An Approach to use Executable Models for
Testing

Michael Soden and Hajo Eichler

Department of Computer Science, Humboldt Universitat zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
[soden,eichler]@ikv.de

Abstract. This paper outlines an approach to test programs by trans-
forming them into executable models. Based on OMG’s metamodelling
framework MOF in combination with an action language extension for
the definition of operational semantics, we use QVT to transform ab-
stract syntax trees as code representations into executable models. We
argue that these models provide an adequate abstraction for simulation
and testing, since platform dependencies can be resolved in a controlled
way during transformation to detach the program logic from its environ-
ment. A prototypic implementation based on eclipse EMF underpins the
approach.

1 Introduction

Execution and simulation of models are well established techniques in soft-
ware engineering for decades now. While the idea of model-driven architectures
(MDA) as proposed by the OMG has been successfully applied to various do-
mains and especially embedded systems, the major part of today’s enterprise
software systems are still not developed in a model-driven way by means of
transformations, integrated tool landscapes, rich traceability and 100% code gen-
eration. We identified two main reasons for this:

1. Most development languages provide similar abstraction mechanisms than
models and come with considerable tool support at the code level

2. Strong execution platform dependencies of the developed code such as library
or framework functionality

Worse than this is that the meaning of models is typically defined through the
mapping into the target environment by code generators. Hence, code generators
must be considered to be part of the specification when it comes to (automated)
testing between the specification model and the code.

To address these problems, we have created a MOF [1] based framework
that supports the definition of operational semantics in metamodels to precisely
specify the execution semantics of models [2]. Based on the assumption that these
metamodels reflect the correct platform behaviour, simulations and tests of the
developed code can be executed in the model environment instead of testing it

75

directly on the target platform. Execution model building is achieved through a
transformation defined as QVT relations [3] of a syntax oriented tree metamodel
which is close to a language’s EBNF grammar (similar to [4]) to an appropriate
metamodel for the behaviour definition. Thereby, this import mechanism ensures
to reach the proposed abstraction between model and code, which is one of the
key ideas of MDA.

2 Execution of behavioural models

In order to execute models a (meta-)modelling framework is required that sup-
ports the definition and execution of models. For this purpose we use OMG’s
metamodelling framework MOF [1] in conjunction with OCL [5] and QVT [3]
to precisely define and manipulate models in an object oriented way.

Even though MOF defines an overall framework for the definition and man-
agement of (meta-)models, it lacks support for the definition of concrete syntax
and computational semantics [1]. To fill this gap, we extend the MOF with an ac-
tion language to support the specification of operational semantics[2]. Through
the addition of a subset of UML Actions in combination with OCL expressions,
the metamodel definitions become machine interpretable and hence models ex-
ecutable. To clearly separate the non-changing model from its runtime config-
urations which evolve over time, an explicit instanceOf relation is introduced
at M3. This explicit instanceOf modelling reduces any overhead in managing
relations between (logical) classifiers and their instances. For this purpose, the
instanceOf concept is aligned with a create operation which takes care of han-
dling the creation of corresponding links to specified meta-objects.

2.1 MOF Actions

We briefly outline the action language in the following along with the sample
metamodel of C# used throughout this paper. For a small and complete exam-
ple refer to [6]. Figure 1 shows a small excerpt of the C# metamodel. The main
structural part is conceptually aligned with the UML2 infrastructure library [7],
although some minor modifications and simplifications have been applied (e.g.
generalization is restricted to single inheritance, some associations are bidirec-
tional, etc.) Rather noteworthy is the addition of language specific concepts such
as expressions or delegates. Those parts which are only syntax variations or ”syn-
tactic suger” like property accessors, different kind of loops, etc. are represented
by unified concepts in the metamodel.

