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Figure 1 Schematic overview of a material flow system

and actors, e.g. from the identification unit or to the stoppayeneral, each node in the
network is responsible for its local @nonment. The control softave for the whole mate-
rial flow system is spreadver the nodes and thénave to coordinate themse&ls among
each otherto perform the correct task.

The compl& tasks of such a system require ditient way of developing the control soft-
ware. One of the main problems in todays maaufring industries is long dm times of
assembly lines resulting from long testing phases during the installation ofitsnfie
ware on the ng hardware. Thus, one ants to alidate the specified sofase beforehand

in order to shorten sof@mve re-configuration aan times of plgsical assembly lines. In
most cases, theevification of the complete system is not possible. The usability of sym-
bolic model chedirs for &ample is not feasible for such complystems due to the state
explosion problem. Hence, simulationvimonments are empjed to \alidate the system

by checking the most important scenarios.

This paper originates from the ISILE{project which vas funded by the German Nation-
al Science Bundation (DFG). This project aims at thevelepment of a seamless meth-
odology for the intgrated design, analysis araidation of distrilnted production control
systems. Br this purpose, we ka dereloped a methodology which is a combination of
parts of SDL and UML [KNNZzO00].

In the follawing chapter 2, we introduce the architecture of our simulatigimogmment.
Chapter 3 describes our runningample on which chapter 4 presents thédation op-
portunities of our erironment. V@ introduce a process-oriented haagevsimulation &r-

nel to get a realistic simulation. Therkel is presented in chapter 5. The paper closes with
related vork, conclusions and futureonk.

1 “Integrative Spezifikation von Leitsystemen der flexibel automatisierten Fertigung”
(see http://www.upb.de/cslisileit for further information)
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2 The Simulation Environment Architecture

Figure2 shavs the simulation edronment part of our Fujabaernvironment. In
[KNNZ00] we hare proposed a modelling approach, supported by Fujaba, for the specifi-
cation of material flw systems. W propose to start with a so-called topology diagram.
Such diagrams represent the ‘haad@/ configuration of the reference system, e.g. which
tracks are connected to each otleerd where sensors and actors are placed at the tracks.
The topology diagram parameterizes the simulatEméd with the current topology so

that the lernel can determine the elements of the materialdistem as well as its layout.
The lernel eecutes the simulation model for the considered matenaldjstem.

Specificatio Execution

Code Production%: ol
Generation Schedule g

=

Topology o

Control software
Simulation kernel

T

| ; — — 7
1 Librbry Reflection

|

1
APIT

Reflection

Java Virtual Machine L — —

Hardware

Configuration Fujaba

Figure 2 Simulation environment architecture of Fujaba

The control softwre itself is specified by UML class diagrams and so-called story dia-
grams preided by the Fujaba gimonment. In addition, Fujaba is able to generatcaet-

able Jaa source code from a specificatioror fmore details we refer to [FNTZ98,
KNNZ00, NZ99]. T obsere the running system, we adoped the Dynamic Object
Browsing system (Dobs) which displays the internal object structure of vheviftual
machine. This includes the control softw and the simulatioreknel. Thus, one gets an
overview of the production sequences which arise by the soéwontrolling the simula-
tion kernel2 Since in a real manaturing system aevking plan defines whichavk piec-

es hae to be produced, we igfated the possibility to define production schedules in Do-
bs.

1From UML to Java And Back Again (saap://www.fujaba.ddor further information)

“A simulation kernel is a program, which provides the modelled world with its elements. It manages the auto-
matic, chronological creation of the events, which are necessary for the correct mapping of a process sequence
in the model.” [Translated from VDI 3633]
30f course, in a real manufacturing system, a working plan defines which work pieces have to be produced.
Hence, we integrated the possibility to define production schedules in Dobs.
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3 Running Example

