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Abstract. In this paper1, we propose a simple method to introduce a-priori
information in position estimation for mobile ad hoc and sensor networks, in
order to improve the estimation accuracy. The a-priori information is derived
from the movement of the mobile node with respect to the position of fixed
anchor nodes, and it is exploited to perform Bayesian estimation procedure.
Numerical simulation results corroborate the effectiveness of the proposed
technique, which outperforms the maximum likelihood one.

Keywords: Bayesian localization, mobile ad hoc networks, mobile sensor
networks.

1 Introduction

The knowledge of node’s position in large ad hoc wireless networks is considered as a
primary need for the implementation of new context-aware applications, but also to
improve the performance of routing and coordination functions in the network. It has
been shown that geographic information can significantly improve the performance of
wireless ad hoc and sensor networks, and a plenty of location-based routing
algorithms have been developed for such networks ([A02],[CCL03]). In addition, for
large sensor networks, location information is essential for intelligent coordination
and data collection [A02]. GPS and similar systems can provide location information,
but they rely on existent infrastructures and need special hardware, which is not
always available at all nodes. Moreover, GPS system needs that at least three satellites
must be visible by the receiver, which is often unavailable in presence of buildings in
urban areas, and is impracticable in indoor application scenarios. Finally, absolute
position is not always necessary to support the network, and relative local coordinates
are sufficient in many situations; this is the case, for example, of position-based
routing algorithms for ad hoc and sensor networks [CCL03].

1 This work is partially supported by National project Wireless 8O2.16 Multi-antenna mEsh
Networks (WOMEN) under grant number 2005093248.
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For such reasons, many researchers have proposed GPS-free positioning systems for
WLAN networks [F05] and wireless ad hoc and sensor networks [Pa05]; they are all
based on measuring some quantities related to node position, such as power, delay, or
angle of arrival of the received signals from some stationary nodes with known
coordinates. By using these measurements, these systems find out an estimation of
node positions, via triangulation or other mechanisms. However, all these
measurements are affected by noise and distortions due to both channel condition and
environment characteristics. Statistical approach offers a unifying theoretical
framework for location estimation in wireless networks [P03]. By using a statistical
characterization of the noise and a radio propagation model, this method permits to
take into account the different nature of noise and distortion on the measurements, for
the particular application and environment. Moreover, the lack of quality in
measurements encourages the use of a-priori information in the estimation procedure,
in order to improve the accuracy of the positioning; such a-priori information can be
easily deduced by previsions about the most likely future positions, in case of moving
nodes. In this paper, we propose a simple method which exploits a-priori information
in statistical-based location estimation for mobile ad hoc and sensor networks, in
order to improve the estimation accuracy of positioning. The a-priori information is
derived from knowledge about the movement of the mobile node with respect to the
position of some fixed anchor nodes, and it is exploited in a Bayesian [K93]
estimation procedure. In few words, we try to infer the trajectory of the node,
exploiting its movement information to improve the position estimate accuracy.
The paper is organized as follows: in Section 2 we briefly present a background and
related work on the problem, in Section 3 the statistical approach for location
estimation is summarized, Section 4 describes the proposed bayesian positioning
technique, in Section 5 some simulated results are presented. Finally, conclusions are
drawn at the end of the paper.

