

IR TB

Industrial Real - Time

BASIC

= M
— P

= i3
- B
- b
.y

=10~
-11=
-12=
-13-
-1Y4=
-15-
-16-
-17=
=18
-19-
-20-
=21~
-22-
=23~
-2l
-25-
-26-
-2~
-28-
-29-
-30-
-31-
=32~
=33~
-34-
-35-
-36-
-37=-
-38-
-39-
=40~
=41~
el
=l
=4y
-45-
-46-
=47~
-48-
-
=50~
-51-
-52-
-53-
=5k
-55-
-56-
-57-
-58-

EWICS TC2 81/8 Sept 1981

IRTB

Industrial Real-time BASIC

Draft Standard

This report describes a draft standard for a Real-time module of
BASIC for wuse in applications such as control, automation and
monitoring. The standard takes account of current implementations
and practices, and modern trends in language design.

The module was defined by the technical committee on the
programming language BASIC of the European Workshop on Industrial
Computer Systems (EWICS TC2), in conjunction with the European
Computer Manufacturers Association (ECMA TC21) and the American
National Standards Institute (ANSI X3J2). It will eventually become
part of the ECMA/ANSI BASIC Standard which will be submitted to the
International Standards Organisation (ISO).

The intention of this publication is to elicit comments and
criticisms from as wide an audience as possible prior to formal
standardisation. Comments should be sent by the 15th of January 1982
to the TC2 chairman or document secretary, from whom further copies
of this document may be obtained.

J. Szlanko (TC2 chairman) A. Lewis (TC2 document secretary)
KFKI I & AP 347.2

Central Research Inst. for Physics AERE Harwell

POB 49 Didcot

H-1525 Budapest Oxon. 0X11 ORA

Hungary England

Tel ++36 1 166540 Tel ++44 235 24141 Ext. 4220
Telex 224722 KFKI H Telex 83135 ATOMHAR

The development of this draft was supported by the Commission of
the European Communities, Directorate General III. The views
expressed herein are not, however, necessarily those of the
Commission.

This document was prepared by the following members of TC2:

.

TOOEs G rLErPOQOXIQ

Bull
Bellardinelli

. Dearlove

Ehret
Jolley
Koblitz

. Lamoitier

. Lewis

Newton
Szlanko

. Puczylowski

Trainito
Windal

. Woda

Hatfield Poly. Herts. AL10 9AB UK
Olivetti & C. S.p.A. I-10015 Ivrea BE
Kent Process Control Ltd. Herts. SG4 OTG UK
KFK-IAK Postfach 3640, D-7500 Karlsruhe 1 D

Ferranti Ltd. Manchester M22 5LA UK
Techn. Universitaet A-1040 Wien A
(Consultant) Ave A. Dumas, F-78370 Plaisir F
AERE Harwell Oxon 0X11 ORA UK
Teeside Poly. Middlesbrugh Cleveland UK
KFKI POB 49 H-1525 Budapest H
Inst. of Mathematical Machines, Wasaw PL
LADSEB - CNR, I-35100 Padova I
I.R.I.S. F-59651 Villeneuve-d'Ascq F

Unicomp GmbH D-7500 Karlsruhe D

S0
N P

o T
o B
A
= T

~10=
=11
o
A
-1l-
o
-16=
—1T=
=18-
Mg
“B0=
S
=
o
sl
=P5
D6~
0T
-28-
=<
=30
2T
SO
=
= T
55
R
T
“HB=
<30
o
=T
4o
S5
Al

S5

CONTENTS

1. “Inbroduction = v 5 o v ¢ v o v o o & » s._s =w
2. Main Features of Standard BASIC . . « « « « &
3. Functional Capabilities and Rationale for IRTB

Concurrent activities . . . « ¢« « « « &

Data Structures . ¢« ¢ ¢« ¢ ¢ ¢ ¢ « ¢ & o
Process Input and Qutput . . <~ . « « « ¢« &
MESSAZeS « ¢« v « o s & s o s s s s s s
Shared Dabta . v ¢ v v v s o« s & 8 s a s
EVeEntsly "ot 2 v v h v e a R e W e w
Exception Handling 5 -

LWwwwwwww
L] L L4
OO EZWN =

4, The Language Definition ¢« « « « « &

. FConventions —: i FUET SN0 a0 W
4.2 Assumed Definitions . . ¢« ¢ ¢« ¢ o o« o & &
.3 Conformante v v v ¢ ¢ « & s & & s s & s &

5. Formal Definition of the Real-time Module . .

5.1 Real-time Programs . « « « o« o« o & o o o =«
5.2 Real-time Declarations . « « « ¢« « « « &« &
he3 - Seheduling -2=, 7/ %, 75 FaME JBSTVRR L
5.4 Process Input and Output « « . . .
G.h Shared Data— . v« v o8 v v % & s a0 w e
5.6 Message Passing . « « ¢« ¢« « ¢ ¢« o ¢ &

5.7 Bit Patterns and Operations « « &

6. Exception Handling v i o s v o s & 5 s & » »

T« ReflPENCES + « v & vos = o w6 a8 & & & & &

Distributed Systems and Independent Compilation

PAGE

12

12
13
14

16

16
19
22
25
27
28
30

32
36

Appendix 1. Distributed Systems and Independent compilation

Appendix 2. Exception Codes
Appendix 3. Implementation-defined features

i1
41
h2

- 1= x. Introduction

P

- 3= A standard for BASIC is being defined jointly by the American
- U National Standards Institute (ANSI), the European Computer
- 5= Manufacturers Association (ECMA), and the European Workshop on
- 6- Industrial Computer Systems (EWICS). The standard will define the
- T- core language BASIC together with a number of enhancement modules,
- 8- one of which is Real-time. The core will include the existing
- 9- standard for Minimal BASIC (1,2,3) as a subset. Industrial Real-time
-10=- BASIC consists of the core plus the real-time module and possibly
-11- other enhancement modules. The 'Draft Standard' referred to in this
-12- document is the ANSI draft for the new Standard.

=-13=

-14-

-15- This document describes Insustrial Real-time BASIC (IRTB).
-16- Section 2 describes the main features of the core, and section 5
-17- defines the syntax and semantics of the real-time module in a formal
-18- way using the conventions of the ANSI/ECMA Draft Standard.

=19=

<20=

-21= Some features in the formal definition are specified as
-22- 'implementation-defined' (see Appendix 3). An example concerns the
-23- details of plant interface equipment accessed in process input and
-2U- output statements. Process input and output is defined rigorously
=25~ from the point of view of the application program, but the method of
-26=- accessing the hardware depends on the equipment used. The
=27- documentation for an implementation should define all sections
-28- specified as 'implementation-defined' in the standard.

“2=

=30=

-31- The Draft Standard does not address the problem of building a
-32- distributed system. However, careful attention was paid to the
-33- design to ensure that a compatible extension could be made to
=34~ accommodate systems incorporating functional distribution. Appendix
-35- 1 in this document describes a set of declarations that will enable a
-36- real-time program to run in a distributed system.

=3T=

=38=

-39~

=40-

-41- 2. Main Features of Standard BASIC

ljp=

=43~ Two simple data types are provided - numeric and string, together
=44 with one and two dimensional arrays of these data types. Structures
-45- can be declared, which are collections of the data types numeric and
-U6- string, simple values and arrays, in any combination.

=47~

-48-

=49~ Identifiers may be up to 31 characters long (upper and lower case
-50- letters, digits and underline). String identifiers are distinguished
-51- by having a dollar sign ($) at the end.

-52-

-53-

-54- The numeric data type is defined to be floating decimal (like a
=55~ calculator). Powerful string handling is provided together with
-56- operations on matrices, comprehensive file input/output, exception

=57~ handling and debugging facilities.

e o
St
Srigd
ZrEljl

=
B

-10-
S
-12-
-13-
=14~
-15-
-16-
-17-
-18-
-19-
-20-
<21
-22-
-23-
=24~
-25-
-26-
=27~
-28-
-29-
-30-
-31-
-32-
-33-
=34~
-35-
-36-
=37-
-38-
-39-
-40-
=
=42~
=T B
=44
=45-
=46~
=
=48~
-lg-
-50-
-51-
-52-
-53-
=54~
-55-
=56~
-57-
-58-
-59-
-60-

Selection 1is provided through the if-then-else and case
statements. These take the following form:

100 IF condition THEN 100 SELECT expression
110 statement 110 CASE constant
120 statement 120 statement
130 - 130 statement
140 - 140 -
150 ELSE 150 CASE relational-operator constant
160 statement 160 statement
170 statement 170 -
180 - 180 CASE constant TO constant
196G END IF 190 statement
200 -
210 CASE ELSE
220 statement
230 -

240 END SELECT

For compatibility with Minimal BASIC selection is also provided
by IF condition THEN line-number and other statements that reference
line numbers. It is for this reason and for editing purposes that
line numbers are required as part of a BASIC program.

Repetition is provided by two constructs - the for-block for
definite repetition, and the do-block for indefinite repetition.
These take the form:

100 FOR 1 = a TO b STEP ¢ 100 DO WHILE condition

110 statement 110 statement

120 - 120 -

130 NEXT i 130 LOOP

200 DO 200 DO

210 statement 210 statement

220 statement 220 statement

230 - 230 =

240 EXIT IF condition 240 LOOP UNTIL condition
250 statement

260 -

270 LOOP
Three kinds of procedures are provided - subprograms, external

functions and internal functions. In addition the Graphics module
introduces picture subprograms. Subprograms and external functions
communicate with the calling program unit only through the parameter
list and the returned value of the function (ie. variables are local
to a program unit); internal functions share the same variable space
as the surrounding program unit in addition to having parameters.
Subprograms and external functions are defined at the end of the
program; internal functions are defined within a program unit.
Subprograms and functions are defined and called as follows:

100 SUB name (formal params) 100 DEF name (formal params)
110 statement 110 statement

120 statement 120 statement

130 - 130 -

140 END SUB 140 END DEF

400 CALL name (actual params) 400 LET X = name(actual params)

S
D
ey T
ol

s
=. T

=10=
M=
~l2=
-13-
-l
5,
<16=
<17
-18-
<1Gs
=20
~Fs
20=
<O
=Dl
<P
-26-
=27
-28-
-29=
=305
=3t
=32=
=33
pEST
-35-
-36-
~37%
-38-
<39
40~
“41-
-2
~43=
T

45

“46-
“47-
48—
-49-
-50-
<5
<5
-53-
50
-55-
e
-57-
258-
-59-
—60=

The position of a function definition determines whether it is
internal or external.

A lower level of structuring is provided by the GOSUB and RETURN
statements.

Comments are introduced through the REM statement or end of line
comments which start with an exclamation mark (!).

A Real-time BASIC program consists of a real-time declaration
section, a set of parallel activities, and a number of external
procedure units.

2R Functicnal Capability and Rationale for IRTB

A Real-time BASIC program is divided into a number of concurrent
single-thread activities which cooperate to achieve the overall
objective of the application.

Statements are provided to start concurrent activities, and to
enable them to respond to internally or externally generated events.
Once started, concurrent activities execute in parallel (at 1least
conceptually).

