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Abstract—This paper presents an GPU accelerated version
of the tsunami simulation EasyWave. Using two different GPU
generations (Nvidia Tesla and Fermi) different optimization
techniques were applied to the application following the principle
of locality. Their performance impact was analyzed for both
hardware generations. The Fermi GPU not only has more
cores, but also possesses a L2 cache shared by all streaming
multiprocessors. It is revealed that even the most tuned code on
the Tesla does not reach the performance of the unoptimized code
on the Fermi GPU. Further, a comparison between CUDA and
OpenACC shows that the platform independent approach does
not reach the speed of the native CUDA code. A deeper analysis
shows that memory access patterns have a critical impact on the
compute kernels’ performance, although this seems to be caused
by the compiler in use.

I. INTRODUCTION AND MOTIVATION

Within the EU-co-funded project Collaborative, Complex
and Critical Decision-Support in Evolving Crises Project
(TRIDEC) an early warning system for tsunamis is developed
[1]. In case of a seismic event, the warning center has to
evaluate the probability, the dimension and the locality of a
potential tsunami based on the gathered sensor data. One of
the core components of TRIDEC is the simulation EasyWave.
It uses the sensor data as well as topology and bathymetric
information and computes characteristics of the tsunami, e.g.
the wave heights and coastal impact times in the affected
regions.[2] A visualization of EasyWave’s output is shown in
Figure 1.

As computational time is a critical aspect in its use-case,
EasyWave should execute as fast as possible. Modern GPUs
offer capabilities to solve massively parallel problems in short
times. Further, they are achievable and can be easily integrated
within the compute server of the Early Warning System.
Therefore, GPUs have been chosen as target platform for the
parallel version.[1]

For the parallelization of EasyWave, there were differ-
ent programming models available. Since our test systems
were equipped with NVIDIA cards, a native CUDA [4] im-
plementation was one option. Another choice was the use
of OpenCL [5] or OpenACC [6]. While CUDA is tied to
NVIDIA’s GPUs, the OpenCL standard addresses different
vendors and hardware platforms (GPUs, CPUs, Clusters etc.).
Further the OpenACC standard resembles the OpenMP ap-
proach for shared memory programming: With few to no

Figure 1. Visualization of the Honshu Tsunami in March 2011 showing the
heights and propagation of the tsunami wave. [3]

changes in the original source, compiler directives gives hints
on the automatic translation of the sequential source code in
a parallel version for the according hardware architecture. In
case of OpenACC, the target platform are hardware accelera-
tors like GPUs.

A comparison of the effort-performance ratio of OpenCL
and OpenACC for two real-world applications was given
in [7]. The authors conclude from their experiments that
OpenACC offers a promising ratio of development effort to
performance. The experiments were done on a NVIDIA Tesla
C2015 with an early OpenACC implementation by Cray. The
OpenACC implementation shows 80 % resp. 40 % of the
OpenCL performance, depending on the application.

Since a native CUDA implementation should result in the
best performance, we decided to use CUDA in the first step.
In the following, the CUDA version of EasyWave was tuned
using different techniques to exploit the capabilities of the
GPU hardware. Since those optimizations tend to be hardware
specific, the expected improvements on the performance was
verified on different GPU hardware available in the two
participating research institutes.

On one hand, these optimizations have improved the
speedup of the application, but on the other hand they were
time-consuming and needed knowledge about the underlying
hardware. Additionally, they are likely to be specific to a
certain generation of the compute hardware. This requirement
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makes it difficult for a non-expert programmer to easily write
efficient code. This gave us motivation to implement also a
parallel GPU version based on OpenACC which allows to
mark code to be offloaded to accelerator hardware, e.g. GPUs.

The remainder of the paper is organized as follows: Section
II and III give an overview over the sequential version of
EasyWave and the experimental environment. In the following
section, the design of the CUDA implementation is presented
and different performance optimizations are discussed. Section
V presents the OpenACC variant of the accelerated Tsunami
simulation, followed by the conclusion.

