
and actors, e.g. from the identification unit or to the stopper. In general, each node in the
network is responsible for its local environment. The control software for the whole mate-
rial flow system is spread over the nodes and they have to coordinate themselves among
each other, to perform the correct task.

The complex tasks of such a system require an efficient way of developing the control soft-
ware. One of the main problems in todays manufacturing industries is long down times of
assembly lines resulting from long testing phases during the installation of the new soft-
ware on the new hardware. Thus, one wants to validate the specified software beforehand
in order to shorten software re-configuration down times of physical assembly lines. In
most cases, the verification of the complete system is not possible. The usability of sym-
bolic model checkers for example is not feasible for such complex systems due to the state
explosion problem. Hence, simulation environments are employed to validate the system
by checking the most important scenarios.

This paper originates from the ISILEIT1 project which was funded by the German Nation-
al Science Foundation (DFG). This project aims at the development of a seamless meth-
odology for the integrated design, analysis and validation of distributed production control
systems. For this purpose, we have developed a methodology which is a combination of
parts of SDL and UML [KNNZ00].

In the following chapter 2, we introduce the architecture of our simulation environment.
Chapter 3 describes our running example on which chapter 4 presents the validation op-
portunities of our environment. We introduce a process-oriented hardware simulation ker-
nel to get a realistic simulation. The kernel is presented in chapter 5. The paper closes with
related work, conclusions and future work.

1 “Integrative Spezifikation von Leitsystemen der flexibel automatisierten Fertigung”
(see http://www.upb.de/cs/isileit for further information)

Figure 1 Schematic overview of a material flow system

http://www.upb.de/cs/isileit

2 The Simulation Environment Architecture

Figure2 shows the simulation environment part of our Fujaba1 environment. In
[KNNZ00] we have proposed a modelling approach, supported by Fujaba, for the specifi-
cation of material flow systems. We propose to start with a so-called topology diagram.
Such diagrams represent the ‘hardware’ configuration of the reference system, e.g. which
tracks are connected to each other, and where sensors and actors are placed at the tracks.
The topology diagram parameterizes the simulation kernel2 with the current topology so
that the kernel can determine the elements of the material flow system as well as its layout.
The kernel executes the simulation model for the considered material flow system.

The control software itself is specified by UML class diagrams and so-called story dia-
grams provided by the Fujaba environment. In addition, Fujaba is able to generate execut-
able Java source code from a specification. For more details we refer to [FNTZ98,
KNNZ00, NZ99]. To observe the running system, we developed the Dynamic Object
Browsing system (Dobs) which displays the internal object structure of the Java virtual
machine. This includes the control software and the simulation kernel. Thus, one gets an
overview of the production sequences which arise by the software controlling the simula-
tion kernel.3 Since in a real manufacturing system a working plan defines which work piec-
es have to be produced, we integrated the possibility to define production schedules in Do-
bs.

1 From UML to Java And Back Again (seehttp://www.fujaba.de for further information)
2 “A simulation kernel is a program, which provides the modelled world with its elements. It manages the auto-
matic, chronological creation of the events, which are necessary for the correct mapping of a process sequence
in the model.” [Translated from VDI 3633]
3 Of course, in a real manufacturing system, a working plan defines which work pieces have to be produced.
Hence, we integrated the possibility to define production schedules in Dobs.

Dobs
Control software

Java Virtual Machine

ReflectionLibrary

ReflectionAPI

Execution

Code

Visuali-
sation

Simulation kernel

Hardware

Specification

Topology

Figure 2 Simulation environment architecture of Fujaba

Production
ScheduleGeneration

Configuration Fujaba

http://www.fujaba.de

3 Running Example

Figure3 shows the topolo-
gy of our sample factory
used as running example in
this paper. The example
stems from the ISILEIT
project. The topology of
our sample factory consists
or seven shuttles moving on
the track system. Each
shuttle executes the same
defined working task. Its
task starts, when a shuttle is
activated, which means that
it is assigned to produce a
certain good, e.g. locks or
keys. The first step in the
working task is to collect a
piece of iron from the up-
per left storage, then it has
to move to an assembly line
and to order the wanted
good. At each transfer gate
the shuttle has to decide
where it wants to go ac-
cording to the choice of the assembly line and the shortest path to get there1. Once the shut-
tle has reached an assembly line, the piece of iron is taken from the shuttle, the assigned
good is produced, and put on the shuttle again. After that, the shuttle moves to the storage
where the good is stored. Finally, the shuttle reaches the end of its working task and starts
again from the beginning. The shuttle will perform this task until it gets a new assignment.
[KNNZ00] describes in detail the specification of this sample factory and introduces dif-
ferent modelling techniques. These modelling techniques are supported by the Fujaba en-
vironment