Each activity is a program module that communicates with its
environment through three types of 'ports':

a. process I/0 ports that communicate with plant interface
hardware,

b. message ports for synchronisation and communication between
concurrent activities, and

¢. shared-data ports for access to data structures outside the
individual activities, for example data in a real-time database
system.

The executable code for an activity is written in BASIC. Activities
have the wusual facilities to access system resources such as files,
the computer console and subprograms.

3.1 Concurrent Activities

IRTB is intended for real-time applications that can be described
in terms of a number of concurrent activities which are largely
independent and asynchronous, but which can communicate and
synchronise. The program for such an application does not have an
overall thread of control. The program must be capable of running
indefinitely - it is not a problem-solving program that starts,
operates on some data to produce some output, and is then finished.

A typical application program could be as follows: A number of
input activities collect data from external hardware, check the
values against limit conditions and store some of the values in
shared data. Other activities read the shared data, perform
statistical analysis and data reduction and store the results in
another section of shared data. Further activities read these

- 1- results, produce data-logs on demand and archive a summary of the
- 2- data. This is essentially a problem in concurrent programming since
- 3- the data is 'pipelined' through the system - archiving activities
- L work on one set of data while the statistical analysis activities are
- 5= processing the next set, concurrently with the input activities
- 6= collecting new data and monitoring continuously the state of the
- 7= plant.

- 8-

- 9- The language requirements are different from those in other
-10- parallel-processing environments in which certain aspects of a
-11=- problem can be processed in parallel, whilst other parts are strictly
-12- sequential. In this case 'fork and Jjoin' type constructs are
=13~ appropriate.

T

=-15=- The environment is also different from time-shared or multi-user
-16- systems where the main requirement is minimum interaction between
-17=- tasks. In a multi-user system any concurrency should be invisible
-18- and is not the concern of an individual user, whereas in real-time
-19- systems control of concurrent activities is often the essence of the
=20~ problem,

=59

-22- The concept of 'Communicating Sequential Processes!' (4) is
-23- appropriate for 'pipelining' when each parallel section must execute
-24- once each time a set of data is available and a set of conditions is
=25~ true. However, in control and automation applications the activities
-26- are more independent. Most of the activities run continuously,
=27~ occasionally synchronising and communicating with other activities.
=28

=29~ It is inappropriate to implement concurrent activities by
-30- existing constructs such as subprograms or functions because
-31- concurrent activities must be able to call subprograms or functions
-32- in the wusual way, and the semantics are incompatible. Subprograms
-33- are typically called with parameters and return to the calling
=34~ program at a defined end-point, whereas concurrent activities
-35- typically execute in an indefinite loop and have nowhere to return to
-36- since they are not called.

3=

-38- In order to define concurrent activities a new language structure
-39~ for BASIC, the 'parallel section', has been introduced. A parallel
-40- section is a program unit in which all variables, internal functions,
-41- channel numbers, data-statements etc. are local to the section.
-42- Execution of a parallel section constitutes a concurrent activity.
A8 .

YT

=45~ 3.2 Data Structures

26

=47~ The concept of a data structure has been introduced to define the
-48- interface presented by the three types of ports. A data structure is
-49- similar to a record in Pascal for example, in that it is an ordered
=50~ list of the data types numeric or string, scalar or array. A data
-51- structure is an abstract structure in the sense that it does not
=52~ define data storage and is not associated with particular variables
-53- or shared data sections - it is a 'template' that defines the
=54~ structure of data transferred through a port.

-55-

-56- The use of data structures allows a language processor to check
=57~ the consistency of statements transmitting data through message,
-58- shared data and process-I1/0 ports. It also allows the checking of
-59- compatibility between interfaces of communicating activities,

-60- particularly when they are in separately compiled program units. For

sailis
oy (P
sl
T
- 5=
- 6-
< T

bl
=P e
=12=
il
=il
"y
16=
=17~
-18-
=19
<
=P
..
-
-2l
-25-
T
27
g8
20~
=30
sl
2P
=3 T
-34-
<36
-36-
w3 T
i e
-39-
=40~
diies
=12
-
.
=45~
-46-
<A T
-48-
-l49-
-50-
s
~Bo
-53-
-5~
~55=
—E6
-57-
B0

large systems, and especially in the distributed case, the
declarations for shared data, message paths and process-I1/0 paths
will be in a separate global section that becomes the 'system
definition'. The concept of a data structure will facilitate
consistency checking by the 1language processor between the global
section and the code for the individual activities.

Process Input and Output

The keywords IN FROM and OUT TO are used for statements that

perform I/O to plant interface equipment. New keywords are used to
distinguish process I/0 from conventional I/0. It is important to
make the distinction apparent in the program text because process I1/0
is semantically and functionally different from conventional I/0 in
the following respects:

a. Process I/0 always refers to a unique, identifiable piece of
hardware in the process interface system, such as a temperature
sensor or a stepping-motor controller. In conventional I/0 the
nature of the source or destination and the organisation of its
data are not relevant to the application program. In other words
process I/0 is device specific while conventional I/0 is device
independent.

b. Process declarations are used to establish a static
connection between a named process port and a specific piece of
hardware. Conventional I/0 requires executable open and close
statements to establish a temporary association between a channel
and an unknown data source or destination.

Further, a system can include a large number of process peripherals,
so the identification of process ports by channel number would be no

acceptable than the identification of numeric or string

variables by a reference number.

In order to remove the implementation dependent part of an

application from the coding of the activities, process I/0 statements
refer to process port names. Separate declaration statements are
used to specify the characteristics of a named port, the method of
access to the device connected to it, and the format of its data. The
parameters needed to define the access and data format depend on the
type of hardware used, so this part of the declaration is one of the
areas left as 'implementation-defined'.

Declarations are provided to define arrays of process ports. Sets

of logically related process peripherals can be grouped into arrays,
for example to allow many input or output operations to be specified
in a FOR - NEXT loop. The requirement for process port arrays is
similar to the requirement for numeric and string arrays.

Messages

A message mechanism is provided for synchronising concurrent

activities, and for passing data at the point of synchronisation.
Message communication is a subset of the Ada (5) 'rendez-vous'
mechanism.

- 1= Normally two activities participate in a message transfer, the
- 2- message path being the logical connection between a 'send' port in
- 3- one activity and a 'receive' port in the other. When both activities
- Y- reach corresponding send-statements and receive-statements, data are
- 5- moved from the sending activity to simple variables and/or arrays in
- 6- the receiving activity. The transmission of the data is an
- 7= indivisible operation.

= 8=

- 9= A single receive port in one activity can be connected to many
-10- send ports in other activities. Because of the synchronising
-11= constraints and the indivisibility of message data transfer, this
-12- configuration can be used to implement a '"Monitor' (6) for resource
-13- management. The sending activities will be forced to queue, the data
-14- being accepted from each in turn, allowing that queued activity to
-15- proceed. An example is a 1logging printer activity that accepts
-16- data-log information from a number of other activities, with the
-17= requirement that the printing of the data from each activity must be
-18- completed without interruption before the next set of data is
-19- accepted.

20

=21- Broadcasting of messages from one send port to many receive ports
-22- is not permitted. Such a configuration would lead to
-23- non-deterministic behaviour of the program since it could not be
-24- known how many receive ports were supposed to receive the data. If
=25- the message were received only by those activities that had reached
-26- receive statements when the send statement is executed, timing
=27~ - variations could cause some activities to miss the information.

-28=

=2g=

-30- 3.5 Shared Data

<t

-32- Get-statements and put-statements are used to access data that
-33- exists independently of the executing activities. The view of the
-34- shared data from the point of view of an activity is declared in
-35- data-port declarations. A data-port declaration defines the name of
=36~ a data port and the structure of the data accessible through it.

“g9=

~38- The nature of the physical data itself, and how it is stored and
-39- managed is not defined in BASIC. The purpose of shared data ports is
=40~ to provide a mechanism for accessing data whose scope is wider than
-41- that of an individual activity. In the simplest case the shared data
-42- could be Jjust some 1locations in common memory. Alternatively,
=43~ according to the requirements of the application, the data could be
=44~ part of a database, with the visibility from the shared data ports in
-45- the activities controlled by some external mapping, such as a
=46~ database management system.

<l

-48- Some typical requirements from current applications of IRTB are:
-49-

-50- a. Generate periodic backups of the shared data to safeguard the
=51- system in the event of a crash.

=5o=

=53~ b. Generate backups at specific points in the application
54~ program to provide known recovery points.

=55~

-56- c. Optionally use a ‘'clean' database or use pre-loaded or

=57- previous data on system startup.

s
aD
B
— A
- B
o S
ey i

S0
<t
-
A3~
-1l-
e
B
=1
-18-
9=
30—
D e
<20
£OR:
e T
=
<06
o0
<08
=205
-30-
230
=3P
=
=3l
35
-36-
-
3B
=39~
-40-
Sl
o
g
.
Y5
46~
=47~
48—
-9
50
5=
5o
253~
.
—55-
56~
557
-58-
=50~
e

3.6

i

d. Provide a hierarchical, distributed database management
system with different compromises between security and speed of
access according to the requirements of different sections.

e. Use the database as the interface to other, non-BASIC, parts
of the system such as autonomous analogue scanning sub-systems or
a higher level artificial intelligence control program written in
Pascal.

Events

Interrupt servicing, with all the attendant problems of saving

and restoring context, is not provided in IRTB. Hardware attention
signals, which generate program interrupts at levels of software
below BASIC, become 'events' that can be 'waited for' by concurrent
activities.

The service routine for an event is an activity with a

wait-statement naming the event. After servicing the event, the
routine returns to the wait-statement to await the next occurrence of

the

event. In this way the concurrent activity is effectively the

interrupt service routine, but it 1is scheduled 1like any other
activity and all the details of saving and restoring context are
handled by the system.

An event can also be set by the software using a signal

statement. This facility provides an alternative method of
synchronising concurrent activities. A significant difference
between signal-statements and send-statements is that a signalling
activity continues and does not wait for the receiving activity to
act upon the event, whereas an activity executing a send-statement
waits until the receiving activity accepts the data.

The signal-statement is also useful for testing application

software without using the external hardware.

No ‘'clear event' statement is provided. An event is cleared

automatically when it has caused an activity to proceed from a
wait-statement. It follows that there is a one-to-one correspondence
between the setting of an event by the hardware or.:a
signal-statement, and a wait-statement that 'consumes' the event.
This definition of events provides a facility that encourages the
writing of secure, deterministic programs that are easy to
understand.

Binary or multi-valued semaphores for example have not been

provided because these would need different statements from those
defined for handling hardware generated events, and the statements
provided, together with the message mechanism, are sufficient for the
synchronisation requirements.