II. TSUNAMI SIMULATION EASYWAVE

A. Sequential Version

The sequential version EasyWave [8] is written in C++ and
uses a grid that represents the geographical area potentially
affected by a tsunami. In most cases, the grid uses two
dimensions with a granularity of two arc minutes. Usual
scenarios of real-world incidents simulated with EasyWave
have dimensions of about 2800 × 1800 grid points. For each
grid point, the current and maximum wave height as well as
physical water fluxes are stored in separated single precision
floating point arrays. The pointers to these arrays are organized
in another array leading to an array of pointers.

Due to the time-critical aspects of the simulation, simplified
computational means like linear approximations are used [9].
Further, the physical aspects of wave propagation allow the
usage of a window that restricts the computation: Only grid
points within the window have to be computed. At the end of
a single time step, i.e. after computing wave heights and fluxes
for all points within the window, the borders of the window
are analyzed to determine the need for an expansion of the
window, which would be extended dynamically in that case.
It has to be noted that data dependencies exist between the
computation of fluxes and wave heights.

Within the window, the update of the wave height is done
with a three-point stencil computation. It uses the upper and
the left neighbor of the current cell as well as the current cell
itself (TLC-stencil). Similar, the update of the fluxes in each
grid point is done with a three-point stencil as well, but uses
the right and the lower neighbor (BRC-stencil). In any case
the update is done by iterating over the horizontal lines of the
grid. Thus, the accesses to the array elements are ideal for the
CPU’s caches.

B. Simulation Scenarios

The experimental data used in this paper is from the
earth quake in Begkulu, Sumatra, on September 12, 2007.
The dataset has a grid size of 2851 × 1801, leading to a
memory usage of 233 MB. The simulated time equals 10 hours,
requiring 7200 time steps, i.e. 5 seconds per time step. The
experiments described in the paper were also conducted with
three other datasets having different sizes and geographical
data, but led to the same performance results.

III. HARDWARE ENVIRONMENT

The hardware used for tuning and analyzing the program
is presented in Table I. The GPU cards have different CUDA

Property System A System B
GPU product name Tesla C1060 Tesla C2075
HW Architecture Tesla Fermi
Compute Capability 1.3 2.0
Multi Processors (SM) 30 14
Cores per SM 8 32
Cores (total) 240 448
Global Memory 4096 MB 5375 MB (ECC)
Caches none L1 per SM, L2 for all SM
Driver version 304.88 310.32
CPU Intel Xeon E5520 Intel Xeon E5-1603
Cores 4 Cores, 1 Socket 4 Cores, 1 Socket
Frequency 2.27 GHz 2.8 GHz
Main Memory 24 GB 8 GB
Table I. SPECIFICATION OF THE EXPERIMENTAL HARDWARE

ENVIRONMENT.

compute capabilities and a different total number of cores
whereas System A with a Tesla C1060 possesses only about
the half of compute cores as System B having a Tesla C2075.
The architectural difference between the GPUs is illustrated
in Figure 2: The Tesla C2075 includes caches which were
introduced with compute capability 2.0 respectively the Fermi
hardware architecture. In detail, the C2075 possesses a 768 KB
unified L2 cache that is shared by all streaming multiprocessors
(SM) and individual L1 caches for the SMs of configurable
size. In the presented experiments a cache size of 48 KB was
used.

On the software side, we used the CUDA 5.0 toolkit to
compile the CUDA based version. The C++ compiler for
the CPU code was g++ from the GNU Compiler Collection
version 4.6. For OpenACC, the PGI Compiler version 13.6 has
been used. Although alternatives from the academic [10] as
well as the industry supported open source community [11]
are available, the commercial product was chosen as we
expected increased quality of the compiled code from a vendor
collaborating with the hardware manufacture.1 Moreover, the
OpenACC branch of the GCC seems still to be experimental
and did not work in our setup.
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Figure 2. Overview of the memory hierarchy and GPUs used in this paper.
Gray/dotted components are only available on the Fermi based Tesla C2075
device.

IV. CUDA IMPLEMENTATION

The sequential version of EasyWave was ported to the
GPU using CUDA first. The implementation was incrementally
optimized. After each optimization step, the improvement
on the performance of the application was analyzed. In the
following sections, the optimizations are discussed in detail.