4 Validating the system

In contrast to other tools and simulation environments, e.g. STATEMATE [HLN+90],
PROGRES [SWZ95], which simulate the specified model like an interpreter, our approach
is to generate source code out of the specification and observe the running system. Such an
approach closes the gap between the simulation system (interpretation) and the software
running on the real system. Our attempt is to use the same code both for the simulation as
well as for the running system. So, the generated code has to be free from any kind of de-

1 The decision depends on the current tool, and on the number of waiting shuttles at the assembly line.

Figure 3 Sample factory topology

Track

Storage

Assembly
Line

Shuttle

Gate

Robot

bug information and could be optimized for special issues, i.e. speed or space optimiza-
tions.

To observe the running system, the Fujaba environment provides a graphical debugging
tool called ‘Mr. Dobs’ (Dynamic Object Browsing System). Dobs is able to display the in-
ternal object structure of a running Java virtual machine. We use original UML object di-
agrams as graphical representation. Figure4 shows the running sample factory with the

factory object itself, tracks, shuttles, and assembly lines. For example, tracks are objects
of typeTrack connected with lines representing the links in the object structure1. Dobs uses
the Java runtime information retrieval techniques, i.e. the reflection API, to extract the in-
ternal object-structure of the virtual machine. This observation only allows to get snap-
shots from the internal object-structure. The user has to layout the objects manually. For
example, if a shuttle moves from one track to the next, only the corresponding line will
switch from one track object to the next, the shuttle object will keep its position. The cur-
rently assigned goodclock of shuttles3 is represented by an attribute of the object shown
in the middle list box on the left hand side of the screen.

To get a more realistic simulation, Dobs is able to interpret a look-up table which is the
output of the topology diagram. This look-up table consists of various rules, e.g. how ob-
jects should be displayed depending on attribute values. The layout is done in a generic

1 Usually, Java provides only references between objects, but Dobs uses some heuristics to identify a pair of ref-
erences as a bidirectional link.

Figure 4 Dobs displaying sample factory as UML object diagram

way using connectors placed on the graphical representation of objects. If two objects are
connected via a link, the link-ends are mapped to connectors (mappings are also specified
in the look-up table). The generic layout algorithm tries to put the connectors as close as
possible together. Since connectors are directed, and the layouter is able to rotate icons rep-
resenting objects, each object listed in the look-up table could be positioned. Figure5

shows Dobs in the simulation mode for our sample factory example. In contrast to
Figure4, shuttles are moving on the tracks, assembly lines and storages are easily distin-
guishable. Likewise, attribute values are visualized, e.g. the upper right transfer gate is cur-
rently in fork direction.

4.1 Interaction opportunities

Dobs uses the Java reflection API to display the internal object-structure of the Java virtual
machine and allows the user to change object values. This works either for basetype at-
tributes, for exampleint or boolean, as well as for object reference attributes. Both is done
by method invocation of certain objects. As mentioned above, attributes and associations
are mapped to Java attributes with appropriate access methods. This allows the user to
change the object structure itself. Likewise, Dobs allows to create new objects and to link
them to other objects.

For example, Figure4 and Figure5 have been produced by first creating afactory object
and by calling thebuild method, which creates the initial object structure. To let the shuttles
produce a certain kind of good, a shuttle must receive anassign event. Events are mapped
in the source code generation process to appropriate methods in the corresponding classes.

Figure 5 Simulation mode of Dobs with sample factory

The user can invoke theassign method (lowest list box on the left-hand side) of the select-
ed (highlighted) shuttles4, cf. Figure5. Necessary parameters must be specified by the us-
er. On the left-hand side of Figure6, the assign method is called and the wanted good is
passed as a string. On the right-hand side, the shuttle is set on a certain track calling the
setAt method and passing the track as parameter.

Overall, Dobs allows the user to test the specification, e.g. to test the robustness of the spec-
ification in cases of unforeseen errors. For example, if an assembly line is out of order, the
simulation shows directly if the shuttles react appropriately or not. Other opportunities are
optimizations, which could be made during the simulation. If the material flow system has
a bottleneck, e.g. long queues in front of the assembly lines, the user may enhance or re-
layout the track system or add additional assembly lines and look if the improvements are
effective or not. Especially optimizations and re-configurations of a material flow system
force a reconstruction of the real system and take many testing time. This could be ana-
lysed during a simulation which reduces the down time of the production.