The operational semantics of the runtime model is described with an action
language that is syntactically borrowed from UML Actions/Activities [8]. Figure
2 shows the operational specification of the CSAssign meta-class as a sequence of
three actions: (1) a OCL query retrieving the right hand side of the assignment
in the context of the object self (which is an instance of CSAssign), (2) an
invocation action that is capable of evaluating the expression and (3) a primitive,
single-valued set action for the result. Each action is guaranteed to be atomic,

76

i
i

Fig. 1. Excerpt of the C# metamodel: structural parts and expressions

77

especially queries collecting elements will not be interrupted or interfere with
parallel changes applied to the model®. Note that self in the query and assign
actions refers to the owning CSAssign object while self at the input pin of the
invocation action defines the (nested) context for the execution of the Evaluate
behaviour.

(o

i g sl e

| wsme CEEpramen

¢ TR G
W e O
L vl F N

I— [T
_-'I-I vngll EHGE il

(=)

I

Fig. 2. Behaviour of class CSAssign

Beside the abstract syntax part of the metamodel, the C# runtime model
is defined by specific runtime classes (cp. Figure 3). We argue that the runtime
model can be regarded as an instance of a language’s structural part. For this
purpose, the instanceOf relationship is introduced at the M3 level to adequately
provide support for ”logical” multi-metalayer modelling. As consequence, each
meta-object has an additional metaObject property that points to the speci-
fied meta-class. Existing OCL reflection capabilities such as allInstances or
0clIs0fType remain valid and are still bound to the ”physical” meta-layering.

Runtime objects can be instantiated with a create action. For example, figure
4 (”Create Method Parameter”) shows a behaviour defined in the context of the
CSMethodInvoke class. It handles allocation and binding of values for all param-
eters. Note that the type of the input pin of the create action is CSParameter

! Hence, there is a global order of all actions executed. Nevertheless, mutual references
and modifications to shared objects are allowed

78

Fig. 3. C# Runtime Model

79

Fig. 4. Actions to specify method invocation

80

while the output pin is Place. Invoking this behaviour causes an object of type
Place being created as logical instance of class CSParameter with a metaObject
reference set to the CSParameter object passed to the input pin.

3 Execution of code as model

The techniques described above for designing metamodel behaviour are the basis
for executing models. Figure 5 outlines the approach to analyse existing imple-
mentations in its model representation. The left side of figure 5 outlines the stan-
dard MDA approach of model to model transformation. At a certain stage the
model is enriched with enough behavioural information to support model execu-
tion. The code is transformed into the abstract syntax tree using the generated

Syndan oriented

e e L & Grammg
betamodsE ™ stamodd. M Matenodsd AT
A A |'.]
— : " — e
LT o » Mada " - AST Hodel H—& Frogram
Fi A
Platform Model Harprm

Fig. 5. Mappings between code, grammar and models

parser of ANTLR [9]. This grammar-based representative of the implementation
will be mapped to an instance of the syntax oriented metamodel; a one to one
mapping to connect the grammar with the modelling elements (compare [4]).
The main difference of both representation is the data structure used. Whereas
ASTs are defined by a set of independent token types with simple parent/child
relation, metamodels offer in addition the advantages of object orientation like
inheritance and other modelling techniques like containment. This conversion
from grammar to model enables one to apply model transformations on the
code representative, but it does not have any effect on the detail degree of the
implementation information.

A second mapping transforms the implementation’s model into the actual
domain specific metamodel. One example of such a metamodel can be found in
chapter 2. With this step the goal of abstraction will be achieved by two kind
of mechanism. The program itself is abstracted by the mapping to its simplified
model. For instance, in the model only one iterate definition is defined, whereas