3.7

Exception Handling

A large number of exception conditions are defined by the Draft

Standard. Most exceptions are fatal and the default action in the
absence of a user-written exception handler is to report the
exception and stop execution of the concurrent activity in which it

<ot
2=
= 3=
= f=

£ E
s E

={0=
=1}=
=19
e =
SR
B
=16<
=17=
-18=
#g=
=
T &
o5k
2o
sotf
=g5=
=Ph=
P
-28-
Sgiges
=gg=
2=
3P
=49=
=3l=
-35-
-36-
=372
-38-
E LR
o=
“41-
4=
=Hgi
=
45~
=Hi=
“h7=
-48-
g
-50-
251=
=59z
-53-
-54-
-55-
B
57
=8
-59-
-60-

e] e

ocecurs. A few exceptions are non fatal; for each of these the Draft
Standard defines a specific recovery action. An example of a non
fatal exception is providing a non-valid numeric string as the
numeric input-reply to an input statement.

The main purpose of exception handling in a real-time BASIC
program is to provide the possibility of recovering from an exception
condition in a user-written handler, and then continuing program
execution, This feature is important for the type of control and
monitoring application envisaged for IRTB, in which the program runs
indefinitely and must be resilient to hardware failures and
exceptions.

Many exception handlers can exist, but only one can be enabled in
each program unit (ie. in each parallel activity and each external
procedure). If an exception handler is enabled then all exceptions,
fatal and non fatal, cause a branch to the first line of the handler.
Within the handler, two functions are available to determine the
cause of the exception: EXTYPE that returns the exception code
number (see Appendix 2) and EXLINE that returns the 1line number of
the statement causing the exception.

There are four ways to leave an exception handler. A CONTINUE
statement returns to the statement following the one that caused the
exception, and is used when recovery action has been taken in the
handler (eg. default values have been supplied after a RECEIVE
statement has timed out). A RETRY statement returns to the beginning
of the statement that caused the exception, and is wused when the
condition causing the exception has been corrected in the handler
(eg. by making the argument of a square-root function call positive
or correcting a file-name string for an OPEN statement). If the END
HANDLER statement is reached, then the default system action is
invoked. Finally, a RESUME statement is provided that can return to
a line-number specified in the enable-handler statement.

Exception handling in BASIC differs from that in Ada where an
exception causes a branch to code at the end of the current block,
and thence to the context of the surrounding outer block. It is not
possible to return directly to the code within the block that caused
the exception. This approach is not appropriate for IRTB because a
parallel section 1is not contained within an outer block - it is an
independent program module that must continue to run normally after
successful recovery from an exception condition.

8 Distributed Systems and Independent Compilation

In this document the term 'distributed systems' means application
configurations comprising multiple processors without shared memory.
If a program is written and compiled as a single unit, the
distributed system requires no change to the language except for
declarations to specify where the activities are to be executed.

If the program is segmented into independently compiled sectionms,
then there must be a global section containing declarations for
message paths connecting message ports in the separately compiled
sections. It is convenient if the global section also contains the
configuration description specifying the distribution of activities
among the processors, and the description of the global shared data.

B 1
=
e 2
gl | 65

=l o
= &

po. *
bt B s
=43z
=1%=
-1l-
-15-
e |
A=
=185
e
e
21
o5
b T s
-2l
25—
=26
i
-28-
20
=80
s
S35
3350
=31
350
-36-
e i
=
-39
Ziig=
4=
~4o-
Zl3=
T
U5
R 1
—l7-
48—
-49-
-50-
-51-
-
=Ba
o
—55-
Ei
s
58
~-59-
~60=

st o) e

Note that the requirement for a global section comes from the
need for independent ~compilation, regardless of whether the
activities run in a distributed or a non-distributed configuration.
The global section does not contain executable code, it comprises a
set of static declarations that are effectively a 'system
description' describing the intercommunication between the
activities.

Appendix 1 gives more details of the extension to distributed
applications and independent compilation.

The Language Definition

4.1 Conventions

The conventions used in the formal definitions in section 5 are
those employed in the relevant ECMA and ANSI standards. The
conventions are explained fully in those documents, but a brief
description of the method of syntax definition is given below.

The syntactic metalanguage used to define the syntax of IRTB is
derived from Backus-Naur Form (BNF). The IRTB syntax is defined by a
series of 'production rules' that define syntactic elements of the
language in terms of other syntactic elements in a hierarchical
manner, until a 'terminal symbol' is reached. A terminal symbol is
typically a single character of the language being defined, ie. IRTB.
Certain special symbols are used whose meaning is defined below:

The symbol = is interpreted as meaning 'is defined as' if only
one definition is given, or 'is defined as either' if there is
more than one definition. In the latter case the symbol / is
interpreted as meaning 'or'.

> is 1like '=' above, but it is used when the production rule
augments another production. It can be read as 'includes'.

? the preceding syntactic element is optionally present.

¥ the preceding syntactic element is optionally present an
arbitrary number of times (including zero times).

(and) are used to group syntactic elements into a single unit.
/ separates alternatives.

Spaces and new lines are used to improve legibility of the
definitions; they have no syntactic significance.

The following example illustrates the use of some of these
symbols:

out-structure-element
(comma out-structure-element)¥
out-structure-element = expression / formal-array

out-structure

This means that an out-structure is a list of out-structure-elements.
If there is more than one item in the list, the items are separated

-40=

Zlp.
23
4l
454
206
T
Zh8-
-49-
=
=
EB2s
253~
£5l.
-55-
E5G-
S57-
<68~
-59-

by

commas.

= . S

Each item can be either an expression or a formal array.

An example of an out structure satisfying this definition is:

A+ 2, B(), C$

The words 'may' and 'shall' have precise meanings in the
definitions.

The

word

Imay|

is used

formal

in a permissive sense to

indicate that a standard-conforming implementation may or may not

provide a

particula

imperative sense to

constructed,

or tha

r feature. The word 'shall' is wused in an
indicate that a program is required to be
t an implementation is required to act as

specified in order to meet the constraints of standard conformance.

4.2

module.

Assumed definiti

ons

The formal definitions in Section 5 concern only the Real-time

similar facilities.
directly or indirectly in section 5 and are
typical BASIC host language definition.

line
line-number
digit
statement

tail
tail-comment
end-of-1line
remark-1line

remark-statement

subscript-part
index

block
for-block
for-body
for-line
next-line
for-statement

control-variable
initial-value
limit

increment
next-statement
procedure-part

The

It is assumed that it is an extension of BASIC as defined in
the ECMA/ANSI Draft Standard or at least that it uses a

'host' with
following definitions are referred to
some examples from a

line-number statement tail

digit digit? digit? digit?

O/ A /E2 43 0/sh o5 =627 /38719
data-statement / def-statement /

dimension-statement / gosub-statement /
goto-statement / if-then-statement /
input-statement / let-statement /
on-goto-statement / print-statement /
randomise-statement / read-statement /
remark-statement / restore~-statement /
return-statement / stop-statement

tail-comment? end-of-line

! remark-string
implementation-defined

line-number

(null-statement / remark-statement)
end-of-1line

= REM remark-string

index (comma index)?
numeric-expression

(1ine / for-block)#*

for-line for-body

block next-line

line-number for-statement taiil
line-number next-statement tail
FOR control-variable equals-sign
initial-value TO limit

(STEP increment)?
simple-numeric-variable
numeric-expression
numeric-expression
numeric-expression

NEXT control-variable
remark-line¥* procedure

s e

- 1= numeric-rep = significand exrad

- 2- significand = integer full-stop? / integer? fraction
- 3- integer = digit digit#

- 4= fraction = full-stop integer

- 5- exrad = E sign? integer

- 6- sign =+ / =

i

=

- 0- A real-time-program is a sequence of lines. Each line contains a
-10- unique line-number which facilitates program editing and serves as a
=-11=- label for the statement contained in that line.

=12=

-13- The values of the integers represented by the line numbers shall
-14- be positive and non-zero, leading zeroes shall have no effect. Lines
=15=~ shall occur in ascending line number order.

-16-

-17- It is assumed that the function TIME$ defined in the Draft
~-18- Standard is available. This function returns a string of the form
-19- "hrs:mins:secs" where hrs, mins and secs are each 2 characters long.
-20- The range of values for hrs is "00" to "23" and for mins and secs is
-21=- "00" to "59%". An example of a value for TIME$ is "17:59:01".

=22=

-23=

-24- 4.3 Conformance

=25~

-26- The Draft Standard gives a set of conformance rules for programs
=27- and implementations. The rules are intended to ensure that a program
-28- conforming to the program conformance rules will produce the same
-29- results on any implementation conforming to the implementation
-30- conformance rules. In the case of IRTB this ideal may not be
-31=- realisable because it is not possible to define the real-time
-32- performance of an implementation and because a real-time-program does
-33- not usually produce 'results' in the sense of a data processing
=34~ program., However, programs written in IRTB and implementations of
-35- IRTB should follow the conformance rules with respect to section 5 of
-36- this document. The conformance rules are as follows.

-37-

-38- A program conforms to the Standard only when

-39-

~40- - the program and each statement or other syntactic element
-41- contained therein is syntactically valid according to the
-42- syntactic rules specified by the Standard, and

=43

-4Y- - the program as a whole violates none of the glcbal constraints
-45- imposed by the Standard on the application of the syntactie
=46~ rules.

“47=

-48- An implementation conforms to the standard only when

=l9=

-50- - it accepts and processes all programs conforming to the
=51~ Standard,

-52-

~53=- - it reports reasons for rejecting any program that does not
-54- conform to the Standard,

-55-

-56- - it interprets errors and exceptional circumstances according to

-57- the specifications of the Standard,

i
e
.
- la

I
e =

302
<33=
EE
~J3E
Sl
—4B=
=
s
-18-

e W

- it interprets the semantics of each statement of a conforming
program according to the specifications in the Standard,

- 1t interprets the semantics of a conforming program as a whole
according to the specifications in the Standard,

- it accepts as input, manipulates and can generate as output
numbers of at 1least the precision and range specified in the
Standard,

- it is accompanied by documentation that describes the actions
taken in regard to features referred to as "implementation-
defined" in the Standard, and

- it 1is accompanied by documentation that describes and
identifies all enhancements to the language defined in the
Standard.

- 1=
.
- g
.

- 6-
P

-10-
W
.
=13
-1l
e
-16=
LR
-18-
=10
-
T
-2
=23
-2l
25—
26—
e
-28-
29
-30-
w3
e
33
.
-35-
-36-
3
-38-
=T
-40-
i
42
i3
il
~45-
T,
T
48—
-49-
-50-
=5%=
-
~53-
54~
B s
-56-

W e

5. Formal Definition of the Real-time Module

The real-time module in this document is part of the proposed
joint ANSI/ECMA/EWICS Standard for BASIC. The language is intended
for use in applications involving control, automation, and
monitoring. It enables a program to be divided into a number of
concurrent single-thread activities which cooperate to achieve the
overall objective of the application.

Facilities are provided to schedule execution of concurrent
activities so that they may respond to both internally and externally
generated events. Communication between concurrent activities is
possible either through the use of shared data or by the transmission
of messages.

An activity can communicate with process objects which are a part
of the external environment of a real-time-program. Typical process
objects are measurement or control points in a plant interface.
Communication between a concurrent activity and a process object is
accomplished by input and output operations accessing the process
object through a process port.

An implementation-defined scheduler shall determine which of
those concurrent activities in progress shall actually be executing.
Implementations may interrupt the execution of a concurrent activity
in order to prevent excessive delays 1in the execution of other
concurrent activities.