2 Background and related work

Our approach aims to allow a node of wireless ad hoc and sensor networks to estimate
its trajectory by itself, without any network support, by simply exchanging
electromagnetic signals with some neighboring nodes, configuring a self-tracking
mechanism; this is essential for the self-configuration capability requirements of such
kind of networks. In particular, we consider a general model of ad hoc or sensor
network, where both fixed and mobile nodes are present; we refer to the fixed nodes
as Anchor Nodes (ANs), and suppose that their positions are known (by GPS
equipment or manually positioning), whereas the other ones are Mobile Nodes (MNs),
and have to localize themselves by exchanging signals with neighboring ANs. This is
a particular case in a general class of estimation problems regarding self-configuration
in wireless networks, where a small fraction of nodes in the network have known
location, while the remaining ones must be positioned [P03]; in our case, the
difference is that the unknown-position nodes are also mobile. This configuration
corresponds to the case of particular applications of self-configuring networks, such
as that for traffic monitoring, or for locating emergency and security workers.
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Recently, there has been a lot of work on the problem of self-localization for ad hoc
and sensor networks; in [Pa05] there is an exhaustive review of recently proposed
techniques. However, most of them consider the case of static nodes, and, in case of
mobility, do not consider the possibility of enhance the performance trying to estimate
the trajectory of the node. More recently, some works have faced the problem, by
resorting to the Bayesian approach. The idea of tracking mobile objects using
Bayesian approach has been first exploited in other research fields, as for example, in
robotics, and only recently in wireless node’s positioning [Mo06]. In [Ar02] there is a
review of methods for Bayesian tracking; in particular, in the general framework, the
problem consists of the estimation of the a-posteriori distribution of the node’s
location after movement and observations; therefore, the estimation of the a-priori
distribution is only a part of the problem. The optimal solution to this problem is not
easy to determine, and it is impossible to evaluate the distribution analytically [Ar02],
unless both the measurements and the trajectory admit Gaussian model (Kalman
Filtering, [Ar02]). In practical cases, the trajectory is not really Gaussian-like, and
other approximated approaches have been investigated, such as grid-based Markov
model method, and Particle filtering [Ar02]. The first method requires significant
memory and computational burden, whereas the second one reduces the complexity
of the problem, but still remaining more costly respect to Kalman filtering. In
particular, grid representation has been used efficiently for indoor WLAN network-
based positioning [Mo05], whereas Particle filtering has been experimented for
wireless sensor networks [Mo06]; however, in [Mo06] an off-line calibration to
estimate the likelihood function is used, which is not fully compatible with ad hoc and
sensor networks.
Respect to previous work, in this paper we propose an extension of the statistical
approach already proposed, for example in [P03], in order to include information
about the movement and improve the performance of the positioning, by resorting to a
Bayesian formulation. Through the estimation of an opportune a-priori distribution,
our method is more general then the Kalman Filter, but, avoiding any discrete
representation of the space, would be less complex than other approaches based on
grid-based Markov and Particle filtering methods, and, therefore, better suited for our
case, that is networks without infrastructure.

3 The Statistical Approach for Location estimation

In this section, the statistical approach for location estimation is outlined. In our
scenario, according to [P03], we consider the simple case of one node with unknown
position, and a number of ANs with known positions, although, in practice, in ad hoc
scenarios there are different nodes with unknown positions, that try to infer their
positions in a cooperative manner. The node attempts to estimate its location by
measuring the Received Signal Strengths (RSSs), or Time Of Arrivals (ToAs), or
some other parameter, from ANs belonging to its transmission range. For most of
these kinds of measurements, the statistical description is well known and has been
characterized on experimental test-beds [P03]. Let us denote with fl (m | z, ) the
likelihood function [K93] of the random multivariate m modelling any kind of N
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measurements available at the mobile node (in general referred to as N different ANs).
Here z is the node position (i.e., z (x,y), with x and y node coordinates on a relative or
absolute Cartesian system); is a vector of parameters characterizing the environment
and the accuracy of measurements (for example, in case of RSS measurements,
=( dB , np), with dB the standard deviation of the noise, and np the path-loss
exponent [P03]). The likelihood function relates the measurements to the node actual
position, and can be used to locate the node, by resorting to Maximum Likelihood
Estimation (MLE) criterion [K93]. In particular, let us denote with z(t=t0)=z0=(x0, y0)
the first position (i.e., at instant t0) of the mobile node, with N the set of ANs present
in its transmission range, and, finally, with qj the position of the j-th AN, (j N).
According to this notation, the Maximum Likelihood Estimation (MLE) of node
position is the result of the following maximization:

0ˆ argmax | ,l
z

z f zm (1)

where, in this case, m={ mj, j N } is the vector of measurements related to the signals
received by the ANs in the set N. The solution of the maximization (1) is generally
found out by numerical algorithms; when some general conditions are satisfied, the
solution of (1) is unique [P03], and only suffers from estimation inaccuracy due to
noise presence and, eventually, multi-path propagation effects. The theoretic MLE
performance limit is expressed by Cramer Rao Lower Bound, and has been evaluated
and discussed in [P03] for such problem.
In order to improve the accuracy of the position estimation, an high number of
measurements should be available, that is an high number of ANs in the
communication range of the mobile node should be present. This is not likely to be, in
a sensor as well as ad hoc network with few GPS equipped nodes. Therefore, we
propose a simple method both to improve the position estimation accuracy, and to
reduce the probability of obtain “false positives” due to bad measurement’s condition,
for example in case of absence of line of sight (LOS) component in the measured
signal. This method exploits estimates of previous positions of the node as a-priori
information by means of a bayesian statistical estimation procedure. More
specifically, the position estimation technique is synthesized by resorting to the
Maximum A-Posteriori (MAP) criterion [K93]. The general expression of a MAP
estimator of position at instant t0 is:

0
0ˆ argmax | ,l Z

z
z f z f zm (2)

where fZ0(z) is the probability density function (pdf) of the node position at instant t0,
also known as a-priori distribution. Here the problem is the accurate estimation of
this distribution, with as lower as possible complexity to be added on the node; this
estimation can be realized by observing the previous positions of the node and making
previsions on next position. Although this is similar to what is done in grid-based
Markov and particle filtering approaches [Ar02], we aim to exploit this idea with a
simpler and lower computational cost method, in order to be better suited for
infrastructure-less networks. In the next section we introduce a procedure, based on a
simple mobility model, to estimate effectively the a-priori node position distribution.
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Using this estimated distribution in the formula (2), we get the proposed Bayesian
position estimator.

4 The Proposed Estimator of the A-priori Position Information

In order to estimate the a-priori distribution of the node position, we consider a
statistical model for the node mobility enough simple to avoid a significant increase
of the complexity and memory requirements on the node. Specifically, we use a
mobility model for the node, which is based on Markovian property. According to
such a model, the present node position, given the previous positions in the trajectory,
is statistically related only to the two previous positions. This assumption allows one
to strongly bound computational complexity of the estimation technique. The mobility
model is a simplified version of the Probabilistic Random Walk model adopted in
[CBD02], where the node moves along straight lines and randomly changes its
direction of movement, following a Markov model with a given probability transition
matrix. According to such a model, trajectories where the node makes changes of
direction of 360° have null probability, and, in general, the probability that the node
continues to follow the same direction is higher than the probability that the node
changes direction. In our model we require that a node perform a simple operation: it
has simply to state if it is presently moving toward a particular AN, or is moving far
apart from it. Therefore, according to such a model, we describe the node movement
as a simple Markov process with only two possible states (Fig.1). In the state 0, the
node is moving toward a particular direction which gets the node closer to the AN,
whereas in the state 1 the node is moving toward a particular direction which gets the
node far apart from that particular AN. Assuming p0 > p1, the model privileges the
continuity of the movement; in fact, if the node is moving in a particular direction
which reduces (or increases) the distance from the AN, it is more likely that it
continues to approach (or to depart) the AN. Following such a model, the state can be
singled out simply by the knowledge of last two positions of the node. When the
present node’s state is known, it is possible to perform a prediction of its next position
based on the model of Fig.1.