81

the syntax of the language supports for, while, do etc. loops. The second aspect
of abstraction happens by focusing on the program logic itself and extract it
from it’s surrounding environment. The mapping between the language and the
domain specific metamodel is built using QVT relations. The following two ex-
amples show a structural and behavioural mapping between the two metamodels.
One major reason to use QVT relations here is the possibility for bidirectional
transformation that could ensure the re-generation of code from the model in
case the model is changed. Class2Class as shown in figure 6 defines the map-
ping of the AST representation of classes to their counterpart in the domain
specific metamodel. The patterns of the rule are very elementary to match all
occurrences, whereas the classes content is covered by separate rules, which rely
to this relation via their when clauses as precondition. Large part of the model

isp relafdisn ClesslClasw

LT AR LR TS O
rafercy damain ast - lsapcClase

children = qual Jders Cram] [e nk
RiLddEsn = Jdepd 1

LA = WL A

rafsrce dmmaln eeiasodel ot laes: T30 lass

Rl = R,
BOOpE ™ DA FRE&CE CEHamsnpdc &
mhrm
Hams ppacs INans S pA08 [p, LARESIR&CE| !

Fig. 6. QVT rule to map grammar class elements to their model correspondent

transformation forms the behavioural part. One excerpt is the rule While2Loop,
which expresses the mapping between a while control flow statement and the
general loop model.

4 Related Work

There are many frameworks for model- or language-driven development, de-
velopment of DSLs, or simulation frameworks with quite different terminology.
Metamodelling frameworks or tools include GME[10], XMF[11], Kermeta[12],
AToM3[13], MetaEdit+[14], AMMA[15] or MPSJ[16]. As classification of the dif-
ferent approaches by means of support for the definition of structure, static con-
straints, representation (syntax) and behaviour (execution semantics) as done
by Nytun et.al in [17], we can further distinguish two different approaches to
semantics. On the one hand semantics are defined by mappings of models onto

82

yoiLai iem Wap bnllouy
Shlaie i L &S0 WLLDE | FLE D ET L
i ldies = mup 1 Cupimankes
e, o liinisiiel i
il = § | e
SR B LA] e §iCHLEaH
ll L, o, & R
ik = ik ik
SUGEE & el T o 5 e
Lo

wi i vmr i Bappimy | SLEE R

wivmrwi Bigiewrsi glisi ceepie, slinieensin
Evgreppion] [opraspsss inep,

Fig. 7. QVT rule for mapping a while statement to the loop model element

different languages or mathematical formalisms (semantic domains) as in GME
and AToM3. On the other hand XMF, Kermeta, AMMA and MPS use specific
action languages to define operational semantics. The approaches taken in XMF
with XOCL (eXtensible Object Command Language), Kermeta’s textual action
language with OCL and QVT all have in common that querying is achieved by
OCL’s navigation capabilities. This idea is reused in our approach. Addition-
ally, the work of [18] inspired us to express the operational semantics with a
reduced set of UML actions. However, controlling atomicity of composed actions
is rather comparable to the "step” keyword of the Abstract State Machine Lan-
guage (AsmL[19]). In the same way as such ASMs define the formal semantics
of e.g. the SDL specification[20], our actions follow a similar approach but re-
place evolving algebras with manipulations of runtime configurations that are
instances of MOF metamodels.

Although instantiation is at the core of any metamodelling facility, the ap-
proaches differ in their realisation in the frameworks. We argue that while the
abstract syntax model is logically at M1, the runtime configurations are lo-
cated at MO. Atkinson et al.[21] analysed the shallow/deep-instantiation and
strict /non-strict metamodelling approaches and pointed out the ambiguous clas-
sification problem and the replication of concepts problem. However, we argue
that explicit (shallow) instanceOf modelling helps to distinguish multiple logical
meta-layers within the concept space defined by a metamodel.

5 Discussion

Our approach addresses the problem of decoupled working on model and code
level, whereby models do also have a behavioural description of the underlying
platform. To execute code as model for testing purposes a couple of advantages
against traditional techniques can be found. First, within the abstraction also a
major aspect for simplifying testing is found. On the one hand, concentrating
on the logic of the program is also a key for writing tests/execute models on the
problem scope. On the other hand, it is possible to derive the counterparts of

83

so called mock objects, which emulate a part of the system which is irrelevant
for the actual component under test, on importing the code to the model. For
example, typical three tier architectures based on the Model View Controller
paradigm often requires a lot of code for test-drivers and mock- objects on the
GUI and database level. Even though we succeded only in small replacements of
console based input/output, bigger replacements of library functionality could
be applied easily. Another important aspect is that execution in the model will
lead to scenarios containing model data: the actual testing data. Those scenarios
could be recorded and reused for testing.