Access to files and procedures (external functions, subprograms
and pictures) from different concurrent activities is not
synchronised by the system. Since procedures may be called from more
than one concurrent activity they shall be reentrant.

51 Real-time programs
5.1.1 General Description

A real-time-program is composed of real-time declarations (ecf.
Section 5.2) that describe a process environment, one or more
parallel-sections, and some number of procedures which may be invoked
by these parallel-sections. Each parallel-section is named and is
delimited by the keywords PARACT (PARallel ACTivity) and END PARACT.
Parallel-sections constitute separate program-units and serve to
define concurrent activities.

Execution of a parallel-section is enabled by a
scheduling-statement (cf. Section 5.3) and starts at the first 1line
of the section.

Execution of each statement is completed before execution of the
next statement in sequence in the same parallel-section is started,
except that a statement may be interrupted by the occurrence of a
non-fatal exception which causes a user-defined exception handler to

be invoked which does not, however, handle the exception (see section
6).

B
e Os
535
Sl
S
b
R

~10=
={Ae
~122
3=
e
T
b
A=
- 3BE
<19=
—P0=
P
=05
P8~
-2
25
Pl
27
o=
—5g=
=80=
-3
=
e =
3l
=
~36=
==
38
-39=
-40-
e
~Ho-
433
~4h-
=T
“lib
=i
B8
5.
-50-
-51-
524
—53%
Bl
55
56—
BT
58

10.
115
12.

13a

i s

Syntax

real-time-program = real-time-declarations
parallel-section parallel-section#®
procedure-part#

program-unit > parallel-section

parallel-section = remark-line¥* paract-line

block¥ end-paract-line
line > paract-line / end-paract-line
paract-line = line-number paract-statement tail
paract-statement = PARACT routine-identifier

(URGENCY urgency)?

routine-identifier letter identifier-character#®

urgency = integer

end-paract-line = line-number end-paract-statement
tail

end-paract-statement = END PARACT

statement > real-time-statement

real-time~statement parstop-statement /
scheduling-statement /
process-io-statement /
data-io-statement /
message-io-statement

parstop-statement = PARSTOP

A given routine-identifier shall not occur in more than one

paract-statement in a real-time-program.

Control-statements shall refer only to lines in the

parallel-section in which they occur. Real-time-statements shall
occur only in parallel-sections.

531 .4

Examples -
320 PARACT RIG1

330 WAIT TIME 17%60%60

340 PRINT "TIME TO GO HOME"
350 END PARACT

Semantics

Execution of a parallel-section in a real-time-program shall

constitute a concurrent activity. At any point in the execution of a
real-time-program, a concurrent activity may be in one of the
following states:

- in progress, ie., in the initial state of the concurrent
activity defined by the lexically first parallel-section, or in
the state of a concurrent activity following execution of a
start-statement naming that activity; or

- stopped, ie., not yet in progress, or formerly in progress but
subsequently terminated by execution of a parstop-statement, an
end-paract-statement, or a statement generating a fatal exception
which is not inhibited by the action of an exception handler; or

i
S0
e 25
e

=
-

<10~
e
=10=
=
-1l-
~15-
il
1T
-18-
T
500
.
e
o
-2l
-25-
—26-
BT
-28-
220
=30=
21
20
SR
-3h-
235~
236~
53
358+
539
-40-
1=
“42-
N3
il
-45-
Sl
zhz-
SUB8-
a9
-50-
-51=
S
&5 3w
=5l
-55-
%56
5=

e MR

- waiting, ie., formerly in progress but suspended by execution
of a wait-statement or message-io-statement, until the occurrence
of a specified event, the passing of a specified length of time,
the arrival of a specified time of day or the exchange of
messages.

Several concurrent activities may be in progress at any given time.
Initially the only concurrent activity in progress shall be that
defined by the lexically first parallel-section in the
real-time-program; other concurrent activities shall be placed in
progress only by the execution of start-statements fef. Seetion 5.39u

The urgency of a parallel-section shall indicate to the scheduler
the relative importance of the concurrent activity. A lower value
shall indicate a greater importance. -The precise interpretation of
the urgency shall be implementation-defined.

At the initiation of the execution of a parallel-section the
values of all variables shall be implementation-defined.

Lines in a parallel-section shall be executed in sequential
order, starting at the first line of the parallel-section, until

- some other action is dictated by the execution of a line, or

- an exception occurs, or

- a stop-statement, chain-statement, parstop-statement, or an
end-paract-statement is executed.

Execution of a parstop-statement or of an end-paract-statement
shall terminate execution of the concurrent activity in which it
occurs, -causing that activity to stop until placed in progress again
by another execution of a start-statement. Execution of a
stop-statement or a chain-statement shall terminate execution of the
entire real-time-program. The occurrence of a fatal exception that
is not handled by an exception-handler shall stop the concurrent
activity in which it occurs.

Each parallel section is a distinct entity in that identifiers
used to name variables, arrays, internal functions and exception
handlers shall be local to the section, ie. they shall name different
objects in different parallel sections. Identifiers used to name
supplied functions, parallel sections, procedures defined as program
units, process I1/0 ports, process-port-arrays, message ports and
shared data ports shall be global to the entire real-time program,
ie. they shall name the same object wherever they occur.

5.1.5 Exceptions

None.

5.1.6 Remarks

Execution of a concurrent activity may be interrupted at
implementation-defined times in order to execute other concurrent
activities which are in progress.

el 22
o
TR
Bkt o

=
=

=102
ZAME
=49
. 1=
6
-15-
=16=
Z97=
i
=hg=
SHg=
=5
oo
~23=
ey
=
226-
ST
~HR
=g
=40~
B i
o
Z33.
g
-35-
-36-
o o
-38-
S99
-40-
- e
oo
43~
T
S5
46~
e
48—
=iy
~B0-
=57T=
—Bo
=53
T
55—
-56-
BT
Z58-
-59-
<60

the

5.2

5.2.1

through process ports.
these ports and the attributes

==

Possible interpretations of the urgency of a parallel-section
might be the priority of that section or a deadline for execution of

section.

Real-Time Declarations

General Description

Concurrent activities communicate with the external environment

system attached to these ports.

or passive.
control points
stepping motor controllers
process-objects,

Process port declarations define the names of

of process-objects in a real-time
Process-objects may be either active

Passive process-objects are typically measurement and
in a plant interface, such as temperature sensors or

(ef. section 5.4). Active

or process-events, are typically sources of program

interrupts, such as timers and alarms (cf. section 5.3).

the

ports.
statements sending and

Data ports provide a means of accessing data whose scope is wider
than an individual concurrent activity. A data port declaration
defines the name of a data port and the structure of the data
accessible through it (ef. Section 5.5).

Message ports provide

a means of transferring data between two
concurrent activities; the data transferred does not exist outside
two activities. A message port declaration defines the name of a
message-port and the structure of the data transferred through it. A
message 1is sent when the
concurrent activities, in
receive-statement in the other (cf. Section 5.6).

S
a

ame message-port-name is used in two
send-statement in one and a

Data structure declarations provide a means of specifying the
structure of data transferred through process, data and message

They enable a language processor to check the validity of
receiving data through a port, and they

specify indivisible units of shared data.

5.2.2

o= oVl
L] L ®

(Ve
]

Syntax

real-time-declarations
declaration-line

declaration-statement

data-structure-dec

structure-name
repeat-count
type
dimensioning

bounds

(remark-line / declaration-line)#
line-number declaration-statement
tail

data-structure-dec /
process-dimension-statement /
process-port-dec /

data-port-dec / message-port-dec
STRUCTURE structure-name colon
repeat-count? type

(comma repeat-count? type)#®
letter identifier-character¥
integer OF

(NUMERIC / STRING) dimensioning?
left-parenthesis bounds
right-parenthesis

integer (comma integer)?

T [
P
R
i Y
i i
el
i

s
e
A%
s
bl
—15=
-16-
=4
-18-
10
-20-
s
~PI
-
-2l
"1
-26=
s
-28-
PO
30
<P
2P
Pk
=3
-35-
-36-
=37
—38=
-39-
-40-
e
wliDas
U3
Ul
T
~46-
7=
48~
T
-50-
51~
50
-53-
Kl
~55=
~Ebs
-57-
e
50
Bl

10.

1.
2.
132

14.

155
16.
1=
18.
19.
20.

21
22.

23-
24,

e

process-dimension-statement = PRODIM process-array-dec
(comma process-array-dec)#

process-port-array dimensioning

letter identifier-character®

PROCESS

(process-clause / event-clause)

access-information?

process-clause = io-qualifier (process-port-name /

process-port-array dimensioning)

(OF structure-name)?

INPUT / OUTPUT / OUTIN

letter identifier-character¥*

EVENT event-name

letter identifier-character¥®

string-constant

SHARED data-port-name

dimensioning? OF structure-name

letter identifier-character®

MESSAGE message-port-name

OF structure-name

message-port-name letter identifier-character¥*

line > declaration-line

process-array-dec
process-port-array
process-port-dec

io-qualifier
process-port-name
event-clause
event-name
access-information
data-port-dec

data-port-name
message-port-dec

Any structure-name appearing in a process-clause, data-port-dec

or message-port-dec shall be defined in a data-structure-dec in a
lower-numbered line. The scope of process-port-names, process-port-
arrays, data-port-names and message-port-names shall be all the
parallel sections in a real-time-program; any such identifier shall
be declared in at most one declaration-statement.

for

The value of the integer in a repeat-count shall be greater than
zZero.

For each process-port-array, there shall be a process-port-dec

every element of that array. The elements shall all have the

same io-qualifier and the same data-structure (if any).

The value(s) of the integer(s) in the dimensioning in a

process-array-dec shall be greater than zero. A process-port-array
occurring in a process-port-dec must be declared in a
process-array-dec in a lower numbered line. The dimensioning in a
process-clause shall have the same number of dimensions and take
values between one and the value of the corresponding dimension in
the process-array-dec.

5.2.3 Examples

4.

10.
13

19.

21.

STRUCTURE OPR: STRING, 2 OF NUMERIC, NUMERIC(10)
STRUCTURE A1: 2 OF NUMERIC

STRUCTURE B1: NUMERIC

PRODIM RIG1(3), RIG2(3)

PROCESS INPUT WEIGHT OF A1 "ADCCHAN 3"
PROCESS OUTIN PANEL OF OPR "Q, 177640"
PROCESS INPUT A TIMEOUT 4 "BCD 4"
PROCESS OUTPUT Z1 OF B1

PROCESS OUTIN RIG1(2) "U, 166000"
PROCESS EVENT FULL "INT 36"

SHARED FLIGHT(10) OF OPR

SHARED D OF B1

MESSAGE LINK OF OPR

=i ya
e
B
= e
e -
=
STE

290-
249=
332
243-
-1l-
15
S16-
299
-18-
395~
290=
Zo%=
S0
529
24—
295
56k
227
~28-
=90~
2%0-
39
=30
=33~
=3l
-35-
236
29T
38—
-39-
-40-
1=
e
=
Zili
-45-
6=
.
08
2hg.
-50-
51—
259
-53-
S50
-55-
56—
=57
-58-
-59-
<60~

5.2.4 Semantics

A data-structure-dec shall declare the name of a data structure
for use in process-port-decs, data-port-decs and message-port-decs. A
data structure is an abstract structure (ie. one without any storage
allocated to it) consisting of an ordered list of types which may be
either numeric or string, scalar or array. A repeat-count shall
specify the number of occurrences of the type that follows it.

