be independent of processor configurations, process type
-29- declarations are defined for use in the coding of the activities.
-30- Process paths and the napping of process ports onto process paths are
-31- defined in the global declaration unit.
-32-
-33- 1. process-type-dec = PROCESS qualifier process-port-name
-34- 2. allocation-section = processor-blockr
-35- 3. processor-block = PROCESSOR processor-nane processor-type
-36- file-blockr
-37- 4. file-block = file-name activity-blockr
-38- 5. activity-block = ACTIVITY activiby-list use-block
-39- 6. use-block = (use-statenent / process-napping-dec)r
-40- 7. use-statenent = USE string-expression
-41- 8. process-ltapping-dec = ASSIGN process-port-nane T0

-42- process-path (conma process-port-nane
-43- T0 process-path)r
-44-
-45- Process type declarations are used instead of process-port-decs in
-46- real-tine-programs.
47

-48- Processor-nane, processor-type and file-name are inplenentation-
-49- deflned. Actlvlty-llst is a list of parallel section nanes. The
-50- strlng-expresslon in the use-staüenenü identifies a file containing
-51- process-port-decs.
-52-
-53- Assignnents need not be nade if the sane nanes are used for
-54- process ports in the activities and process paths in the global
-55- deelaration unit.

-2-
-3-
-4-
-5-
-6-
-7-
-8-
-9-
-10-
-11-
-12-
1 3
-14-
-15-
- 16-
-17-

-40_

Exanples of these statementc are:

PROCESSOR MONITOR LSI11
FILE MONIP

ACTIVITY ALPHA, BETA, GAMMA

USE PRODEC

ASSIGN FAIL TO. LAT.IPI,. TEMP TO THERM

FILE MONOP

ACTIVITI LOG

PROCESSON DISPLAT APPLE

where PRODEC l.s the name of the file contalnlng the process-porü-decs
for the processor 'MONITOR; FAIL and TEMP are ühe names of process
ports in the actlvities ALPHA, BETA and GAMMA; and LAI,{P1 and THERM
are bhe names of process-paths decLared in thd file PR0DEC.

-2-
-3-
-4-

-4t-

- 1- APPENDIX 2. Exception Codes

The followlng llst,s the values of the EXTYPE function

1008 Overflow in ntmeric value for process inpub (5.4).
1009 Overflow in nrmeric value fron shared data (5.5).
1055 0verflow in string value for process input (5.4).
1056 Overflow in string value fron shared data (5.5).

2001 Subscript out of bounds (5.4, 5.5).

4201 String argrment of BVAL is not a valid string ln radix R (5.7).
4202 Nuneric interpretation of the string argunent of BVAL

cannot be represented withi the precision linits (5.7).
4203 Nuneric interpretation of the süring argument of BVAL

exceeds lhe largest ntmber representable (5.7).
4204 The first argtment of BSTR$ is negative (5.7).
4205 The second argunent of BVAL or BSTR$ is not 2r 8 to 16 (5.7).

6301 Misnatched dimensions for array in real-tine structure
(5.4, 5.5, 5.6).

8105 Tineout during a process input or output operation (5.4).
8tO6 ttneout during a message send or receive operation (5.6).

12001 Attenpt, to start an activity that is not stopped (5.2).
12002 Atüenpt to signal an event that has occured, and has not

yet restarted a waiting actlvity $.2)
12003 Event reoccurs before it restarts a miting activity (S.Z).
12004 lllegal numeric value specified for time-expression (5.2).
12005 lllegal string value specified for tine-expression (5.2).
12006 An event does not occur wiühin the specified tineout

interval (5.2).

- 5- correspondlng to the exceptions specified in this docunenü. The

- 6- nrnbers in parentheses following each exception refer to bhe section
- T- in which that exception is specified. AlI these exceptions are
- 8- fatal.
-9-
-1 0-
-11-
-12- oVEnFLol{ 1 000
1 3
-14-
-1 5-
-1 6-
17
-18-
-19- SIIBSCRIPT ERRORS 2000
-20-
-21-
-22-
-23- PARAMETER ENRORS 4000
-24-
-25-
-26-
-27-
-28-
-)o-
-30-
-31 -
-?)-
-33- MATRIX ERNORS 6000
-34-
-35-
-36-
-37-
-38- rNPUT/oUTPUT EnRonS
-39-
-40-
-41-
-42-
-43- REAL-TIME ERRORS 1 2000
-44-
-45-
-46-
47
-48-
-49-
-50-
-51 -
-52-

8000

-42-

- 1- APPENDIX 3. Iuplementation-defined features
-2-
- 3- A ntmber of features refemed to in this Slandard have been left
- 4- for definition by bhe inplenentor. The way these features are
- 5- inplemented shall be defined in the user or system nanual for the
- 6- inplenentation.
-T-
- 8- The following is a list of the inplenentation-defined features:
-9-
-10- sEcrroN 5.1
-11-
-12- Scheduling of parallel-sections.
-13- Interpretation of bhe urgency of parallel-sections.
-14- tthere execution of a paralfel-section can be interrupted.
-15- Values of varlables at the initiation of a paralIel section.
- 16-
-17-
-18- SECTToN 5.2
19

-ZO- llhich of several activities waifing for an event is restarted.
-z'\-
-22-
-23- SECTToN 5.3
-24-
-25- Interpretation of the access-infornation for a process-port-dec.
-26-
-27- SECTToN 5.6
-28-
-29- l{hich of several activities waiting to receive the sane message

-30- shall actually recej-ve it when the comesponding send-statement
-31- is executed.
-32-
-33-
-34- GENEnAL

-35-
-36- It should be noted that inplementaüion-defined features nay cause

-37- a program to behave differently on different inplementationsr for the
-38- following and possibly for other reasons:
-39-
-40- - The logical flow of a program nay be affected by the algorifhn
-41- used for the pseudo-randon ntmber sequence'
-42-
-43- - The logical flow of a program may be affected by the value of
-44- nachine infinitesimal and/or the value of machine infinity,
-45-
-46- - The initial value of variables nay affect the logical flow of a

-47- progran that contains logical erorst
-48-
-49- - The logical flow of a progran nay be affected by the order of
-50- evaluation of ntmerlc-expressionst
-51-
-52- - The behaviour of a program nay be affected by the strategy of
-53- the lnplenentation-defined scheduler.