6 Conclusion

The paper outlines an approach to translate existing implementations into their
corresponding domain models in order to execute and test their behaviour. The
behaviour is defined through an action language extension of MOF that supports
the definition of operational semantics. Utilising this approach helps testing the
actual implementation by abstracting from the language’s concrete environment.
Thus, it supports testing and simulation of the implementation decoupled from
the platform and other specific library or framework functionality. Our current
results are promising that often faced overhead of building test-stubs, simulating
network capabilities in test-drivers or omitting GUI references can be solved all
at once.

A prototypic implementation has been carried out based on eclipse EMF [22]
and a QVT engine [23]. Further directions for the implementation are towards
recording of test-runs and comparison against previously executed simulation
runs to really test the developed application against its specification.

References

1. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group (2003) ptc/03-10-04.

2. Plotkin, G.: A structural approach to operational semantics. Technical report,
University of Aarhus, Denmark (1981)

3. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Draft adopted Specification, ptc/05-10-02. Object Management Group (2005)

4. Alanen, M., Porres, I.: A relation between context-free grammars and meta object
facility metamodels. Tucs technical report no 606, Turku Centre for Computer
Science (2003)

5. OMG: OCL 2.0 Specification. Object Management Group (2005) ptc/2005-06-06.

6. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable spec-
ifications of operational semantics. (2007)

7. OMG: UML 2.0 Infrastructure Specification. Object Management Group (2003)
ptc/03-09-15.

8. OMG: UML 2.0 Superstructure Specification. Object Management Group (2004)
ptc/04-10-02.

84

10.

11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

Parr, T.: (ANTLR — Another tool for language recognition) Last checked: February
8, 2006.

Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software de-
velopment framework. In: OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, New York, NY, USA, ACM Press (2003) 8-15

Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodeling, A Founda-
tion for Language Driven Development. Xactium (2004)

Team, T.: (Triskell Meta-Modelling Kernel. IRISA, INRIA. www.kermeta.org.)

: (The Modelling, Simulation and Design lab (MSDL), School of Computer Sci-
ence of McGill University Montreal, Quebec, Canada: AToM3 A Tool for Multi-
Formalism Meta-Modelling. http://atom3.cs.mcgill.ca/index.html.)

MetaCase: (MetaEdit+. http://www.metacase.com.)

Davide Di Ruscio, Frric Jouault, I.K.J.B.A.P.: Extending amma for supporting
dynamic semantics specifications of dsls. Technical report, Universitegli Studi
dell’Aquila (2006)

Dmitriev, S.: Language oriented programming: The next programming paradigm.
onBoard (1) (2004)

Fischer, J., Holz, E., Prinz, A., Scheidgen, M.: Tool-based language development.
In: Workshop on Integrated-reliability with Telecommunications and UML Lan-
guages. (2004)

Sunyé, G., Guennec, A.L., Jézéquel, J.M.: Using uml action semantics for model
execution and transformation. Inf. Syst. 27(6) (2002) 445-457

Yuri Gurevich, Benjamin Rossman, W.S.: Semantic essence of asml. Technical
report, Microsoft Research (2004)

ITU-T: SDL formal definition: Dynamic semantics. In: Specification and Descrip-
tion Language (SDL). International Telecommunication Union (2000) Z.100 Annex
F3.

Atkinson, C., Kiihne, T.: The essence of multilevel metamodeling. In: UML’01:
Proceedings of the 4th International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools. LNCS, London, UK, Springer-
Verlag (2001) 19-33

Eclipse Project: Eclipse Modeling Framework. (2006) Last checked: January 1,
1970.

: medini QVT Engine. (www.ikv.de)

85