Each process-array-dec in a process-dimension-statement shall
declare an array of process-ports. The array shall be
one-dimensional or two-dimensional according to whether one or two
integers are specified in the bounds. In addition, the bounds
specify the maximum values of expressions used as subscripts for the
array. The minimum value of an expression used as a subscript for a
process port array shall be one.

A process-port-dec shall define the name of a process port and
the attributes of a process-object in a real-time system attached to
thet port. The bounds following a process-port-array shall be
interpreted as a subscript-part, and the process-port-dec shall
define the attributes of the process-object attached to that element
of the process-port-array.

The presence of a process-clause shall indicate that the
process-object attached to that process port is passive. The
io-qualifier in the process-clause shall indicate the permitted
directions of data transfer through the port: INPUT shall indicate
that the process-cbject provides input only, OUTPUT that it accepts
outpu only, and OUTIN that it supports both input and output.

The validity of in-structures and out-structures in
process-io-statements shall be checked by the language processor by
reference to the structure-name in the corresponding process-clause.
In the absence of a structure-name in the process-clause, the default
data structure shall be a single numeric.

The presence of an event-clause in a process-port-dec shall
declare the named process-object to be active, ie. to be a
process-event. When connected, a process-event shall be capable of
generating events which return concurrent activities waiting for them
to the state of being in progress (cf. Section 5.3).

Access-information for a process port specifies a particular
process-object attached to that port and the format of its data.
Access information for an active process-object typically specifies
the source of a hardware interrupt signalling the occurrence of an
event associated with that object together with information about how
to control the interrupt. The interpretation of the access
information shall be implementation-defined.

A data-port-dec shall define the name of a data port and the
structure of the data accessible through it. If a dimensioning
appears in a data-port-dec, then it shall define an array of
instances of the given structure. The array so defined shall be
either one-dimensional or two-dimensional according to whether one or
two integers are specified in the bounds. If no dimensioning
appears, a single instance of the given structure shall be defined.
Shared data shall be accessible by all concurrent activities (cf.
Section 5.5).

T— >

—

.
-2
-8
-l
= -
e
i

=10=
-11=
=12~
-13=-
<Al
-15=
-16-
-17-
“48=
-19-
=20~
-2 =
=22
~23=
=24
-25-
-26-
=27=
-28-
<29~
=30-
-31=
-32-
=33=
-34-
=35-
-36-
-37-
-38-
-39-
=40~
41
oo
b3
T
=45
=46H=
=47~
B8~
=49~
=50~
-51=
=52
=53~
<5l
=55~
=56~
=57=
256
=50~
-60=-

A message-port-dec

5.2.5 Exceptions

5.2.6 Remarks

Process-port-arrays
objects, ie.

information
process-port may allow the implementation to perform automatic data
scaling or conversion between BCD in a
floating-point internal representation. An
allow names of routines in the
access-information so that special devices can be handled by standard
automatically each time a process-port is
These routines could, for example, handle access via a
a long switching time or handle special Gray code

transformation,
process-object and
implementation

mechanisms
accessed.
multiplexer with

Scheduling

General Description

specified by

wait-statement

Connect-statements

scheduling-statement

start-statement
wait-statement

wait-time
time-expression

= w N

i e

shall define the name of a message port and
the structure of the data transferred through it.

can only be arrays of passive process-
arrays of process-events are not permitted.

in ~ the access-information for a

scheduling requirements for concurrent activities are
execution of start-statements and wait-statements. A
start-statement places a concurrent activity in progress. The actual
execution of concurrent activities which are in progress is scheduled
by the implementation according to the urgency of these activities. A
can be wused to suspend execution of a concurrent
activity for a specified period of time, until a given time, or until
specified event
connected process-objects or
statements.

Events may be generated externally by
internally by execution of signal-

and disconnect-statements referring to events
are used to enable and disable specific event signals from the
external hardware.

start-statement / wait-statement /
signal-statement / connect-statement /
disconnect-statement

START routine-identifier

WAIT (wait-time / wait-interval /
wait-event)

TIME time-expression
numeric-time-expression /
string-time-expression

- 1= 6. numeric-time-expression = numeric-expression

- 2= 7. string-time-expression = string-expression

- 3- 8. wait-interval = DELAY numeric-time-expression

- U= 9. wait-event = EVENT event-name timeout-expression?

- b~ 10. timeout-expression = TIMEOUT numeric-time-expression

- 6- 11. signal-statement = SIGNAL event-name

- 71- 12. connect-statement = CONNECT EVENT event-list

- 8= 13. event-list = event-name (comma event-name)#

- 9- 14. disconnect-statement = DISCONNECT EVENT event-list

- 0=

-11=- An event-name that does not occur in a process-port-dec shall not
-12=- occur in a connect-statement or a disconnect-statement.

=~

-14- An event-name that occurs in a process-port-dec shall not occur
=15=- in a signal-statement.

-16-

-17- A routine-identifier that occurs in a start-statement shall also
-18- occur in some paract-line in the program. An event-name that occurs
=19~ in a wait-statement shall occur in a signal-statement or shall be
-20- declared as a process-event in a process-port-dec.

=2

—pons

-23= 5.3.3 Examples

=2l=

~25- 2. START FILL

~26- 3. WAIT DELAY 1.5%60%60

=27=- WAIT TIME "09:15:00"

=28~ WAIT EVENT READY TIMEOUT 4

-29- WAIT TIME A$

-30- 12. SIGNAL READY

-31- 13. CONNECT EVENT FULL

-32- 15. DISCONNECT EVENT FULL, TOOFUL

-33=

3l

=35= 5.3.4 Semantics

-36-

-37= Execution of a start-statement shall place in progress the
~38- concurrent activity defined by the named parallel-section. Execution
-39~ of a wait-statement shall cause the concurrent activity in which it
=U40=- occurs to be suspended for a specified period of time, until a
-41=- specified time, or until a specified event occurs.

=42~ %

-43- The value of a numeric-time-expression shall be interpreted as
-44- specifying a number of seconds. If the value of the expression is
=45~ not an integer, then the accuracy of the time expression is dependent
=46~ on the resolution of the timer. The value of a string-time-
-47- expression shall conform to the format, range of values and
-48- interpretation of the TIME$ function (ef. section 4.2).

=49~

=50~ If a wait-statement specifies a wait-interval, then the
=51~ concurrent activity shall be suspended for the specified 1length of
=52~ time, being placed in progress again when that time has elapsed. If
-53=- a wait-statement specifies a wait-time with a numeric time-
-54- expression, then the concurrent activity shall be suspended until the
=55~ specified number of seconds have elapsed since the previous midnight,
-56- at which time it shall be placed in progress again. If the number of
=57~ seconds since the previous midnight have already elapsed, then the
-58- concurrent activity shall wait until that time the following day. If
=59~ a wait-statement specifies a wait-time with a string-time-expression,

-60- then the concurrent activity shall be suspended until the specified

S
= 9=
-
el

b
s 9=

Al
S
=g o
oty s
290
L5
-16-
=17=
185
246z
Z20~
=24
Zp2s
2035
Solis
Sp5=
=
Zo75
e
zpg=
236=
pu £ e
z3oz
e -
=aiis
b
zaf=
5a7=
=38
38
=hes
1=
=9
s
“hbs
b=
SHE=
=h7s
48
=Hg=
Z50=
b
=8
53z
Zhil s
-55=
“ERC
-
58—
=59
-60-

ey) e

time of day, at which time it shall be placed in progress again. If
the specified time of day has already passed then the concurrent
activity shall wait until that time the following day.

If a wait-statement specifies a wait-event, then the concurrent
activity shall be suspended until that event occurs, at which time it
shall be placed in progress again (cf. sections 5.2 and 5.0, If a
timeout expression is specified in a wait-event, then an exception
shall occur if the specified event has not occurred within the
specified length of time.

Execution of a signal-statement shall cause the specified event
to occur. Following execution of a signal-statement the concurrent
activity continues to be in progress.

Execution of a connect-statement shall cause the specified
process-event to be connected. A connected process object can cause
events to occur.

Execution of a disconnect-statement shall cause the specified
process-event to be not connected, and shall cause any previous
occurrence of the event not acted upon by a wait-statement to have
not occurred. A process object that is not connected cannot cause
events to occur.

An event that has occurred shall place in progress again a
concurrent activity waiting for the event. If no concurrent activity
is waiting for the event, then the first concurrent activity
subsequently to execute a wait-statement naming that event shall
remain in progress. In either case, the event shall then be deemed
to have not occurred.

If more than one concurrent activity is waiting for the same
event, then which one of those activities that shall be placed in
progress upon occurrence of that event shall be determined by the
underlying system. Only one concurrent activity shall be placed in
progress upon each occurrence of an event.

If a new event is caused by a signal-statement before a previous
occurrence of the same event has been acted upon by a wait-statement,
then that signal-statement shall cause an exception. The events
shall then be deemed to have not occurred.

If a new event is generated by a connected process-object before
a previous event generated by that object has been acted upon by a
wait-statement, then the next wait-statement to be executed that
names that event shall cause an exception. The events shall then be
deemed to have not occurred.

At the initiation of execution of a real-time-program, all events
shall have not occurred, and all process-events shall be not
connected.

5.3.5 Exceptions

A start-statement is executed that specifies a concurrent
activity that is not stopped (fatal).

A signal-statement is executed that specifies an event that has

=
D
e
Bl
=
£
7

“10=
=%
=
BN
= T
-15=-
6
T
-18-
S
oy
S
200
o
-2l
=
o6
o
-28-
g
230
o
280 -
= ==
agh3
a5
-36-
L
28
394
S
St
oo
a3 -
T
Shss
Sl
.
48~
g
-50-
=
52
53
oSl
-55-
256
=

already occurred,

Feoy . #om

but which has not yet caused a waiting concurrent

activity to be placed in progress again (fatal).

exceeds 86400,

The value of a numeric-expression used as a time-expression

(fatal):

previous

the number of seconds in a day, or is less than zero

The value of a string-expression used as a time-expression does
not conform to the format of the TIME$ function (fatal).

The event specified in a wait-statement does not occur within the
period of time specified in a timeout-clause (fatal).

A new event is generated by a connected process-object before a

event generated by the object has resulted in a waiting

concurrent activity being placed in progress again (fatal).

5.3.6

time

is

progress

Remarks

When the system clock requires adjustment, such as for seasonal

changes or to correct for errors, problems can arise with
wait-statements specifying wait-times. 1In particular, if the clock
moved back, any activities that were released from a wait-time
during the previous occurrence of that time should not be put in

again until the following day. Similarly, if the clock is

advanced, activities waiting for a time that is 'passed over' should
be put in progress as if that time had occurred.