5 Simulation Kernel

In the previous chapter, we have introduced Dobs as an interactive front-end to visualise
the simulated material flow system, which consists of two main parts: the hardware and the
software. As already mentioned, we employ Fujaba to specify the control software itself.
On a real system, this software controls a node which is in turn responsible for the assigned
module. The application software communicates via a process interface with the hardware
of the material flow system.

We implemented a simulation kernel to achieve a correct simulation of the physical envi-
ronment. Thus, the control software can interact with its environment like in the physical
production system without any modifications. Note that the kernel encapsulates physical
processes like turning a switch or moving a shuttle. In a real system, such operations re-
quire some time. Therefore, our simulation kernel has to simulate time aspects. Internally
the simulation kernel works in a process-oriented way. It assumes that the processes of a
system behave in a cyclic way. The description of such a process in terms of simulation
includes all activities which are relevant for it. A scheduler manages the coordination of
the processes. A queue keeps the processes and their activation times. The scheduler de-

Figure 6 Method invoking with parameters

queues the process with the earliest activation time and activates it. After changing its state
and executing all relevant actions, the process determines the next activation time, if nec-
essary. Figure7 illustrates how the application software controls the simulated system via
the interface process of its node.

The application software sends commands to the interface process which simulates the
process interface of the real system. The interface process manages a queue with all re-
ceived commands and their arrival time which depends on the virtual simulation time. In
the example the scheduler activates the interface process 1 (IP1) at time 15.35. IP1 now
dequeues the next commandswitch gate and executes it. This effects that the gate connect-
ed to node 1 is switched. In the next step, IP1 determines the point of time of its next acti-
vation and notifies the scheduler which enlists this information in its lookup-table. After
that, the interface process deactivates itself and the scheduler activates the next process.

In summary, we have a hardware simulation model of the material flow system and the
process interface. This enables us to generate the same code for the control objects, no mat-
ter whether we use it in the real production control system or for simulation purposes. For
more details see [Sch00].

But, to be honest, the kernel does not have the capability to simulate hardware error con-
ditions of the material flow system, i.e. a malfunction in a switch drive, or a power down
of a control node. This is very important if one wants to check the robustness of the control
software concerning the reliability of the system.

scheduler
process activation time

shuttle 1
IP1
shuttle 3
...
IP1

15.34
15.35
15.36
...
15.38

queue of commands

switch gate
start shuttle 4
start roboter

15.35
15.38
15.39

interface process (IP1)

Figure 7 Scheduling processes in the simulation kernel

switch

roboter

shuttle 4

model of the
system

simulation kernel

activate

execute

next activation

cmd

application software
“node 1”

(generated by FUJABA)
cmd
send

6 Related Work

The modelling approach underlying this paper is described in our previous work
[KNNZ00] in detail. We use UML and SDL to define the static as well as the dynamic be-
haviour of reactive systems. In general, UML class diagrams specify the static behaviour
and for the dynamic behaviour story-charts are used. Story-charts are a combination of
statecharts and story diagrams, whereas story-diagrams are introduced in [FNTZ98]. The
graph grammar semantics underlying the collaboration diagrams stem from [SWZ95] and
[Roz97]. The whole modelling approach is supported by the Fujaba environment and al-
lows to generate executable Java code.

A task-net modelling approach for production control systems is described in [NZ99]. This
approach models a production control system with autonomous ‘agents’, whereas the ex-
ecution is supervised by a controller to coordinate the independent acting agents. The ap-
proach is comparable to [KNNZ00] where statecharts are mapped to an object-oriented
task-net like Java implementation and ‘agents’(reactive objects) refer to threads.

There is a vast literature on the subject of simulation, e.g. [Zel92] and [Lie95]. Due to the
high complexity of production control systems, the analysis of such systems is hard to
manage. Thus, simulation systems are used for the analysis purposes [Rei72]. Simulation
environments like Simple++ [Tec98] support the design an simulation of a manufacturing
process. However, the specification of the control software is not based on an integrated
object oriented modelling approach which is formally defined [KNNZ00].