Figure3 shavs the topolo-
gy of our sample dctory
used as runningkample in
this paper The e&ample
stems from the ISILEIT]
project. The topology of
our sampledctory consistg
or seven shuttles mgng on
the track system. Eac
shuttle eecutes the sam
defined verking task. Its
task starts, when a shuttle
activated, which means tha
it is assigned to produce
certain good, e.g. locks @
keys. The first step in thq
working task is to collect §
piece of iron from the up
per left storage, then it hg
to move to an assembly lin
and to order the anted
good. At each transferate
the shuttle has to decide
where it vants to go ac-
cording to the choice of the assembly line and the shortest path to get@here the shut-

tle has reached an assembly line, the piece of ironés tiim the shuttle, the assigned
good is produced, and put on the shuttleimgAfter that, the shuttle mes to the storage
where the good is stored. Finaltiie shuttle reaches the end of itsrking task and starts

again from the bginning. The shuttle will perform this task until it gets arassignment.
[KNNZ00] describes in detail the specification of this samattdry and introduces dif-

ferent modelling techniques. These modelling techniques are supported by the Fujaba en-
vironment

Figure 3 Sample factory topology

4 Validating the system

In contrast to other tools and simulatiorvieonments, e.g. SNTEMATE [HLN*90],
PROGRES [SWZ95], which simulate the specified mode &k interpreteour approach

is to generate source code out of the specification and elikerrunning system. Such an
approach closes theg between the simulation system (interpretation) and theageftw
running on the real system. Our attempt is to use the same code both for the simulation as
well as for the running system. So, the generated code has to be freeyfrkimdaof de-

1The decision depends on the current tool, and on the number of waiting shuttles at the assembly line.
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bug information and could be optimized for special issues, i.e. speed or space optimiza-
tions.

To obsere the running system, the Fujabaiesnment preides a graphical deigging
tool called ‘Mr. Dobs’ (Dynamic Object Bmasing System). Dobs is able to display the in-
ternal object structure of a running/davirtual machine. & use original UML object di-
agrams as graphical representation. Figushavs the running sampladtory with the
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Figure 4 Dobs displaying sample factory as UML object diagram

factory object itself, tracks, shuttles, and assembly lirmsed@mple, tracks are objects
of typeTrack connected with lines representing the links in the object strdcobs uses
the Jaa runtime information retri@l techniques, i.e. the reflection API, tdract the in-
ternal object-structure of the virtual machine. This olstém only allevs to get snap-
shots from the internal object-structure. The user has to layout the objects maiually
example, if a shuttle mas from one track to the xte only the corresponding line will
switch from one track object to thextethe shuttle object willdep its position. The cur-
rently assigned goodock of shuttles3 is represented by an atttie of the object shan

in the middle list box on the left hand side of the screen.

To get a more realistic simulation, Dobs is able to interpret a look-up table which is the
output of the topology diagram. This look-up table consistanbus rules, e.g. oob-
jects should be displayed depending on attébalues. The layout is done in a generic

1Usually, Java provides only references between objects, but Dobs uses some heuristics to identify a pair of ref-
erences as a bidirectional link.
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way using connectors placed on the graphical representation of objectsolfjaets are
connected via a link, the link-ends are mapped to connectors (mappings are also specified
in the look-up table). The generic layout algorithm tries to put the connectors as close as
possible togetheBince connectors are directed, and the layouter is able to rotate icons rep-
resenting objects, each object listed in the look-up table could be positioned.3igure

Dynamic Object Browsing System
Browse Layout Options Simulation ?
Bm B BX

Objects To Browse 4
7 Shown objects
{7 Hidden objects

Attributes
Simvalue - Shuttle 54 =
hlocked: Boolean = false
id: String =
moveTime: Integer = 7500
state: String = deliver &

wantedGand: String = lnck =

Public Methods
action2ForAfter1 FromFetchToFetc &
action5F orAfterdFromProduceToP!
actionSForAfter7FromDeliverToDe
actiongF orAssignFromwWaitingToA
aftert ()

afterd (: void

after? () void

alwaysTrue (FEvent): hoolean
assion (String): void
doActionOFetch (). void
doAction3Praduce (: vaid
doActiongDeliver §: void

getGood 0: Good

< ' | DE

Instance created with Factory() ] DOBS - Dynamic Object Browsing System

Figure 5 Simulation mode of Dobs with sample factory
shavs Dobs in the simulation mode for our sampdetdéry example. In contrast to
Figured4, shuttles are nwing on the tracks, assembly lines and storages are easily distin-
guishable. Likwise, attrilute \alues are visualized, e.g. the upper right transfer ig cur-
rently in fork direction.