5.4

5.4.1

communication paths between

Process Input and Qut

General Description

put

In-statements and out-statements are used to move data over

passive process-objects and a

real-time-program. An in-statement permits external values to be
transferred to program variables, and an out-statement permits the
transfer of values to external process-objects.

5.4.2

Syntax
process-io-statement
in-statement
in-structure
in-structure-element
out-statement
out=-structure

out-structure-element

|

in-statement / out-statement

IN FROM (process-port-name /
process-port-array subscript-part)
TO in-structure timeout-expression?
in-structure-element

(comma in-structure-element)#
variable / formal-array

OUT TO (process-port-name /
process-port-array subscript-part)
FROM out-structure timeout-expresson?
out-structure-element

(comma out-structure-element)#*
expression / formal-array

s
o,
=3
— B
—BE
s iba
i, -

",
==
-12=
-13-
bl
=15=
A5k
<375
-18-
=49
20
2%
TP
282
<ol
~OB
-26-
=27=
D82
-29=
<305
=515
~32=
333
-3l
-35-
~3B
-3
-38-
-39-
~40-
~49=
A
ligs
Il
L5
46—
N7
48~
Sligs
B
5=
-52-
B
<5l
-55-

DGR

Any process-port-name or process-port-array occurring in an
in-statement or out-statement shall be declared in a
process-port-dec.

The number and types of elements within an in-structure or
out-structure shall conform to the data-structure-dec for the
structure specified in the declaration for the corresponding process
port, or to the default if no structure-name occurred in the
process-port-dec.

5.4.3 Examples

2. 1IN FROM WEIGHT TO X, Y

IN FROM PANEL TO A$, B, C, F()

IN FROM RIG1(NEXT) TO ALPHA TIMEOUT 2.5
5. OUT TO Z1 FROM B¥C+X

OUT TO PANEL FROM A$&B$, JIM, FRED, C()

5.4.4 Semantics

Execution of an in-statement shall cause values to Dbe obtained
from the specified process-port and to be assigned to the
corresponding variables and arrays in the in-structure. No
assignment of values from the process-object shall take place until
the values supplied have been validated with respect to the allowable
range for each value and the number of values. If a numeric value
causes an underflow, then its value shall be replaced by zero.
Subscripts in an in-structure shall be evaluated after values have
been assigned to the variables and arrays preceding them (ie. to the
left of them) in the in-structure.

Execution of an in-statement shall be regarded as complete only
when all values have been assigned to the variables and arrays in the
in-structure or when a fatal exception occurs, such as one caused by
incorrect data or a hardware failure, or the number of seconds
specified by the timeout-expression has expired.

Execution of an out-statement shall cause the expressions in the
out-structure to be evaluated and their values, together with the
values of all elements in the specified formal-arrays, toc be
transmitted to the specified process-port.

Execution of an out-statement shall be regarded as complete only
when all values from the out-structure have been validated and
accepted by the process environment or when a fatal exception occurs,
such as one caused by incorrect data or a hardware failure, or the
number of seconds specified by the timeout-expression has expired.

The occurrence of a formal-array in an in-structure or an
out-structure shall cause the contents of the entire array with that
name to be input or output.

o, o
= D=
o
=
Sch=
b
P,

<30~
L
e
wlde
-1l
-15=
16
e
-18-
=10
D[~
7y
05,
<23=
<ol
-25-
o6
-2 T
]
-20=
-30-
=3
—3p=
B
<3l
=35-
2364
3=
—8p=
=30
ZH0=
“41-
17
=i
“Hii-
P
gl
~U7-
-48-
-9
-50-
-51-
.
=53~
Sl
-55-
ZEEC
2T
SEgs
-59-
=

TOLE -,

5.4.5 Exceptions

The assignment of a value to a numeric-variable or numeric-array
in an in-structure causes a numeric overflow (fatal).

The assignment of a value to a string-variable or string-array in
an in-structure causes a string overflow (fatal).

The current sizes of the dimensions of a formal-array used in an
in-structure or an out-structure do not conform to the data-
structure-dec for the structure specified in the declaration for the
indicated process-port (fatal).

Execution of an in-statement or an out-statement has not been
completed before the timeout given by the timeout-expression has
expired (fatal).

A subscript for a process port is not within the range specified

by the process-array-dec (fatal).
5.4.6 Remarks

Implementation-defined exception conditions may exist. These are
mainly concerned with the characteristics of particular
process-objects.

Validation of data obtained from process-objects as required by
section 5.4.4 may be subject to implementation-defined limitations.

For example, corruption of a string datum may be inherently
undetectable.

5455 Shared Data

5.5.1 General Description
Get-statements and put-statements are used to transmit data
between concurrent activities and collections of shared data. The
data are transmitted through data ports.

5.5.2 Syntax

1. data-io-statement
2. put-statement

put-statement / get-statement

PUT TO data-port-name subscript-part?
FROM out-structure

3. get-statement = GET FROM data-port-name subscript-part?
TO in-structure

Any data-port-name occurring in a put-statement or get-statement
shall be declared in a data-port-dec. A subscript-part shall follow
the data-port-name if and only if a dimensioning occurs in the
data-port-dec for that data-port-name; in that case, the number of
subscripts in the subscript-part shall equal the number of dimensions
specified by the dimensioning. The number and types of elements
within an in-structure or cut-structure shall conform to the
data-structure-dec for the structure specified in the data-port-dec
for the data-port-name.

A

38
<30=
-40-
-1
e
<72
-4l
~U45-
~146-
il
-
-49-
=50=
—Bfe
-52-
B3
.
-55-
<55
a5 T
BB
-59-
~60=

Sy e

5.5.3 Examples

2. PUT TO FLIGHT(N+1) FROM I$, N, 2, P()
3. GET FROM D TO E

5.5.4 Semantics

Execution of a put-statement shall cause the expressions in the
out-structure to be evaluated and their values, together with the
values of all elements in the specified formal-arrays, to be
transmitted to the appropriate collection of the shared data.

Execution of a get-statement shall cause the variables and arrays
in the in-structure to be assigned values from the appropriate
collection of shared data. No assignment of values shall take place
until all values have been validated with respect to the allowable
range of each value, and the number of values. Subscripts in an
in-structure shall be evaluated after values have been assigned to
the variables and arrays preceding them (ie. to the left of them) in
the in-structure.

Execution of a put-statement or a get-statement shall be regarded
as complete when all values have been verified and transmitted, or
when a fatal exception has occurred. No other concurrent activity
shall access the specified collection of shared data until execution
of a get-statement or put-statement is complete.

5.5.5 Exceptions

The assignment of a value to a numeric-variable or numeric-array
in an in-structure causes a numeric overflow (fatal).

The assignment of a value to a string-variable or string-array in
an in-structure causes a string overflow (fatal).

The current sizes of the dimensions of a formal-array used in an
in-structure or an out-structure do not conform to the data-
structure-dec for the structure specified in the declaration for the
indicated process-port (fatal).

A subscript for a data-port is not within the range specified by
the data-port-dec (fatal).

5.5.6 Remarks

None.

5.6 Message Passing

5.6.1 General Description

Send-statements and receive-statements are used to transmit data
between concurrent activities. The data are conveyed over message
paths which connect a message output port in a send-statement in one

S

- 1= concurrent activity to a message input port in a receive-statement in
- 2~ another.

- 2,

- k- A message path is established at run-time implicitly by the use
- 5= of the same message port name in two concurrent activities, in a
- 6- send-statement in one and in a receive-statement in the other.

=5 7L

- B

- 9- 5.6.2 Syntax

0=

-11=- 1. message-io-statement = send-statement / receive-statement
-12- 2. send-statement = SEND TO message-port-name

=13~ FROM out-structure timeout-expression?
-14- 3. receive-statement = RECEIVE FROM message-port-name

-15- TO in-structure timeout-expression?
-16-

-17- The number and types of elements in the out-structure in a
-18- send-statement shall match the number and types of elements in the
=19~ in-structure in any receive-statement specifying the same
=20- message-port-name; in addition, they shall conform to the
-21- data-structure-dec for the structure specified in the
=22~ messsage-port-dec for that message-port-name.

w2

-24- A parallel-section shall not contain both a send-statement and a
-25=- receive-statement specifying the same message-port-name.

=26=

DT

-28- 5.6.3 Examples

=20

-30- 2. SEND TO LINK FROM "FIRST", X/2, 17.35, RESULTS()

-31- 3. RECEIVE FROM LINK TO A$, P(1), P(2), I() TIMEOUT 30

e 2

-33-

-34- 5.6.4 Semantics

=35~

-36- A message port in one concurrent activity shall be connected to a
=37= message port 1in another concurrent activity by the execution of a
-38- send-statement or a receive-statement in the one concurrent activity
-39- using the given message-port-name and the subsequent execution in the
=40~ other concurrent activity of a receive-statement or a send-statement
=41- using the same message-port-name.

=l2=

-43- Execution of a send-statement or a receive-statement shall not be
-4~ complete until the specified message port has been connected as a
=45~ result of executing a corresponding receive-statement or
-46- send-statement in another concurrent activity, or an exception
-47- ocecurs.

=48

-49- When such a connection has been made, the expressions in the
=50~ out-structure in the send-statement shall be evaluated, and their
=51~ values, together with the values of all arrays in the out-structure,
=52~ shall be assigned to the variables and arrays in the in-structure in
-53- the corresponding receive-statement.

—5l-

-55= Subscripts in an in-structure shall be evaluated after values
-56- have been assigned to the variables and arrays preceding them (ie. to

=57=- the left of them) in the in-structure.

=T
T
i3
s
s
il
<

SN
Y=
12
213~
-1l-
153
-16-
S P
-18-
S19-
20—
2%
290
393
2ol
-25-
—26-
Za7
528
S50
=30~
2%
=32
-33-
=32
235
-36-
297~
-38-
=
-40-
= ¢
4o
43+
hjl-
sl
2h6.
=N7-
-48-
-l49-
250
S5
559
253
.
-55-

e e

If a timeout is specified in a send-statement or a receive-
statement, then an exception shall occur if no connection 1is made
within the specified length of time.

If a send-statement times out then its message is no longer
available for a receive-statement.

If a send-statement 1is executed and more than one other
concurrent-activity is waiting to receive a message through a message

port with the same name, then which one of those activities that
receives the message shall be determined by the underlying system.

5.6.5 Exceptions
The current sizes of the dimensions of an array used in an
in-structure in a receive-statement do not match those of the
corresponding array in the out-structure in a send-statement (fatal).
Execution of a send-statement or receive-statement has not been
completed before the time specified in a timeout has expired (fatal).

5.6.6 Remarks

None.

5:T Bit Patterns and Operations

5.7.1 General Description
Bit patterns are a common means of coding information in process
control systems. Within a program, they are represented by strings of
characters. Operations on bit patterns may be performed by the
string operations of concatenation and substring extraction.
Functions are provided for conversion between strings and numeric
values.
5.7.2 Syntax
1. string-supplied-function > BSTR$
2. numeric-supplied-function > BVAL

5.7.3 Examples

None

s 1 el

- 1- 5.7.4 Semantics

==

- 3- The values of the supplied functions, as well as the number and
- 4 types of their arguments, shall be as described below. B$ represents
- 5= a string expression, V represents an 1index and R represents an
- 6- integer constant whose value is 2, 8 or 16.