7 Conclusions and Future Work

One of the main problem of todays industry is that the demanded flexibility forces frequent
re-configurations of the manufacturing systems. This mainly relies on the fact that the soft-
ware is tested on the real hardware, which causes long down times. In this paper, we have
described an approach to simulate the control software beforehand. To reduce the testing
phases on the real hardware, the control software can be validated before its use in our sim-
ulation environment. The environment observes the running code by using the Java reflec-
tion library. Thereby, the production sequences can be visualized and analysed. The simu-
lation is based on a simulation kernel, which serves as a model for the hardware of the
production system.

Our simulation kernel can be described as a discrete process interaction simulation with
variable time increments. Discrete simulation approaches are often used in business eco-
nomics for example. Additionally, most software packages for simulating production sys-
tems just support discrete approaches. Although the event scheduling approach can be im-
plemented much easier, the process interaction approach is more suitable for the modular
character of the discussed production system.

As a result, a prototype implementation of the simulation environment has revealed some
mistakes in the control software specification made in the ISILEIT project for the sample
factory.

Although we are able to visualise the running system in 2D, the engineers of our depart-
ment aspire to display the whole system in 3D. Moreover, we will add the possibility to
display some statistics concerning the performance of the system. Furthermore, the possi-

bility of checking the event-flow between the distributed, asynchronously communicating
objects should be added for debugging facilities.

Finally, the simulation lacks a model of the communication bus and the bus interface. This
becomes very important if intense traffic on the communication bus leads to communica-
tion delays or errors.

Acknowledgements

Many thanks to Matthias Gehrke, Ralf Schomaker, Jörg P. Wadsack, Albert Zündorf for
their fruitful discussions, careful proof readings, and a lot of suggestions to this work. Spe-
cial thanks go to Martin Glinz and all reviewers of this paper, who helped to improve it
with their comments and suggestions.

References

[FNTZ98] T. Fischer, J.Niere, L.Torunski, and A.Zündorf. Story Diagrams: A new Graph Re-
write Language based on the Unified Modeling Language. In G.Engels and G.Rozen-
berg, editors,Proc. of the 6th Int. Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany. Springer Verlag, 1998.

[HLN+90] D. Harel, H.Lachover, A.Naamad, A.Pneuli, M.Politi, R.Sherman, A.Shtull-Tau-
ring, and M.Trakhtenbrot. STATEMATE: A Working Environment for the Develop-
ment of Complex Reactive Systems. InIEEE Transactions on Software Engineering,
pages 403–414. IEEE Computer Society Press, 1990.

[KNNZ00] H.J. Köhler, U.Nickel, J.Niere, and A.Zündorf. Integrating UML Diagrams for Pro-
duction Control Systems. InProc. of the 22th Int. Conf. on Software Engineering
(ICSE), Limerick, Irland. ACM Press, 2000.

[Lie95] F. Liebl. Simulation. A problem oriented introduction (in german). Oldenbourg, Mu-
nich, 2nd edition, 1995.

[NZ99] J.Niere and A.Zündorf. Using Fujaba for the Development of Production Control
Systems. InProc. of Int. Workshop and Symposium on Applications Of Graph Trans-
formations With Industrial Relevance (AGTIVE), Kerkrade, The Netherlands, LNCS.
Springer Verlag, 1999.

[Rei72] A. Reinhardt.Simulation eines Fertigungsprozesses in GASP. Großmann, 1972.

[Roz97] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, Singapore, 1997.

[Sch00] R. Schomaker.Development of a simulator for decentralised controlled, track-bound-
ed transport systems (in german). Master’s thesis, University of Paderborn, Depart-
ment of Mathematics and Coputer Science, Paderborn, Germany, 2000.

[SWZ95] A. Schürr, A.J. Winter, and A.Zündorf. Graph Grammar Engineering with PRO-
GRES. In W.Schäfer, editor,Software Engineering - ESEC ’95. Springer Verlag,
1995.

[Tec98] Technomatix.Technomatix: Reference Manual, SIMPLE++ 5.0, Handbuch zur Sim-
ulationssoftware, 1998.

[Zel92] M. Zell, editor.Simulation based manufacturing control. Oldenbourg, Munich, 1992.

	P16:
	stampTemplate:
	pg: 19

	P17:
	stampTemplate:
	pg: 20

	P18:
	stampTemplate:
	pg: 21

	P19:
	stampTemplate:
	pg: 22

	P20:
	stampTemplate:
	pg: 23

	P21:
	stampTemplate:
	pg: 24

	P22:
	stampTemplate:
	pg: 25

	P23:
	stampTemplate:
	pg: 26

	P24:
	stampTemplate:
	pg: 27