4.1 Interaction opportunities

Dobs uses the vareflection API to display the internal object-structure of the Jatual
machine and allgs the user to change objectives. This wrks either for basetype at-
tributes, for @ampleint or boolean, as well as for object reference attitibs. Both is done
by method imocation of certain objects. As mentioned ahaattritutes and associations
are mapped to Va attributes with appropriate access methods. Thisnallthe user to
change the object structure itself. dikse, Dobs allws to create ne objects and to link
them to other objects.

For example, Figurel and Figuré have been produced by first creatinépetory object

and by calling théuild method, which creates the initial object structucdetthe shuttles
produce a certain kind of good, a shuttle must vecanassign event. Exents are mapped

in the source code generation process to appropriate methods in the corresponding classes.
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The user can iroke theassign method (levest list box on the left-hand side) of the select-

ed (highlighted) shuttle4, cf. Figure5. Necessary parameters must be specified by the us-

er. On the left-hand side of Figu6e the assign method is called and ttented good is
passed as a string. On the right-hand side, the shuttle is set on a certain track calling the
setAt method and passing the track as parameter

ethod invocation

Method invocation

String
ke
Track
Track t10 hdl
Track t10 E
Track t11 =
Cancel |Track t12 =
— |Gateg13
Track t14 {:
_Track t15 3

Figure 6 Method invoking with parameters

Overall, Dobs allas the user to test the specification, e.g. to test thistiodss of the spec-
ification in cases of unforeseen errorst &ample, if an assembly line is out of ordie
simulation shwss directly if the shuttles react appropriately or not. Other opportunities are
optimizations, which could be made during the simulation. If the materiakflstem has

a bottleneck, e.g. long queues in front of the assembly lines, the user may enhance or re-
layout the track system or add additional assembly lines and look if thevienpeats are
effective or not. Especially optimizations and re-configurations of a matemakftetem

force a reconstruction of the real system ane takly testing time. This could be ana-

lysed during a simulation which reduces thevddime of the production.

5 Simulation Kernel

In the preious chapterwe hae introduced Dobs as an interaetiront-end to visualise

the simulated material flosystem, which consists of bwnain parts: the hardwe and the
software. As already mentioned, we empkeujaba to specify the control sotive itself.

On areal system, this softwe controls a node which is in turn responsible for the assigned
module. The application sofase communicates via a process irgegfwith the hardare

of the material flav system.

We implemented a simulatioretnel to achiee a correct simulation of the ydical ewi-
ronment. Thus, the control sofiwe can interact with its ginonment like in the plysical
production system without gmmodifications. Note that theeknel encapsulates ygical
processes li turning a switch or ning a shuttle. In a real system, such operations re-
quire some time. Therefore, our simulati@mel has to simulate time aspects. Internally
the simulation krnel works in a process-orientedaw It assumes that the processes of a
system beha in a gclic way. The description of such a process in terms of simulation
includes all actiities which are relant for it. A scheduler manages the coordination of
the processes. A queuedps the processes and theinatitbn times. The scheduler de-
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gueues the process with the earliestvatitin time and actates it. After changing its state
and eecuting all releant actions, the process determines the aetivation time, if nec-
essaryFigure? illustrates ha the application softare controls the simulated system via
the interfice process of its node.

send application software

cmd “node 1”
'( (generated by FUJABA)

interface process (IP1)

scheduler
process| activation time
shuttle 1| 15.34

IP1 15.35
shuttle 3| 15.36

queue of commands

switch gate  15.35
start shuttle 4 15.38
start roboter 15.39

activate

next activation
IP1 15.38

execute|
] O
. shuttle 4 |_,
L | switch
model of the

system

simulation kernel roboter

Figure 7 Scheduling processes in the simulation kernel

The application softare sends commands to the irded process which simulates the
process intedfce of the real system. The intaré process manages a queue with all re-
ceived commands and their al time which depends on the virtual simulation time. In
the xample the scheduler agies the intedce process 1 (IP1) at time 15.35. IPno
dequeues the rRecommandswitch gateand &ecutes it. This éécts that the gte connect-

ed to node 1 is switched. In thexhstep, IP1 determines the point of time of itgtraeti-
vation and notifies the scheduler which enlists this information in its lookup-table. After
that, the interdice process deagdites itself and the scheduler aates the nd process.