- 7=

- 8- FUNCTION VALUE

<3305

-10=- BVAL(B$, R) The non-negative integer whose string represent-
-11- ation is given by the string B$. R is the radix
-12- of the string representation of the value, eg:
-13= BYAL(™IOTY, " 2) =5

gy, e BVAL("2F", 16) = 47

-15- BSTR$(V, R) The string representation of the value of V,
-16- using radix R. Unless a fatal exception occurs,
-17- BSTR$ shall always return at least one character.
-18- In particular, the value of BSTR$ when V is zero
-19- is "O", eg:

-20- BSTR$(3.14, 2) = myqn

-21=- BSTR$(15, 8) = Wupn

Zop=

-23- The permissible characters that may appear in the string B$
-24- depends on the value of R. If R is 2 the valid set is the digits O
=25- and 1. If R is 8 the valid set is the digits 0 to 7. If R is 16 the
-26- valid set is the digits 0 to 9 and the upper-case letters A to F.

il e

-28-

=29~ 5.7.5 Exceptions

-30-

-31- The value of the string argument of BVAL is not a valid
-32- representation of a number in radix R (fatal).

G - s

=34~ The numeric interpretation of the value of the string argument of
~35- BVAL cannot be represented within the limits of the precision of
-36- numeric variables (fatal).

“3T=

-38- The numeric interpretation of the value of the string argument of
-39- BVAL exceeds the largest number representable (fatal).

=40~

-41- The value of the first argument of BSTR$ is negative (fatal).
2=

=43 The value of the second argument of BVAL or BSTR$ is not 2, 8 or
=44~ 16 (fatal).

-45-

46—

-47- 5.7.6 Remarks

-8~

-49- Typical uses for bit patterns are the manipulation of status
=50~ registers, or of data from process objects in which individual bits

=51~ represent specific objects such as switches or indicators.

= R 2

- 1= 6. Exception Handling

= P

- 3- 6.1 General Description

& =

- b= Exception handling facilities provide a means of regaining
- 6= control of a program after an exception has occurred.

=

= B=

- 9= 6.2 Syntax

=10=

-11- 1. exception-handler = handler-line block®

-12- end-handler-line

-13- 2. handler-line = line-number HANDLER

-1l4= handler-name tail

=15~ 3. handler-name = routine-identifier

-16- 4, end-handler-line = line-number END HANDLER tail
=17~ 5. exit-handler-statement = RESUME / RETRY / CONTINUE
-18- 6. enable-handler-statement = ENABLE HANDLER handler-name

-19- (comma RESUME AT line-number)?

=20~ 7. disable-handler-statement = DISABLE HANDLER

-21= 8. cause-statement = CAUSE exception-type

-22- 9. exception-type = index

-23- 10. numeric-supplied-function > EXLINE / EXTYPE

=3z

~25- A handler-name that occurs in an enable-handler-statement shall
-26- occur in some handler-line in the same program-unit. A given
-27- handler-name shall ocecur in at most one handler-line in a
-28- program-unit.

=9g=

-30-~ Exception-handlers shall not be nested within other
=31- exception-handlers or within def-blocks that do not constitute a
-32- program-unit.

-33-

~34- Exit-handler-statements shall occur only within exception-
-35- handlers. The supplied-functions EXLINE and EXTYPE shall be invoked
-36- only within exception-handlers.

=37

-38- A control-statement shall not transfer control to a line within
-39- an exception-handler from outside the exception handler (other than
=40~ to the first as the result of an exception), nor to a line outside an
-41- exception handler from a line within it.

=42

=g

4l 6.3 Examples

-45-

-46- Example 1: handling errors in input-replies by allowing the
=47~ input-reply to be resupplied after issuing a suitable message

48~

-49- 110 ENABLE HANDLER EXP1

=50~ 120 PRINT '"Enter your age and weight";

=51- 130 INPUT AGE, WEIGHT

=52~ 140 IF AGE > 10 THEN

=53~ 150 PRINT "What is your height in meters";

-54- 160 INPUT HEIGHT

=55- 170 END IF

Bl

300 HANDLER EXP1

310 PRINT "Please enter numbers only!®
320 RETRY

330 END HANDLER

Example 2: handling numeric overflows in a subprogram by setting
a status return and exiting from the subprogram (other exceptions are
handled by the default procedures)

100 SUB STATS (A(), M, S)
110 ENABLE HANDLER OFLO, RESUME AT 900
120 LET S=0

800 HANDLER OFLO

810 IF EXTYPE = 1001 THEN
820 EEBE S= 1

830 RESUME

840 END IF

850 END HANDLER

900 END SUB

Example 3: handling a variety of exceptions arising in a single
computation

100 ENABLE HANDLER OOPS
110 LET X = LOG(VAL(A$))
120 DISABLE HANDLER

800 HANDLER OOPS

810 SELECT EXTYPE

820 CASE 400: ! A$ not numeric

830 CALL FIX(A$)

840 RETRY

850 CASE 3004 ! Bad argument for LOG
860 LET X1 = VAL(A$)

870 IF X1 = 0 THEN

880 LET X = =INF

890 ELSE

900 LET X = LOG(-X1)

910 END IF

920 CONTINUE

930 CASE ELSE

940 REM Allow system to handle the exception
950 END SELECT

960 END HANDLER

6.4 Semantics

Execution of an enable-handler-statement shall enable the named
exception-handler to process exceptions that subsequently arise
during execution of the program-unit. At most one exception-handler
shall be enabled at a time in a program-unit. If an
enable-handler-statement 1is executed while an exception-handler is
enabled, the currently enabled exception-handler shall be disabled
and the named exception-handler enabled.

e
<36

~38
<80~
-40-
1=
i
TS
T
T
-46-
47—
wh8
=
-50-
=5 f e
w5
-53-
2Bk
-55=

Execution of a disable-handler-statement shall disable the
currently enabled exception-handler, if any such exception-handler
exists.

When an exception occurs during the execution of a program-unit,
the action taken shall depend upon whether an exception-handler is
currently enabled in that program-unit. If no exception-handler is
enabled, then the default exception-handling procedures specified in
this Standard shall be applied. If an exception-handler is enabled,
then the default exception-handling procedures, which require that
the exception be reported, shall not be applied; instead, the enabled
exception-handler shall be executed.

Within an exception-handler, the type of the exception that
caused that handler to be executed shall be obtainable as the value
of the parameterless function EXTYPE. The values of EXTYPE for all
exceptions defined in this Standard are specified in Appendix 2. The
line-number of the line whose execution caused the exception shall be
obtainable as the value of the parameterless function EXLINE.

There are four means of exiting from an exception-handler.
Execution of the exit-handler-statement CONTINUE shall cause
execution to resume with the statement following the one that caused
the exception. Execution of the exit-handler-statement RETRY shall
result in the re-execution of the statement that caused the
exception; if that statement was an input-statement, then the
previous input-reply shall be discarded and a new one requested.
Execution of the exit-handler-statement RESUME shall cause execution
to resume at the 1line whose 1line-number was specified in the
last-executed enable-handler-statement; if no line-number was
specified in that statement, then execution shall resume at the line
following the one that caused the exception. Execution of the
end-handler-statement shall cause the exception to be handled by the
default exception-handling procedures.

Execution of a cause-statement shall result in the occurrence of
an exception of the specified type.

If an exception occurs during the execution of an
exception-handler then that exception shall be handled by the default
exception-handling procedures.

If a fatal exception occurs in a procedure that is a separate
program-unit and no exception-handler is enabled there, or if the
end-handler-statement is executed in the exception-handler invoked by
that exception, then a fatal exception shall occur at the 1line that
invoked the procedure. Such exceptions shall continue to occur until
an invocation of a program-unit with an enabled exception-handler or
the main-program is reached. If an exception-handler is invoked in
this process, then the value returned by the EXTYPE function shall be
100000 plus the value that would have been supplied for EXTYPE in the
program-unit in which the exception occurred. If the main-program is
reached and no exception-handler is enabled there, then the exception
shall be handled by the default exception-handling procedures
specified in this Standard.

- 1= Lines in an exception-handler shall not be executed unless that
- 2- handler is enabled and an exception occurs. If execution reaches the
- 3= first line of an exception-handler in some other fashon, then it
- 4= shall proceed to the line following the end-handler-line with no
- 5= other effect.

=

iz

- 8- 6.5 Exceptions

- G

-10- An exception occurs during execution of an exception handler
-11- (fatal).

—12-

-

-14- 6.6 Remarks

2152

-16- The function EXLINE should be used with caution, as the use of
=17- editing facilities that renumber lines in a program may invalidate
-18- computations involving EXLINE. For example, the program fragment
==

=20~ 1000 SELECT CASE INT(EXLINE/100)

-21- 1010 CASE 1, 2

00 -

-23- =

-24- 1100 CASE 3 TO 7

-25- x

-26-

=27~ would probably behave differently if 1lines 100 to 800 were
-28- renumbered.

420

-30- All positive values of EXTYPE are reserved for future versions of
-31=- this Standard. Exceptions defined by local enhancements to this
-32- Standard should be identified by negative values for EXTYPE,
-33- following the categories established in Appendix 2. The value
-34- returned by EXTYPE for an exception defined in a local enhancement
=35- and occurring in a subprogram should be -100000 plus the negative
-36- value identifying the exception. For example, if an implementation
-37- chose an EXTYPE value of -4029 for an invalid parameter in a new
-38- built-in function, and if that exception occurred in a subprogram,
-39- but was not handled there, then the value of EXTYPE in an
-40-~ exception-handler in a calling program should be -104029.

=41=-

=42~ It is recommended that implementations use the "zeroeth" value in
-43- a class of EXTYPE values to represent "other exceptions of this
=4l type". For example an EXTYPE value of 1000 might represent all

=45~ overflows not defined in this Standard.

B

References

American National Standard for Minimal BASIC (1978) ANSI X3.60
ISO Minimal BASIC 1980 DIS 6376

ECMA-55 Minimal BASIC 1978

Hoare CAR Communicating Sequential Processes
CACM 1978 Vol. 21 No. 8 pp. 666-677

Reference Manual for the Ada Programming Language
United States Department of Defense July 1980

Hoare CAR Monitors: an Operating Systems Structuring
Concept. Comm. ACM Vol. 17 No. 10 Oct. 1974, pp 549-557

-
-0
S
- T

il
-

<30
<=
0=
=g
-1l-
=16
<16
= -
-18-
=19-
S0
S
PP
-23-
2l
<95~
-26-
e
28—
e
0=
STy
3=
288~
Sl
=35~
.
e =
-38-
=30
G-
-41-
S
Sl
Yl
=45-
e
.
48—
=hgs
-50-
-51-
5D
-53-
<5l
-55-
-56-
.
-58-
=50
-60-

D e

Appendix 1. Distributed Systems and Independent Compilation

This Appendix is extracted from a EWICS TC2 working paper. It
describes the current ideas on how to implement large or distributed:
systems. This Appendix does not form part of the proposed Standard.
However, it is intended eventually to publish a supplement to the
Standard defining an extension of IRTB for use 1in distributed
applications.