Fig. 1.Markov model of node movement

State 1 State 0

p1

p1

p0 p0
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In order to clarify the above model, let us introduce a simple example: consider a
square domain, in which a node is moving in a particular direction, and one AN (here
denoted as node j) is located at the upper left corner (see Fig.2).

j

b

Region Rc j

a

j

b

Region Rc j

a

Fig. 2. Region of continuity of the movement

Assume that the node is moving from the right (position a) toward the left (position
b); in this case, the node is moving along a direction which takes it closer to the AN.
The only information that the node has to elaborate is if it is getting closer or farther
from the AN, without measuring any direction or angle of movement. Then, what the
node can simply state is the region where the node will be in the future (at the next
measurement point), with higher probability. In the Fig.2, this region is referred to as
Rc j (region of continuity of the movement respect to jth AN).
Now, let us formally introduce our approach to estimate the a-priori statistical
distribution. We underline that this probability distribution function is not stationary
because its estimate is based on the two previous node positions, (z-1, z-2), which, of
coarse, are time-dependent. In particular, according to the assumed mobility model
and the above considerations, p0 is the probability that the position of the node at
instant t0, z0, falls in the region of continuity Rc j (see again Fig.2), given the last two
positions (z-1, z-2) and the position qj of the AN j. As a consequence, we can affirm
that:
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where j
cR is the complement region of Rc j in the considered domain.

On this basis, we can formulate the following probability density function for the
node position z0 at instant t0:

0

0

1

0 1

j
c

Z j
c

j j
c c

p
z R

kf z
p z R
k

k p A R p A R

(4)

where k is the normalizing constant, A(Rc j) is the area of the region of continuity and,
of course, A( j

cR ) is the area of its complement. The pdf in (4) can be modified if we
take into account that the node velocity is bounded; in particular, we suppose to
known the maximum velocity vmax of the node. As a consequence, we can modify the
function in (4) as follows:

0

0

1

0 1

0

j
c

j
cZ

j j
c c

p
z R C

k
pf z z R C
k

z C R

k p A R C p A R C

(5)

where C is the circle centred in the last node position z-1 with radius equal to vmax· t,
where t is the sampling interval used by the node to localize itself. This modification
realizes a twofold goal: it further reduces the probability of false solutions, and it
lowers the complexity of the minimization in (2), reducing the size of the domain over
which minimizes the MAP function. In Fig.2, the circular region C is represented.
Now, in the case of presence of more than one AN in the communication range of the
node, we can deduce a more accurate pdf for the node position. For example, in case
of 2 ANs (j and k), assuming statistical independence between the observations,
equation (3), we can now partition the domain C in 4 regions, and assign the
following probabilities:
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Therefore, similarly to the equation (5), we can obtain a more accurate a-priori
statistical model:
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z R C

(7)

where k’ is the normalizing constant. With such pdf of the node position, we can
finally formulate the position estimation problem as a Maximum A Posteriori (MAP)
criterion, using equation (2).
In few words, following the Bayesian rule in the MAP formulation, the positions of
node falling in the intersection of the continuity regions of all the ANs are encouraged,
in the estimation procedure.
In the next section, we simulate a simple scenario and propose some examples to
compare the performance of the proposed method with those of the MLE one.

5 Numerical Results

To show the effectiveness of proposed technique, we present the results of some
simulation experiments of tracking estimation, performed on a Matlab platform2; we
refer to a scenario similar to [P03], using exactly the same parameters for
measurements and test-bed characterization. In particular, we suppose that the nodes
are able to measure TOA of signals received from the other nodes. TOA
measurements are the best candidate for future UWB-based wireless sensor networks,
because, by exploiting the large bandwidth of UWB technology, they dramatically