1PGI was acquired by NVIDIA during the progress of the work presented
in this paper.
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A. Algorithmic Changes

1) Grid Point Update on GPU: According to the program-
ming model of the GPU hardware, the sequential algorithm
using nested loops (see Section II) had to be rewritten follow-
ing the SIMD resp. SIMT paradigm. Thus, for the EasyWave
port each GPU thread computes the physical properties of
a single grid point. To ensure completion of the individual
computational steps, computing the wave heights, fluxes, and
the decision to expand the window is done in separated kernels.

This straightforward parallelization already delivered a
substantial speedup of the application: The sequential version
requires 348 seconds on the CPU of System A, respectively
305 seconds on System B’s CPU. On the according GPUs the
runtime is reduced to 162 seconds (Tesla C1060) and 28,4
seconds (Tesla C2075). This equals a speedup of 2.15 for the
Tesla-based card, whereas the Fermi achieves a speedup of
10.7.

2) Parallel Window Extension: In the parallel version de-
scribed above, the extension of the computational window is
carried out by a single GPU thread. This can be parallelized
as follows: The threads test in parallel if the threshold of the
boundary cells residing in their computational window has
been reached. For synchronization atomic instructions are used
to store a boolean (non-zero) value that signals the extension
of a window boundary. If an extension is necessary, this step
is performed on the GPU by a single thread.

Compared to the GPU port of the main loop, the paral-
lelized window extension reduces the runtime on the C1060
to 142 seconds, thus improving the performance by 13 %. The
improvement is even more significant on the C2075 where
the speed is enhanced by 46 % leading to a runtime of 15,3
seconds.

B. Hardware-specific Optimizations

Further performance improvements can be achieved by
adapting the code to the architectural demands of the GPUs.

1) Memory Alignment: One of the most common tuning
steps is to ensure the alignment of the memory used for the
computation. Therefore, the memory used for the computation
was allocated using cudaMallocPitch/cudaMemcpy2D
to enable the hardware to optimize the memory accesses.

This modification resulted in a 4 % lower runtime for the
C1060 card, and in negligible improvement for the C2075. The
reason for this behaviour may be the additional computation
for adjusting the boundaries of the computed window to the
aligned memory addresses. Again, the use of CPU caches
makes software improvements unnecessary.

2) Call by Value: A further enhancement was achieved
by changing the way the arguments are passed to the kernel
functions. Originally, the main array containing the pointers
to the data arrays (see Section II) was passed directly to the
GPU. When referencing an element in an data array, two
accesses to the GPU memory where required: first, picking
the element from the pointer array that contained the pointer
to the data array. Then the required data element was accessed.
This access pattern did not involve performance issues on the
CPU as the cache would hold the values of the pointer array

after an access. As the Tesla generation of Nvidia GPUs do
not provide caches, the double memory access slows down the
computation. Moreover, the parallel read on the pointer array
is serialized by the GPU hardware and results in additional
performance loss. This applies as well to variables that are
constant during the execution of a kernel, like the current
boundaries of the compute window.

To avoid these issues, all data arrays were passed directly
to the kernel as pointer (in contrast to a pointer to a pointer
array). Compared to the aligned memory optimization, the
runtime of computation could be reduced by further 41% on
the Tesla C1060. On the other hand, for the Fermi-based C2075
a relatively small improvement of about 6 % could be observed.
As this card provides caches, the optimization does not come
as much into effect as on the cache-less C1060.

3) Shared Memory: As the global memory containing the
important computational data is the slowest memory type
available on the GPU, avoiding accesses is likely to increase
the speed of the computation. This is especially true for
the stencil computations that are used by EasyWave and are
memory-bound. Since the Tesla-generation cards do not have
caches, using the Shared Memory of the Multiprocessors is
often suggested as software-managed substitute. This common
optimization technique was applied for both cards: Before run-
ning the computation, the area computed by a multiprocessor is
loaded into its shared memory. When computation is finished
on this scratch pad memory the computed values are stored
back.