INTRODUCTION

The Draft Standard for IRTB is oriented towards application
configurations with common memory accessed by one or more processors,
and for which the program is compiled as a unit. This Appendix
describes an extension for wuse with application configurations
comprising multiple processors without shared memory, or for large
application programs for which it is desirable to divide the program
into a number of separately compiled segments.

For independent compilation the problem is to define paths
between ports that are used in different program units. The solution
is to introduce a global declaration unit whose scope is all the
programs relating to a particular application.

For distributed systems a facility must be provided for
allocating activities and shared data sections to the various
processors. When a program is divided into independently compiled
units, it is convenient for these allocations to be defined in the
global declaration unit.

The global declaration unit does not contain executable
statements; its purpose is to define the structure of the
application. The global unit has two parts: An intercommunication
part, that declares message paths between message ports and the
visibility of shared data sections to shared-data ports, and a
configuration part that declares the allocation of activities to
processors and the association of physical process objects to
specific process I1/0 ports.

Since message paths and shared-data access paths are declared
outside the coding of the parallel sections, it is no longer
necessary for connecting ports to have the same name. The modularity
of the program is improved by allowing a parallel section to wuse
local names for all its ports. An activity can then be reused or
redistributed without changing its code.

The following paragraphs describe the global declaration unit and
its relation to message ports, data ports and process ports in
independently compiled programs. An implementation could use this
information for compiler directives, as a command input to a
preprocessor, or as a sort of JCL. (Job Control Language) for the
language processor. An alternative implementation would be to
compile the declarations into tables that reside in computer memory
and are used to resolve the 1linkages at program execution time,
thereby allowing dynamic reconfiguration of the system while the
program is running.

=¥
= Ik
==
At

oy =
i

i
e
=1
=19=
-1l-
-15-
<16
G
kB
<=9=
P
..
PPk
<23
2l
26
26—
=P27=
28—
<205
<30
=3
&3P
<33k
~glie
<354
-36-
=87+
<38
=39-
<lio=
s
“42-
i3
iljes
sy
il
=l7=
48~
49~
-50-
S5
<50 =
-53-

RS o

DATA STRUCTURES

Data structure declarations are necessary to allow the language
processor to check the consistency of connected message ports, and to
define the shared data. The declarations are as defined in section
5.3-

MESSAGE PATHS

The attributes of a message path are the names of the
communicating activities, the local message-port names in each, the
direction of data transfer, and the structure of the data. The
syntax of a message path declaration is as follows:

1. message-path-dec = MESSAGE FROM section-name
message-port-name TO section-name
message-port-name

eg:

STRUCTURE REALS: 2 OF NUMERIC
MESSAGE FROM ALPHA MIX TO BETA NEXT OF REALS

The processor in which each activity runs is determined Dby
configuration declarations (see below).

SHARED DATA

The declaration of data that is accessible to more than one
concurrent activity is syntactically identical to the declaration of
a data port defined in section 5.3. In addition the capability of
mapping data ports onto the system shared-data is defined:

1. data-mapping-dec = ASSIGN section-name data-port-name
limits? TO shared-data-name limits?
left-parenthesis lower-bound colon
upper-bound (comma lower-bound colon
upper-bound) ? right parenthesis
integer-constant

integer-constant

2. limits

3. lower-=bound
4. upper-bound

The integer-constant representing the lower-bound and upper-bound
shall be unsigned. The upper-bound shall be 1larger than the
lower-bound.

As an example of this feature consider a number of similar input
processors with essentially the same program, which are collecting
status information that must be available to a supervisor activity.
The code for each input processor should not depend on which section
of the system data it is supplying. Suppose ALPHA, BETA and GAMMA
each supply 10 structures to a section of shared data 50 structures

= A
= g
zogs
= Ba

= Gz
= =

=40
=i=
AP
=18
-1l-
=15=
e
7=
-18-
<19z
=30
==
=99 =
e
-2l
-25-
-26-
B
-28-
=90
-30-
#31s
32
533
Al
-35-
-36-
-
e =
=30
A
==
o=
<ligs
4l
-U45-
N6
7=
<48s
=49~
-
-51-
<59
-53=-
54—
-55-

e g0

long called CHAN. Appropriate statements could be:

STRUCTURE BLOCK: 2 OF STRING, 4 OF NUMERIC
SHARED CHAN(49) OF BLOCK
ASSIGN ALPHA MON(0:9) TO CHAN(0:9)
ASSIGN BETA MON(0:9) TO CHAN(10:19)
ASSIGN GAMMA MON(0:9) TO CHAN(20:29)
ASSIGN SUP MON(0:49) TO CHAN(O:49)

where MON is the name of a shared-data port in each of the
activities.

simple data items may be mapped onto simple data items or array
elements, and vectors may be mapped onto sections of vectors or
matrices. An alternative to the above- example could be:

SHARED CHAN (9,4)
ASSIGN ALPHA MON(0:9) TO CHAN(0:9, 0:0)
ASSIGN BETA MON(0:9) TO CHAN(0:9, 1:1)
ASSIGN GAMMA MON(0:9) TO CHAN(0:9, 2:2)
ASSIGN SUP MON(0:49) TO CHAN (0:9, 0:14)

ALLOCATION OF ACTIVITIES TO PROCESSORS

Process peripherals are associated with a processor rather than
with the activities currently running in it. To permit a real-time
program to be independent of processor configurations, process type
declarations are defined for use in the coding of the activities.
Process paths and the mapping of process ports onto process paths are
defined in the global declaration unit.

process-type~dec
allocation-section
processor-block

PROCESS qualifier process-port-name
processor-block¥

PROCESSOR processor-name processor-type
file-block#*

. L]

. file-block file-name activity-block®
activity-block ACTIVITY activity-list use-=block
. use-block (use-statement / process-mapping-dec)#®

use-statement
process-mapping-dec

USE string-expression

ASSIGN process-port-name TO
process-path (comma process-port-name
TO process-path)#*

(ol B e N0) I — wnN =
L]

Process type declarations are used instead of process-port-decs in
real-time-programs.

Processor-name, processor-type and file-name are implementation-
defined. Activity-list is a list of parallel section names. The
string-expression in the use-statement identifies a file containing
process-port-decs.

Assignments need not be made if the same names are used for
process ports in the activities and process paths in the global
declaration unit.

-t
25
38
= T

—Ff=
% =

L
=
=% -
Ags
-14-
5=
i96=
ii9-

T .

Examples of these statements are:

PROCESSOR MONITOR LSI11
FILE MONIP
ACTIVITY ALPHA, BETA, GAMMA
USE PRODEC
ASSIGN FAIL TO LAMP1, TEMP TO THERM
FILE MONOP
ACTIVITY LOG
PROCESSOR DISPLAY APPLE

where PRODEC is the name of the file containing the process-port-decs
for the processor MONITOR; FAIL and TEMP are the names of process
ports in the activities ALPHA, BETA and GAMMA; and LAMP1 and THERM
are the names of process-paths declared in the file PRODEC.

il
- D=
A s
ol

b
TP

~10=
=T1=
=42
e
~JBs
-15-
~16=
AT
-18-
-19-
205
o =
=922
223
ol
~pBe
-26-
=27-
28
=295
30
=33
-32=
<333
Y
-35-
-36-
3%
-38-
-39
-40-
1=
“42-
gz
e
=lBL
46
s
=48~
e
-50-
=51=
<l

A

APPENDIX 2. Exception Codes

The following lists the values of the EXTYPE function
corresponding to the exceptions specified in this document. The
numbers in parentheses following each exception refer to the section
in which that exception is specified. All these exceptions are
fatal.

OVERFLOW __ 1000

1008 Overflow in numeric value for process input (5.4).
1009 Overflow in numeric value from shared data (5.5).
1055 Overflow in string value for process input (5.4).
1056 Overflow in string value from shared data (5.5).

SUBSCRIPT ERRORS ___ 2000
2001 Subsecript out of bounds (5.4, 5.5).
PARAMETER ERRORS 4000

4201 String argument of BVAL is not a valid string in radix R (5.7).
4202 Numeric interpretation of the string argument of BVAL
cannot be represented withi the precision limits (5.7).
4203 Numeric interpretation of the string argument of BVAL
exceeds the largest number representable (5.7).
4204 The first argument of BSTR$ is negative (5.7).
4205 The second argument of BVAL or BSTR$ is not 2, 8 to 16 (5.7).

MATRIX ERRORS 6000

6301 Mismatched dimensions for array in real-time structure
(5.4’ 5.5, 506).

INPUT/OUTPUT ERRORS 8000

8105 Timeout during a process input or output operation (5.4).
8106 Timeout during a message send or receive operation (5.6).

REAL-TIME ERRORS 12000

12001 Attempt to start an activity that is not stopped (5.2).

12002 Attempt to signal an event that has occurred, and has not
yet restarted a waiting activity (5.2). :

12003 Event reoccurs before it restarts a waiting activity (5.2).

12004 Illegal numeric value specified for time-expression (5.2).

12005 Illegal string value specified for time-expression (5.2).

12006 An event does not occur within the specified timeout
interval (5.2).

S
Dz
= 3=
e
= B
b
il

=10
==
5
=12
14
A5
Sqe
= e
=18
—10-
=20
P
Do
73
=
-25—
-26-
<27=
-28-
20,
=50
).
=32~
-3
=31
35
-36-
«37=
—
~39.
Lo
Nta
42—
1
i
= E
“hE.
W=
48~
49~
“Eg-
5=
=50
-53-

= AD

APPENDIX 3. Implementation-defined features
A number of features referred to in this Standard have been left
for definition by the implementor. The way these features are
implemented shall be defined in the user or system manual for the
implementation.
The following is a list of the implementation-defined features:
SECTION 5.1
Scheduling of parallel-sections.
Interpretation of the urgency of parallel-sections.
Where execution of a parallel-section can be interrupted.
Values of variables at the initiation of a parallel section.

SECTION 5.2

Which of several activities waiting for an event is restarted.

SECTION 5.3
Interpretation of the access-information for a process-port-dec.

SECTION 5.6
Which of several activities waiting to receive the same message
shall actually receive it when the corresponding send-statement

is executed.
GENERAL

It should be noted that implementation-defined features may cause
a program to behave differently on different implementations, for the

following and possibly for other reasons:

- The logical flow of a program may be affected by the algorithm
used for the pseudo-random number sequence,

- The 1logical flow of a program may be affected by the value of
machine infinitesimal and/or the value of machine infinity,

- The initial value of variables may affect the logical flow of a
program that contains logical errors,

- The 1logical flow of a program may be affected by the order of
evaluation of numeric-expressions,

- The behaviour of a program may be affected by the strategy of
the implementation-defined scheduler.

A L

—
o5 i Lixz
b el
Pl e oSt eia i Gl
P &L SR e :
s ; i s)
\ : £ : el