In summarywe hae a hardwre simulation model of the materialvileystem and the
process intedce. This enables us to generate the same code for the control objects, no mat-
ter whether we use it in the real production control system or for simulation purpases. F
more details see [Sch00].

But, to be honest, thesknel does not lva the capability to simulate hardwe error con-
ditions of the material flw system, i.e. a malfunction in a switchweji or a paer davn
of a control node. This isevy important if one wants to check the ralstness of the control
software concerning the reliability of the system.
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6 Related Work

The modelling approach underlying this paper is described in owiopse work
[KNNZz00] in detail. We use UML and SDL to define the static as well as the dynamic be-
haviour of reactve systems. In general, UML class diagrams specify the statigibeha

and for the dynamic behi@ur story-charts are used. Story-charts are a combination of
statecharts and story diagrams, whereas story-diagrams are introduced in [FNTZ98]. The
graph grammar semantics underlying the collaboration diagrams stem from [SWZ95] and
[Roz97]. The whole modelling approach is supported by the Fujati@mement and al-

lows to generatexecutable Jaa code.

A task-net modelling approach for production control systems is described in [NZ99]. This
approach models a production control system with autonomous ‘agents’, whereas the e
ecution is supervised by a controller to coordinate the independent acting agents. The ap-
proach is comparable to [KNNZOO] where statecharts are mapped to an object-oriented
task-net lilke Jaa implementation and ‘agents’(reaetiobjects) refer to threads.

There is a ast literature on the subject of simulation, e.g. [Zel92] and [Lie95]. Due to the
high compleity of production control systems, the analysis of such systems is hard to
manage. Thus, simulation systems are used for the analysis purposes [Rei72]. Simulation
ervironments lile Simple++ [Ec98] support the design an simulation of a mactufing
process. Haever, the specification of the control sofive is not based on an igtated

object oriented modelling approach which is formally defined [KNNZOQO].

7 Conclusions and Future Work

One of the main problem of todays industry is that the demand@llfte forces frequent
re-configurations of the maradturing systems. This mainly relies on thetfthat the soft-

ware is tested on the real haathe, which causes long\n times. In this papewe hae
described an approach to simulate the control soéweforehand.olreduce the testing
phases on the real hardg, the control softare can bealidated before its use in our sim-
ulation ewironment. The erironment obsems the running code by using thealeeflec-

tion library. Therebythe production sequences can be visualized and analysed. The simu-
lation is based on a simulatioerkel, which sers as a model for the hardwe of the
production system.

Our simulation krnel can be described as a discrete process interaction simulation with
variable time increments. Discrete simulation approaches are often usesiniesis eco-
nomics for @ample. Additionally most softvare packages for simulating production sys-
tems just support discrete approaches. Althoughviiet scheduling approach can be im-
plemented much easjehe process interaction approach is more suitable for the modular
character of the discussed production system.

As a result, a prototype implementation of the simulatiasfirenment has reealed some
mistales in the control softare specification made in the ISILEIT project for the sample
factory

Although we are able to visualise the running system in 2D, the engineers of our depart-
ment aspire to display the whole system in 3D. Meeeave will add the possibility to
display some statistics concerning the performance of the system. Furthermore, the possi-
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bility of checking the eent-flov between the distrilied, asynchronously communicating
objects should be added for deglging fcilities.

Finally, the simulation lacks a model of the communicatios dnd the is interfice. This
becomes &ry important if intense tri€ on the communicationus leads to communica-
tion delays or errors.
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