2 We wish to thank Ing. I.Capasso for its precious collaboration in programming the
simulations.
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improve the resolution in positioning [Ge05]. RSS measurements, which are generally
the most inaccurate ones [P03] but are largely utilised since their implementations are
the cheapest, can also be considered. We plan to consider RSS for next
experimentations of our approach, but in this paper we only present results using
TOA method.
As regards the statistical characterization, we assume that the measurements are
described by the Additive White Gaussian Noise (AWGN) model, whose variance
depends on the sensor characterization [P03]. More specifically, m={ mj= j, j N } are
the delay measurements from the ANs in the range of the node, and are modelled as a
sequence of i.i.d. random variables with Gaussian distribution, that is j ~ N(dj/c, 2),
where c is the propagation speed, dj is the distance between the node and the AN j,
and 2 is the variance of measurement noise.
Now, consider a simple domain of 10 meters x 10 meters, in which a node is moving,
and a total number of 4 ANs placed in the corners of the square domain. Consider that
the node is moving with a constant velocity (1 m/s) on a straight line, and that it tries
to estimate its own position measuring the TOA of signals received from each AN
every t=1 second, for a total of M points trajectory. Moreover, as experimented in
[P03], we set =6.1×10-9 sec, and, as in [CBD02], we have adopted p0=0.7.
As regarding the estimation of the a-priori distribution in (7), the node evaluate the
region of continuity Rc j with respect to each of its ANs by observing its two previous
estimated positions, and, of course, this is possible starting from the third node
position estimation in the trajectory; for the estimation of its first two positions, the
node resorts to the MLE method.
Let us now present some simple examples of trajectory estimation. In the first
example (Fig.3 l-r), a node is moving on a straight line, and does not change its
direction during the movement; the second example (Fig.4 l-r) represents the same
situation, but with a different angle of the trajectory, and then a different orientation
respect to the ANs. In both cases, the MAP estimator (right) outperforms the ML
estimator (left), reducing the mean square error on the position estimation3; in
particular, for the case of Fig.3, ez= 0.175 m2 in the ML case and ez= 0.0608 m2 in the
MAP case, for the case of Fig.4, ez = 0.2090 m2 in the ML case and ez = 0.1194 m2 in
the MAP case. In the final example, we consider a different trajectory, where the node
suddenly change its direction; again, the MAP method works better (ez = 0.1924 m2 in
the ML case and ez = 0.1741 m2 in the MAP case), and the model is able to follow the
change of direction, even though this change is considered less probable in the
Markov model of the node movement we have used.

6 Conclusions

In this paper, we have shown that, introducing a-priori information in position
estimation, it is possible to improve the accuracy of self-positioning for mobile ad hoc
and sensor networks. In particular, some simple examples have shown that the
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proposed method improves the accuracy of self-localization, performed by a mobile
node which exploits measurements of signals exchanged with some fixed ANs.
Moreover, the method is simpler than other approaches that try to estimate the
trajectory of mobile nodes in infrastructured networks.
However, some aspects have to be more extensively investigated; for example, the
effect of the number of available ANs and their positions on the a-priori distribution
estimation accuracy, the opportunity of make use of a longer memory in trajectory
estimation, the use of an adaptive setting of the probability parameter p0.
Moreover, the method has to be more extensively tested in other situations, using for
example simpler measurement methods such as RSS, in different environment
conditions, and finally using experimental test beds.
Our approach in estimating the node movement resembles what the quantized RSS
(QRSS) and proximity methods do to perform the estimation of the node position
[PH03]. In such methods, the nodes use only one information bit (proximity) or few
information bits (QRSS) to estimate its position; specifically, it has shown that K-
level QRSS can perform approximately as well as RSS for even low values of K,
whereas proximity method works worse than RSS, but in both cases complexity and
cost are much lower. For future works, we plan to couple such methods with our a-
priori position estimator, in order to realize an effective and low complexity method
for trajectory estimation in ad hoc and sensor networks applications.
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Fig. 3. Trajectory estimation, MLE (left-l), MAP (right-r); Crosses: true trajectory, Circle:
estimation, Squares: ANs positions.
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Fig. 4. Trajectory estimation, MLE (left-l), MAP (right-r) ; Crosses: true trajectory, Circle:
estimation, Squares: ANs positions
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Fig. 5. Trajectory estimation, MLE (left-l), MAP (right-r) ; Crosses: true trajectory, Circle:
estimation, Squares: ANs positions
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