Running the kernel using shared memory significantly im-
proves the performance on the Tesla-architecture card (C1060).
Compared to the call by value version, the runtime is reduced
to 55 %. In total, this leads to a runtime that is only about a
fifth of the naı̈ve port that transferred the core computation to
the GPU (see Section IV-A). In contrast, when using shared
memory on the Fermi-based C2075, the runtime increases
compared to call by value version of the application. This can
be accounted to the additional computational effort to copy
data in and out of the shared memory emulating the cache’s
functionality, which is already present in the hardware.

C. Comparison

When comparing the performance of all optimization ver-
sions on both GPUs (see Figure 3), it is obvious that the
optimizations done on the older Tesla C1060 card improve
the performance significantly. Although, much effort and
knowledge of the underlying hardware is required by the
application programmer to achieve this speedup. Moreover,
some well-known and often suggested tuning approaches, such
as ensuring memory alignment, did not have the large impact
as expected. Compared with changing the parameter passing
method, the effort-benefit ratio of the latter seems to be better,
nevertheless the gain in performance is surprising.

Comparing the performance of the algorithm between both
cards, the most optimized version on the old-generation card
gets very close to the performance of the Fermi-Card running
the application with only the algorithm adjusted to the GPU’s
architecture (see Section IV-A). Concerning productivity, it is
therefore reasonable to acquire hardware based on recent hard-
ware architecture. Moreover, certain optimization techniques
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Figure 3. Runtime comparison of the discussed optimizations on both GPUs

leading to large performance gains on old hardware seem to
provide low benefits on modern GPUs.

V. OPENACC IMPLEMENTATION

As intended by OpenACC, no changes in EasyWave’s
original sequential code, i.e. the loops performing the com-
putation, were committed. OpenACC directives were added
to ensure that data arrays reside in the GPU’s memory and
transfers between GPU and CPU are reduced to a minimum. To
parallelize the code, the sequential for-loops were decorated
with directives to convert the loops into kernels running on
the GPU, i.e. kernels and loop. In total, this led to
21 additional lines of compiler directives compared to the
sequential program having 462 lines of code. In comparison,
248 additional lines were required for the most tuned CUDA
version of the application.

The OpenACC code was compiled for the different com-
pute capabilities of the two GPUs using the PGI compiler
version 13.6. On the Tesla C1060 a disappointing speedup of
1.15 compared to the sequential CPU version was achieved.
Similar, on the system containing the Tesla C2075 the speedup
was at 2.67 which is also much less than the native CUDA
version discussed in Section IV-A1 achieved (speedup of 2.15
resp. 10.7).

A deeper analysis revealed that the parallelized loops
exhibit different performance compared to the native and
optimized CUDA version. The update of the wave height,
which uses a TLC-stencil (see Section II) performs worse
compared to both CUDA versions on both GPUs. In contrast,
the OpenACC version of the flux update, that uses a BRC-
stencil, outperforms the optimized CUDA code on the Tesla
C2075, whereas it reaches similar performance on the C1060
as shown in Figure 4. We assume this as a compiler issue as
the structure of of the functions is very similar and only differs
in the memory access pattern. This problem has already been
discussed with the vendor’s support, but is still in discussion
at the time of writing.

VI. CONCLUSION

This paper presents performance results of different parallel
versions of the Tsunami simulation EasyWave. While the
native CUDA version achieves a speedup of 10.7 on a Tesla
C2075, the speedup of the OpenACC version was only 2.67
compared the sequential CPU version.
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Figure 4. Performance of OpenACC compiled code for the loops performing
the wave height update using TLC-stencil (top) and the flux update using
BRC-stencil (bottom).

Further, it was shown that recent hardware has a positive
effect on the computational speed when a program is directly
programmed for CUDA. This is especially true if the source
code is not tuned manually to exploit the features of the hard-
ware but is only programmed following the SIMD paradigm
of GPUs. In contrast, it is necessary for a programmer to be
much more aware of hardware details to gain a significant
performance improvement on old hardware. Thus, the usage of
recent hardware can unburden a non-expert programmer from
the task of tuning their specific application to the hardware.

Even more, from a (scientific) application programmer’s
perspective, the usage of Open-ACC seems to be promising
as very few code changes are required to enable support
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for accelerators. It was further shown that compute kernels
differing only in the memory access pattern can result in very
different performance when using OpenACC. This emphasizes
the crucial role of compiler support for the OpenACC standard.
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